㈠ 污水处理工艺有哪几种
污水处理工艺:
一、不溶态污染物的分离技术:
1、重力沉降:沉砂池(平流、竖流、旋流、曝气)、沉淀池(平流、竖流、辐流、斜流);
2、混凝澄清;
3、浮力浮上法:隔油、气浮;
4、其他:阻力截留、离心力分离法、磁力分离法
二、污染物的生物化学转化技术:
1、活性污泥法:SBR、A/O、A/A/O、氧化沟等
2、生物膜法:生物滤池、生物转盘、生物接触氧化池等
3、厌氧生物处理法:厌氧消化、水解酸化池、UASB等
4、自然条件下的生物处理法:稳定塘、生态系统塘、土地处理法
三、污染物的化学转化技术:
1、中和法:酸碱中和
2、化学沉淀法:氢氧化物沉淀、铁氧体沉淀、其他化学沉淀
3、氧化还原法:药剂氧化法、药剂还原法、电化学法
4、化学物理消毒法:臭氧、紫外线、二氧化氯、氯气、次氯酸钠
四、溶解态污染物的物理化学分离技术:
1、吸附法
2、离子交换法
4、其他分离方法:吹脱和气提、萃取、蒸发、结晶、冷冻
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。
㈡ 针对城市污水处理技术研究
作为城市综合管理的关键环节,污水处理对于城市正常运行及环境保护具有重要作用。本文首先介绍了城市污水处理尺宴的常用工艺,陵仿银然后探讨了城市污水处理的节能降耗策略,以期为相关技术与研究人员提供参考。
同国内城市经济、工业产业相比,城市基础设施的发展与建设速度相对较为缓慢,此种状况导致了我国城市基础设施长时间处于超负荷承载状态,而环境保护作为城市基础设施的重要部分,其发展状况更加不容乐观。当前城市污水处理采用的工艺类型较多,但各类工艺都具有不同的优势与劣势,而部分城市项目在未调查当地水质情况下便随意选择工艺,这在一定程度上影响了污水处理质量。因此,加强有关城市污水处理技术大灶的探讨,对于改善城市基础设施建设整体水平具有重要的现实意义。
一、城市污水处理常用技术工艺
城市污水是居民城市生活中产生的污水,其包含较多的细菌、有机物、病毒及寄生虫卵等,含有较高量的硫、磷、氮等分子。依据清除对象及工作原理,当前采用的污水处理工艺主要有化学法、物理法与生物法等。
1、氧化沟工艺
氧化沟污水处理通常采用连环循环曝气池,其是活性污泥法的一类延伸技术,是延时、低载荷曝气活性污泥法。因曝气池主要选用封闭的沟渠型,所以与原有的活性污泥法相比其在水力流态上具有不同的特点。在完成预处理后污水后直接输送至氧化沟,在环形沟处活性污泥与污水充分混合后会通过表面曝气的形式进行循环流动,具备完全混合式与推流式两种特性。氧化沟法对有机物清除效率较高,残余污泥量较少且易脱水,整体指标优异,同时具有除磷、工艺简单快捷、处理效果可靠、泥龄长、脱氮等优点;其缺点则主要包括体积庞大、负荷较小、运行成本过高、能耗过大等,在中小型低负荷污水处理厂应用较为广泛。[1]
2、SBR法
SBR法也就是序列间歇式活性污泥法,或叫做序列间歇式反应器法。其属于一种依照间歇曝气方式工作的活性污泥处理工艺,是一种沉淀静置、变容积、好氧-缺氧-厌氧间歇产生、混合充分、交替进水、单池处理的活性污泥法。SBR法将原有的动态沉淀改为静置理想沉淀、将稳态生活反应改为非稳定生化反应、将空间分割处理模式改为时间分割处理模式,具有间歇处理与运行有序双重特点。另外SBR反应池是该技术的关键,此池主要集成了生物降解、均化、初沉、二沉等功能,且未采用污泥回流系统。
3、CCAS工艺
CCAS工艺也就是连续循环曝气系统工艺,其关键部分为CCAS反应池,可完成悬浮物与有机物降解、除磷、排氮等功能,且对污水预处理的要求较低,出水便可达标排放。完成预处理后的污水会直接传输至反应池前部的预反应池,在此部分内活性污泥微生物会吸附水中的大量可溶性BOD,随后污水会通过反应器隔墙处的孔洞按照0.03~0.05m/min的速度流入主反应区。主反应区内主要依照“曝气、闲置、沉淀、排水”的处理工序循环运行,以确保污水通过“好氧-缺氧”的周期处理清除氮和碳,并在“好氧-厌氧”的处理中去除磷。不同工序的周期及设备运行都通过提前编制的程序命令进行操作,且可利用计算机进行综合管控。
4、生物膜法
生物膜法是通过吸附生长在部分固体物表面的微生物处理有机污水的技术。生物膜是一类由大量兼性菌、厌氧菌、原生动物、好氧菌、藻类、真菌等构成的生态系统,其表面具有的固体介质即为载体或滤料。由滤料依次向外可将生物膜分成厌气层、好气层、附着水层及运动水层。此法的主要工作原理为:生物膜会对污水中包含水层的有机物进行吸附,在经过好气层的好气菌分解后再完成厌气层的厌气处理,运动水层则用于更新老化的生物膜系统,由此周期循环实现污水净化。[2]
二、城市污水处理的节能降耗策略
1、污泥处理
作为城市污水处理的主要耗能部分之一,污泥处理单元通常包含污泥稳定、污泥浓缩与污泥脱水等过程。当前应用较多的污泥浓缩方法有离心浓缩、气浮浓缩与重力浓缩。分析不同污泥浓缩工艺能耗实践数据可发现,气浮浓缩的比能耗一般在0.2~10kWh・m-1左右,重力浓缩的比能耗一般在0.02~0.14kWh・m-1左右,离心浓缩的比能耗一般在0.5~1.2kWh・m-1左右,而气浮浓缩中生物气浮比能耗则通常为0.05~0.12kWh・m-1。相比之下,重力浓缩的耗能量最小,但因其浓缩效果较差,容易导致磷的泄漏,所以将重力浓缩改为生物气浮可有效提高污泥浓缩效能。
电耗与热耗是厌氧消化耗能的主要部分,热耗常用于保持消化过程温度,而电耗则用于泵送与搅拌;而风机对消化池的曝气是好氧消化耗能的主要部分。两者间的主要差异为厌氧消化产生的沼气可有效补偿消化过程的能耗。如某污水处理厂污泥处理主要选用生化沼气的高温与中温两级消化工艺,单日产生化沼气设计量为5.4万m3,依照运行稳定性计算日均发电量可保持在7.5万kWh,全年发电量则可突破2700万kWh。另外当前大部分污水处理厂均选用离心脱水、带式压滤缩水、板框压滤脱水等机械脱水方式,依据不同机械脱水电耗数据分析可发现离心DS脱水通常保持在11~33kWh・t-1左右。
2、污水处理
污水处理中的主要耗能部分为生物处理好氧工艺中的曝气系统。对曝气系统可采取的降耗节能措施有:(1)设置自动调控设备,依据曝气池中的溶解氧浓度对供气量进行调整;(2)加强设备设计,尽量采用压力承载性能高的局部构建及管材,降低不必要的延长与局部损失;(3)将曝气装置替换为混合效率更好的潜水搅拌器等;(4)可考虑将曝气设备安置在单侧,在水流断面上构造成旋转推流,让气液充分接触,由此改善氧的高转移率;(5)选用性能稳定、工作可靠、节能效果良好的变频调速风机。[3]
3、污水提升
作为污水提升的基本工作装置,污水提升泵降耗处理将改善处理厂整体节能效果。如依据某污水处理厂提升泵具体运行能耗数据分析发现,提升泵电耗占处理厂整体能耗的16%左右;工作扬程是提升泵电耗的主要决定性因素,另外构筑物水头损失设定值过高,也会加大污水提升电耗。所以应在工程设计时进行管道淹没出流规划并调整跌水高度,减小出口处水头损失消耗,以降低污水提升高程与能耗。对于泵扬程处理,可在设计时增加总体布置密度,采用短而直的管道连接方式,选用平流式沉淀池和淹没堰,以减少泵电耗。
4、化学除磷
化学除磷是指通过添加化学药剂与污水内的磷发生反应形成沉淀来除磷的一种方法。该方法在污水处理厂中应用较为广泛,但不同的化学药剂拥有不同的除磷效果。某研究者对几类药剂除磷效果比对发现,三氯化铁具有较高的除磷率,但其会产生排放尾水色度过大问题。而选用高分子混凝剂不仅能取得较好的除磷率,且能大幅度改善药耗。
城市污水处理水平将直接关系着城市居民的健康生活与发展。因此,相关技术与研究人员应加强有关污水处理的研究,总结污水处理工艺及关键技术处理要点,以逐步提升城市整体发展质量。
本文介绍了关于“针对城市污水处理技术研究”的内容。欢迎登陆中达咨询,查询更多相关信息。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
㈢ 阐述生态环保的污水处理技术
根据本人多年工作经验对污水生态处理技术简介、污水生态处理技术遵循的原理、污水生态处理技术的主要方法等三方面来阐述基于生态环保的污水处理技术的分析研究。
随着社会与经济的越来越快发展,生态环保已经成为越来越重要的话题。生态环保关系到每一个人的生活,影响非常的大。而在生态环保中,最大的问题是水资源污染的问题,随着工业等各种产业生产的需要,有的未经过检测合格就擅自将污水排入河流或是水系里,导致自然水体被破坏,水污染越来越严重,而水污染严重影响着人们的生活。为了改变这一现状,很多地方开始进行污水处理,但是传统的污水治理方法成本太高,难以实行,取得的效果也不是很好,所以本文从生态环保角度出发,提出基于生态环保的污水处理技术。
一、污水致力传统技术与污水生态处理技术简介
污水处理技术有传统的方法和生态处理技术。传统的污水处理技术就是利用物理、化学等原理作用对污水进行净化,物理方法就是利用物理特性将有害物质进行吸收,化学方法就是利用物质之间的化学反应将有害物质反映或是转化为无害物质。而这两种方法都不易实现,能源消耗非常大,而且在技术维护方面难度也比较大,成本比较高,难以进行有力的推广。这也是很多企业冒着违规的风险将污水直接排出的原因。
生态环保的污水处理技术,就是利用生物原理将污水有目的、有控制性的投入到一定的生态系统中,利用这个生态系统中的土壤、动物、植物、微生物等多种资源的符合作用,将污水中的超标物质和有害物质进行利用吸收,使污水中的有害物质进行降解,最后达标的过程。这一过程也可以用循环再生来形容。生态环保的污水处理技术处理污水的最大好处就是操作简单、投资较小、无副污染物出现,同时还可以达到整体优化的效果。
二、污水生态处理技术遵循的原理
1.循环再生原理
生物学中的循环再生原理,指的就是利用生态系统中的生物成分,将非生物成分合成新物质,然后又降解的过程,在这一过程中,通过生成和降解的循环,使整个生态系统保持平衡。在污水生态处理技术方面,也是利用循环再生的原理,将污水排入特定的生态系统,使污水中的非生物组分参与到这个循环再生的过程,加大了循环再生过程的进程和速度。
2.和谐共存原理
和谐共存原理指的是在生态系统中,所有生物与非生物之间的最稳定状态就是和谐共存,如果做不到和谐共存,那么其中一方就会被一方毁坏,直到达到平衡为止。所以在污水处理的过程中,污水引入到一个特定系统中,引起系统的不平衡,这个系统里面的生物就会将污水里面的非生物稀释或是降解,最后达到平衡状态,做到和谐共存。
3.整体优化原理
使用生态学的方法对污水进行处理是一个简单的过程,但是在这个处理过程中,包括很多环节,譬如说污水源控制、修复生态系统的选择、污水布水公艺选择、再生水的利用等等,这些环节都是必不可少的,而且对污水处理整个过程来说非常重要,不能单独的进行考虑。所以,应该将这些环节作为一个整体来考虑,对这个整体进行优化,最后达到使用污水生态处理技术处理污水的同时又对污水中的资源加以利用,变废为宝,达到整体优化的目的。
4.区域分异原理在进行污水生态处理技术上,必须要考虑到地区差异。因为每个地区的生态系统都会因为当地的特殊环境而不一样,所以在考虑应用这种那个方法的时候就必须考虑到这个因素,不能盲目的进行,导致污水生态学处理技术作用不明显。考虑到地区差异,就必须因地制宜,选择不同的修复植物、布水公艺、管理方法等进行管理和运用。并且在开始利用使用污水生态处理技术的时候,应先进行小范围的实验,在取得成功后,在开始大规模的使用这种方法。这样污水生态处理技术的成功率才会比较高。
三、污水生态处理技术的主要方法
污水处理技术主要是应用生态系统天然的资源,来将污水中的污染物质转移或是转化为其他物质,达到消除或是降低水中污染物中的作用。这种方法费用低还能达到整体优化的目的。目前,我国主要采取土地处理系统、蚯蚓滤池处理系统、生态塘处理系统三种方法来进行污水处理,并取得了显著的效果。
1.土地污水处理系统
土地污水处理系统就是利用土地―植物系统的自我调控能力以及生物作用对污水进行处理,从而改善污水的水质,在处理污水的同时植物和土地可以吸收污水中的富营养和水分,从而土地更加肥沃,植物生产的更快,更好。这样在进行污水处理的同时也能带来植物的更好发展,一举两得,实现废水最大化的利用,变废为宝。污水土地处理系统有很多种类型,常见的包括慢速渗透处理系统,还有与之相对的快速渗透系统,地表漫流处理系统以及地下渗透处理系统。使用土地污水处理系统的这几种方法来净化污水,其使用的原理是沉淀、过滤、挥发、生物氧化、土壤吸附、光解等,这几种都是最原始的处理污水的原理,包括物理原理和化学原理。这几种处理方法都可以使污水处理到达标水平,可以直接灌溉或是作为景观水使用。
2.蚯蚓滤池处理系统
蚯蚓滤池处理是人工制造的生态系统,就是将蚯蚓引入常规的滤池内构成。蚯蚓滤池处理系统是利用蚯蚓的消化分解作用以及过滤作用而达到处理污水的目的,所以蚯蚓滤池一般分为三层。第一层为蚯蚓分解层,这一层就是利用蚯蚓的消化分解以及上下钻动的特性来达到分解污水中污染物的过程。这一作用原理就是蚯蚓吃食污染物,和体内的细菌进行反应,排除,蚯蚓粪便的细菌进入环境中后使得有机物的数量增多,杀死微生物,达到处理污染物的效果。第二层是补充层,第三层是承托层。第二层和第三层的最主要作用是过滤作用,使得蚯蚓处理过的污水进一步的过滤。污水从蚯蚓滤池的上部进入,经过处理后的水从下部排出。蚯蚓滤池的整个处理污水的过程操作简单、成本比较低,污水处理效果好,可以方便推广使用。
3.生态塘处理系统
生态塘污水处理系统也是应用较多的生态污水处理技术。主要原理就是将污水引入人工制造的一个生态系统中,这个生态系统包括水产和水禽类生物。生态池塘通过太阳能的光合作用以及各种食物链原理将污水中的有机物进行分解或是转化,然后再通过食物链作用将物质一层一层的转移,使用这种方式将污水净化。这个方法之所以使用较多并且效果不错就是因为采用这种方法,污水得到净化的同时,水生植物和生物等也得到了食物,可以进行回收。这种污水处理方法不仅维护方便、成本低,更大的好处是可以获得经济效益。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
㈣ 污水处理技术有哪些(污水处理的方法汇总)
随着国家对环保的重视,以及工业水处理的技术发展,以下简述现如今的工业废水处理的新技术。
膜技术
膜分离法常用的有微滤、纳滤、超滤和反渗透等技术。由于膜技术在处理过程中不引入其他杂质,可以实现大分子和小分子物质的分离,因此常用于各种大分子原料的回收,如利用超滤技术回收印染废水的聚乙烯醇浆料等。目前限制膜技术工程应用推广的主要难点是膜的造价高、寿命短、易受污染和结垢堵塞等。伴随着膜生产技术的发展,膜技术将在废水处理领域得到越来越多的应用。
磁分离技术
磁分离技术是近年来发展的一种新型的利用废水中杂质颗粒的磁性进行分离的水处理技术。对于水中非磁性或弱磁性的颗粒,利用磁性接种技术可使它们具有磁性。磁分离技术应用于废水处理有三种方法:直接磁分离法、间接磁分离法和微生物—磁分离法。目前研究的磁性化技术主要包括磁性团聚技术、铁盐共沉技术、铁粉法、铁氧体法等,具有代表性的磁分离设备是圆盘磁分离器和高梯度磁过滤器。目前磁分离技术还处于实验室研究阶段,还不能应用于实际工程实践。
Fenton及类Fenton氧化法
典型的Fenton试剂是由Fe2催化H2O2分解产生?OH,从而引发有机物的氧化降解反应。由于Fenton法处理废水所需时间长,使用的试剂量多,而且过量的Fe2将增大处理后废水中的COD并产生二次污染。近年来,人们将紫外光、可见光等引入Fenton体系,并研究采用其他过渡金属替代Fe2,这些方法可显著增强Fenton试剂对有机物的氧化降解能力,减少Fenton试剂的用量,降低处理成本,统称为类Fenton反应。Fenton法反应条件温和,设备较为简单,适用范围广;既可作为多带带处理技术应用,也可与其他方法联用,如与混凝沉淀法、活性碳法、生物处理法等联用,作为难降解有机废水的预处理或深度处理方法。
电化学(催化)氧化
电化学(催化)氧化技术通过阳极反应直接降解有机物,或通过阳极反应产生羟基自由基(?OH)、臭氧等氧化剂降解有机物。电化学(催化)氧化包括一维、二维和三维电极体系。由于三维电极体系的微电场电解作用,目前备受推崇。三维电极是在传统的二维电解槽的电极间装填粒状或其他碎屑状工作电极材料,并使装填的材料表面带电,成为第三极,且在工作电极材料表面能发生电化学反应。与二维平板电极相比,三维电极具有很大的比表面,能够增加电解槽的面体比,能以较低电流密度提供较大的电流强度,粒子间距小而物质传质速度高,时空转换效率高,因此电流效率高、处理效果好。三维电极可用于处理生活污水,农药、染料、制药、含酚废水等难降解有机废水,金属离子,垃圾渗滤液等。
铁碳微电解处理技术
铁碳微电解法是利用Fe/C原电池反应原理对废水进行处理的良好工艺,又称内电解法、铁屑过滤法等。铁炭微电解法是电化学的氧化还原、电化学电对对絮体的电富集作用、以及电化学反应产物的凝聚、新生絮体的吸附和床层过滤等作用的综合效应,其中主要是氧化还原和电附集及凝聚作用。铁屑浸没在含大量电解质的废水中时,形成无数个微小的原电池,在铁屑中加入焦炭后,铁屑与焦炭粒接触进一步形成大原电池,使铁屑在受到微原电池腐蚀的基础上,又受到大原电池的腐蚀,从而加快了电化学反应的进行。此法具有适用范围广、处理效果好、使用寿命长、成本低廉及操作维护方便等诸多优点,并使用废铁屑为原料,也不需消耗电力资源,具有“以废治废”的意义。目前铁碳微电解填料己经广泛应用于印染、农药/制药、重金属、石油化工及油分等废水以及垃圾渗滤液处理,取得了良好的效果。关于本公司研发生产的TPFC铁碳填料处理各类废水的效果可以查看TPFC铁碳微电解填料处理各种废水的处理效果。
臭氧氧化
臭氧是一种强氧化剂,与还原态污染物反应时速度快,使用方便,不产生二次污染,可用于污水的消毒、除色、除臭、去除有机物和降低COD等。多带带使用臭氧氧化法造价高、处理成本昂贵,且其氧化反应具有选择性,对某些卤代烃及农药等氧化效果比较差。为此,近年来发展了旨在提高臭氧氧化效率的相关组合技术,其中UV/O3、H2O2/O3、UV/H2O2/O3等组合方式不仅可提高氧化速率和效率,而且能够氧化臭氧多带带作用时难以氧化降解的有机物。由于臭氧在水中的溶解度较低,且臭氧产生效率低、耗能大,因此增大臭氧在水中的溶解度、提高臭氧的利用率、研制高效低能耗的臭氧发生装置成为研究的主要方向。
湿式(催化)氧化
湿式(催化)氧化法是在高温(150~350℃)、高压(0.5~20MPa)、催化剂作用下,利用O2或空气作为氧化剂(添加催化剂),(催化)氧化水中呈溶解态或悬浮态的有机物或还原态的无机物,达到去除污染物的目的。湿式空气(催化)氧化法可应用于城市污泥和丙烯腈、焦化、印染等工业废水及含酚、氯烃、有机磷、有机硫化合物的农药废水的处理。
等离子体水处理技术
低温等离子体水处理技术,包括高压脉冲放电等离子体水处理技术和辉光放电等离子体水处理技术,是利用放电直接在水溶液中产生等离子体,或者将气体放电等离子体中的活性粒子引入水中,可使水中的污染物彻底氧化、分解。水溶液中的直接脉冲放电可以在常温常压下操作,整个放电过程中无需加入催化剂就可以在水溶液中产生原位的化学氧化性物种氧化降解有机物,该项技术对低浓度有机物的处理经济且有效。此外,应用脉冲放电等离子体水处理技术的反应器形式可以灵活调整,操作过程简单,相应的维护费用也较低。受放电设备的限制,该工艺降解有机物的能量利用率较低,等离子体技术在水处理中的应用还处在研发阶段。
超声波氧化
频率在15~1000kHz的超声波辐照水体中的有机污染物是由空化效应引起的物理化学过程。超声波不仅可以改善反应条件,加快反应速度和提高反应产率,还能使一些难以进行的化学反应得以实现。它集高级氧化、焚烧、超临界氧化等多种水处理技术的特点于一身,加之操作简单,对设备的要求较低,在污水处理,特别是在降解废水中毒性高、难降解的有机污染物,加快有机污染物的降解速度,实现工业废水污染物的无害化,避免二次污染的影响上具有重要意义。近年来利用超声波直接处理或强化处理有机废水的研究日益增多,内容涉及降解机理、动力学、中间产物、影响因素、系统优化等方面。
辐射技术
20世纪70年代起,随着大型钴源和电子加速器技术的发展,辐射技术应用中的辐射源问题逐步得到改善。利用辐射技术处理废水中污染物的研究引起了各国的关注和重视。与传统的化学氧化相比,利用辐射技术处理污染物,不需加入或只需少量加入化学试剂,不会产生二次污染,具有降解效率高、反应速度快、污染物降解彻底等优点。而且,当电离辐射与氧气、臭氧等催化氧化手段联合使用时,会产生“协同效应”。因此,辐射技术处理污染物是一种清洁的、可持续利用的技术,被国际原子能机构列为21世纪和平利用原子能的主要研究方向。
打赏支持
相关问题
如何确定水解酸化停留时间,以及污水达到酸化的程度和效果?
二沉池在污水处理中的作用是什么?
二沉池出水为什么会有絮体流出?
为什么曝气池会出现黑色粘稠性泡沫?
污水厂除臭一般选择哪些工艺?
查看全部
相关文章
污水处理技术有哪些?(污水处理的方法汇总)
污水处理好氧池异常状况分析和解决办法(MBR污水处理)
二沉池出水问题及解决办法(二沉池在污水处理中的作用)
污水处理中如何用好次氯酸钠?(次氯酸钠知识介绍)
MBR,MBBR和FBBR的区别(MBR,MBBR和FBBR的特点)
生物膜污水处理特征(生物膜污水处理工艺方面的特征)
冬季污水处理厂防冻应急预案(冬季正常生产,防冻措施总结)
常见水处理药剂及种类(水处理剂的应用领域)
查看全部
热门问题
如何知道我们企业是否需要申领排污许可证?
请问大家,关于工业生产过程排放和碳酸盐的含量问题 ?
请问,这种情况如何计算电力排放量?
废电池有哪些资源化技术?
废弃电脑如何资源化?
查看全部
热门文章
潜水排污泵的安装方式(排污泵的安装方法)
地埋式污水处理(3种形式及其优缺点介绍)
玻璃纤维布用途(有什么特点)
曝美国欲从委内瑞拉和伊朗进口石油(页岩油不给力)
代表建议把第三卫生间建好建到位(城市公厕标配)
查看更多
标签: 污水处理 技术
㈤ 鍘屾哀姘ㄦ哀鍖栧湪鍩庡競姹℃按涓绘祦澶勭悊宸ヨ壓涓鐨勫簲鐢锛
鍘屾哀姘ㄦ哀鍖栧伐鑹哄凡缁忓箍娉涘簲鐢ㄤ簬渚ф祦澶勭悊锛屼絾鍦ㄤ富娴佹潯浠朵笅搴旂敤鏃讹紝灏氬瓨鍦ㄤ竴瀹氶毦搴︺傚湪涓绘祦搴旂敤鏃讹紝闇瑕佸厛瀵规薄姘磋繘琛岄勫勭悊锛屾秷闄ょ⒊銆佺7鐨勫奖鍝嶏紝鐒跺悗鍐嶉氳繃鎺у埗娓╁害銆佹憾瑙f哀绛夊洜绱犳潵淇濋殰鍘屾哀姘ㄦ哀鍖栬繃绋嬬殑鏈夋晥杩涜屻傚奖鍝嶅帉姘ф皑姘у寲鍦ㄤ富娴佸伐鑹轰腑搴旂敤鐨勫洜绱犲寘鎷娓╁害銆乸H鍜岃繘姘碈/N绛夛紝杩橀渶鑰冭檻姹℃偿褰㈡併丯OB鎶戝埗绛夐棶棰橈紝浠ヤ繚璇佷富娴佸伐鑹鸿繍琛岀殑绋冲畾鎬с傛ゅ栵紝鍘屾哀姘ㄦ哀鍖栧湪渚ф祦鏉′欢涓嬬殑鍚鍔ㄥ強涓绘祦鏉′欢鏃剁殑绋冲畾杩愯岋紝鍧囬渶閫氳繃澶氬洜绱犳帶鍒舵潵瀹炵幇銆
鍘屾哀姘ㄦ哀鍖(anaerobic ammonium oxidation锛孉na-mmox)鐨勫彂鐜颁负姹℃按鑴辨爱鎻愪緵浜嗕竴绉嶆柊鐨勬柟寮忋備笌浼犵粺鐨勭濆寲/鍙嶇濆寲鑴辨爱宸ヨ壓鐩告瘮锛孉nammox鍙浠ュ噺灏100%鐨勬湁鏈虹⒊婧愭姇鍔犻噺锛岄檷浣60%鐨勬洕姘旈噺锛屼骇娉ラ噺涔熶細鍑忓皯90%銆傝繖浜涗紭鍔垮惛寮曚簡鍥藉唴澶栧ぇ閲忕戠爺浜哄憳瀵瑰叾杩涜岀爺绌讹紝杩涜屾帹鍔ㄤ簡浠Anammox涓哄熀纭鐨勮劚姘宸ヨ壓鐨勫彂灞曪紝鐗瑰埆鏄鍦ㄥ瀮鍦炬笚婊ゆ恫銆佹薄娉ユ秷鍖栨恫銆佸伐涓氬簾姘寸瓑渚ф祦鍩庡競搴熸按澶勭悊涓鍧囧彇寰椾簡杈冨ソ鐨勬晥鏋溿
涓庝晶娴佺浉姣旓紝鍩庡競姹℃按涓绘祦鍏锋湁鏇翠綆姘ㄦ爱璐ㄩ噺娴撳害(9锝67mg/L)锛屾洿浣庤繍琛屾俯搴(鍐瀛10锝16鈩)鐨勭壒鐐广傝繖鎰忓懗鐫锛屽湪涓绘祦鏉′欢涓嬫皑姘у寲鑿(AOB)鐨勭敓闀块熺巼姣斾簹纭濋吀鐩愭哀鍖栬弻(NOB)浣;鍚屾椂锛屾父绂绘皑(FA)鍜屾父绂讳簹纭濋吀(FNA)瀵筃OB鐨勬姂鍒跺皢涓嶅嶅瓨鍦ㄣ
NOB鐨勫炴畺浼氬艰嚧澶ч儴鍒嗙殑姘ㄨ浆鍖栦负NO3-锛岃岄潪N2锛屼笉鑳芥彁楂樻薄姘翠腑鎬绘爱鐨勫幓闄ょ巼銆傝屼笖锛屽煄甯傛薄姘翠腑鐨勬湁鏈虹墿浼氫績杩涘紓鍏诲井鐢熺墿鐨勫炴畺锛屽湪鏈夋満鐗╁瓨鍦ㄦ椂锛屽帉姘ф皑姘у寲鑿(AnAOB)鐨勭敓闀块熺巼姣斿紓鍏昏弻鎱锛屼粠鑰屾姂鍒朵簡AnAOB鐨勭敓闀匡紝杩涜屽奖鍝嶆薄姘村勭悊鏁堟灉銆
姝ゅ栵紝鍦ㄥ煄甯傛薄姘村勭悊杩囩▼涓锛屾俯搴︺佹爱娴撳害銆佹湁鏈虹墿娴撳害绛夊洜绱犻殢瀛h妭鑰屽彉鍖栵紝涔熶細褰卞搷宸ヨ壓鎬ц兘銆傚洜姝わ紝灏咥nammox搴旂敤浜庡煄甯傛薄姘翠富娴佸勭悊宸ヨ壓鏃讹紝甯搁渶瑕佸规薄姘磋繘琛屽墠澶勭悊銆
1鍓嶅勭悊鏂瑰紡鍙婁綔鐢
鍩庡競姹℃按涓閫氬父娣锋潅鏈夋偿娌欍佹偓娴鐗┿佹湁鏈虹墿绛夌墿璐锛屽墠涓よ呬細瀵规薄姘村勭悊鍘傜殑绠¤矾銆佹瀯绛戠墿閫犳垚褰卞搷锛岃屾湁鏈虹墿浼氫績杩涘紓鍏昏弻鐨勫炴畺锛屼粠鑰屽奖鍝岮nammox宸ヨ壓鐨勬ц兘銆傛ゅ栵紝姹℃按涓鐨勭7涔熶細鎶戝埗AnAOB銆傜爺绌惰〃鏄庯紝褰撴按涓纾>620mg/L鏃讹紝棰楃矑姹℃偿鍜屾偓娴姹℃偿鐨勬瘮鍘屾哀姘ㄦ哀鍖栨椿鎬(SAA)浼氭槑鏄惧彈鍒版姂鍒躲
Anammox宸ヨ壓鏈夎兘婧愬洖鏀剁敋鑷充骇鑳界殑娼滃姏锛屽彲浠ラ氳繃澶氱骇纰虫爱纾峰垎绂伙紝鍒嗗埆瀵瑰悇鐗╄川杩涜屽勭悊锛屽疄鐜拌祫婧愮殑楂樻晥鍥炴敹銆傚洜姝わ紝涓轰簡淇濊瘉AnAOB鏇村ソ鍦扮敓闀跨箒娈栵紝鍚屾椂瀹炵幇纰炽佺7绛夎祫婧愬拰鑳芥簮鐨勫洖鏀讹紝闇瑕佸瑰煄甯傛薄姘磋繘琛岀⒊姘纾峰垎绂汇
Anammox鍦ㄤ晶娴佸簲鐢ㄦ椂锛屽叾杩涙按甯镐负姹℃偿鍘屾哀娑堝寲娑诧紝褰撻噰鐢ㄤ袱娈靛紡閮ㄥ垎浜氱濆寲/鍘屾哀姘ㄦ哀鍖(partial nitritation Anammox锛孭N/A)宸ヨ壓(瑙佸浘1)鏃讹紝鍘熸按鍏堣繘鍏ョ濆寲鍙嶅簲鍣锛岄氳繃鎺у埗纭濆寲鍙嶅簲鍣ㄧ殑杩愯屾潯浠讹紝瀹炵幇鐭绋嬬濆寲銆
鍥1涓ゆ靛紡Anammox宸ヨ壓
缁忚繃娌夋穩姹犲悗锛屾竻娑茶繘鍏ュ帉姘ф皑姘у寲鍙嶅簲鍣锛屽嚭姘村洖鍒板煄甯傛薄姘翠富娴併傝屼富娴丄nammox鐨勮繘姘撮渶閫氳繃鏍兼爡銆佹矇鐮傛睜甯歌勫勭悊鍚庯紝鍐嶈繘琛岄勫勭悊锛屽嵆纰虫爱纾峰垎绂(瑙佸浘2)锛屾垨閲囩敤渚ф祦瀵岄泦銆佷富娴佸己鍖栫殑鏂瑰紡(瑙佸浘3)锛岄氳繃鍘屾哀姘ㄦ哀鍖栬弻鐨勮ˉ缁欙紝纭淇濆勭悊鏁堟灉銆
鍥2棰勫勭悊鐨勪富娴丄nammox宸ヨ壓
鍥3Strass姹℃按澶勭悊鍘侫nammox宸ヨ壓
纰虫崟鎹夊彲浠ラ噰鍙栧氱嶆柟寮忋俋iaojinLi绛夌敤娣峰悎鍘屾哀鍙嶅簲鍣ㄥ硅繘姘磋繘琛屽帉姘ч勫勭悊锛屽幓闄や簡92%鐨凜OD锛屼娇PN/A杩涙按COD涓22mg/L銆備絾娣峰悎鍘屾哀鍙嶅簲鍣ㄤ腑浼氱Н绱纭閰哥洂杩樺師鑿岋紝灏嗚繘姘翠腑鐨勭~閰哥洂杩樺師涓虹~鍖栫墿銆
纭鍖栫墿涓鏂归潰浼氬瑰井鐢熺墿鐩存帴閫犳垚姣掔悊褰卞搷锛屽彟涓鏂归潰鍙浠ヤ綔涓哄弽纭濆寲缁嗚弻鐨勭數瀛愬彈浣擄紝褰卞搷Anammox鎬ц兘銆侻.Laureni绛夊皢鍩庡競姹℃按杩涜屽垵娌夊悗锛屾帴鍏ュソ姘SBR鍙嶅簲鍣(12L锛孲RT涓1d)浠ュ幓闄COD锛岀粨鏋滆〃鏄庯紝鍑烘按NH4+-N涓(21卤5)mg/L锛屾畫浣欐籆OD涓(69卤19)mg/L锛孋OD鍘婚櫎鐜囪揪鍒80%浠ヤ笂銆
涔熸湁鐮旂┒璁や负锛屽彲浠ヨ仈鍚2绉嶅勭悊鏂瑰紡锛屽嵆姹℃按鍦ㄨ繘鍏ュ帉姘ф秷鍖栨典箣鍓嶏紝鍏堥氳繃浣庢薄娉ュ仠鐣欐椂闂(SRT)鐨勫ソ姘ф碉紝瀹炵幇浜х敳鐑风殑鏈澶у寲銆傝嵎鍏伴箍鐗逛腹Dokhaven姹℃按澶勭悊鍘傞噰鐢ˋ-B宸ヨ壓璁捐★紝BOD鍦ˋ娈(HRT=1h锛孲RT=0.3d)涓閫氳繃楂樿礋鑽峰弽搴斿櫒鍘婚櫎锛屼娇姹℃按涓澶ч儴鍒嗙⒊杞鍖栬繘鍏ユ薄娉ワ紝浠ュ緱鍒版渶澶у寲鐨勪骇鐢茬兎閲忋
鍙﹀栵紝閲囩敤鐭绋嬪弽纭濆寲鑰﹀悎Anammox宸ヨ壓澶勭悊瀹為檯鐢熸椿姹℃按鏃讹紝鐭绋嬪弽纭濆寲涓嶄粎鍙浠ユ秷鑰楁薄姘翠腑鐨勬湁鏈虹墿锛岃繕鑳藉皢NO3-杩樺師涓篘O2-锛屾弧瓒矨nammox鐨勮繘姘磋佹眰銆
棰勫厛灏嗘薄姘翠腑鐨勭7杩涜屽幓闄ゆ垨鍥炴敹锛岃兘浣垮悗缁瑼nammox宸ヨ壓鍙栧緱鏇村ソ鐨勮劚姘鏁堟灉锛屽父鐢ㄧ殑鏂规硶鏈夌敓鐗╅櫎纾峰拰鍖栧﹂櫎纾枫傜敓鐗╅櫎纾锋槸鍒╃敤鑱氱7鑿屽瑰師姘翠腑鐨勭7杩涜屽幓闄わ紝鍖栧﹂櫎纾峰垯閲囩敤鎶曞姞FeCl3銆丄lCl3绛夊寲瀛﹂櫎纾疯嵂鍓傜殑鏂规硶锛屽皢纾蜂粠姹℃按涓娌夋穩鍒嗙汇
鑽峰叞楣跨壒涓笵okhaven姹℃按澶勭悊鍘傜殑宸ヨ壓娴佺▼涓锛屽湪A娈垫姇鍔燜eCl3锛屾湁鏁堝湴灏嗚繘姘翠腑鐨勭7闄嶄綆涓1mg/L锛屼负B娈电殑Anammox宸ヨ壓鍒涢犱簡鏈夊埄鏉′欢銆
2涓绘祦Anammox鐨勫簲鐢ㄥ強鍏跺奖鍝嶅洜绱
鍦ㄤ笘鐣岃寖鍥村唴锛屼互Anammox涓哄熀纭宸ヨ壓鐨勬薄姘村勭悊鍘傝秴杩110搴э紝鍏朵腑绾75%鐢ㄤ簬渚ф祦鍩庡競姹℃按澶勭悊銆傚敖绠″凡鏈堿nammox涓绘祦搴旂敤鐨勫疄闄呮堜緥锛屼絾澶氭暟闇瑕佽繘涓姝ヤ紭鍖栥傜洿鎺ュ簲鐢ㄤ互Anammox涓哄熀纭宸ヨ壓鐨勬柟娉曞勭悊鍩庡競搴熸按锛屼緷鐒堕潰涓寸潃杩涙按姘ㄦ爱娴撳害浣庛佸勭悊娓╁害浣庛佽繘姘存按璐ㄦ尝鍔ㄣ佽兘鍚﹂暱鏈熺ǔ瀹氳繍琛岀殑鎸戞垬锛屽洜姝わ紝浠嶉渶鍋氳繘涓姝ョ殑鐮旂┒銆
琛1鍒楀嚭浜嗕笉鍚屾潯浠朵笅(娓╁害銆乸H銆丆/N绛)涓嶅悓鍙嶅簲鍣ㄤ腑涓绘祦Anammox鐨勮劚姘鎬ц兘锛岀敤浠ユ瘮杈冧笉鍚屽洜绱犲笰nammox宸ヨ壓杩愯岀殑褰卞搷銆
琛1涓绘祦Anammox鐨勭爺绌朵笌搴旂敤
2.1娓╁害
鍩庡競姹℃按涓绘祦娓╁害涓鑸涓10锝20鈩冨乏鍙筹紝浣庝簬AnAOB(25锝40鈩)鐢熼暱鐨勬渶閫傚疁娓╁害锛岃繖浼氬奖鍝岮nammox鐨勬ц兘銆傚湪PN/A宸ヨ壓涓锛岀煭绋嬬濆寲娈典篃浼氬彈鍒版俯搴︾殑褰卞搷锛岃繖鏄鍥犱负AOB鍦ㄤ綆娓╂潯浠朵笅娲绘т細鍙楀埌鎶戝埗锛岄檷浣庢皑姘鐨勮浆鍖栫巼锛屽苟涓擜OB鐨勬椿鍖栬兘楂樹簬NOB锛屽艰嚧NO2-鐨勭Н绱涓嶈冻锛屾棤娉曚负Anam-mox鍙嶅簲鎻愪緵瓒冲熺殑搴曠墿銆
鐒惰岋紝鏈夌爺绌跺彂鐜帮紝褰揂nammox鐢遍珮娓(30鈩)鍚戜綆娓(10鈩)鍙樺寲鏃讹紝AnAOB浼樺娍鑿屽睘鐢盋a.Bro-cadia杞鍙樹负Ca.Kuenenia锛岃存槑鏌愪簺AnAOB鍙浠ュ湪浣庢俯涓嬭繘琛屾湁鏁堢殑Anammox杩囩▼銆俈.Kouba绛夊湪21锝23鈩冩潯浠朵笅锛屾垚鍔熻繍琛屼簡涓娈靛紡鐭绋嬬濆寲鍘屾哀姘ㄦ哀鍖朚BBR鍙嶅簲鍣锛屽苟杩涗竴姝ラ檷浣庢俯搴︼紝鍦12.5鈩冪殑鏉′欢涓嬶紝閫氳繃鎵规¤瘯楠岃瘉鏄嶢nAOB涔熷叿鏈夎緝寮虹殑娲绘с擭RR=40g/(m3•d)銆曪紝鑰屼綆娓╁圭煭绋嬬濆寲鐨勫奖鍝嶆洿涓烘樉钁楋紝浠庤屾彁鍑篈OB鐨勪綆娲绘ф槸鎶戝埗PN/A浣庢俯杩愯岀殑鍘熷洜锛岃繖鍙浠ラ氳繃涓ゆ靛紡PN/A杩涜屾敼鍠勩
M.Laureni绛夐噰鐢⊿BR鍙嶅簲鍣ㄨ繘琛屼竴娈靛紡PN/A璇曢獙锛屾帶鍒舵俯搴︾敱29鈩冮樁姊寮忛掑噺鑷12.5鈩冿紝鍙戠幇鍦15锝12.5鈩冩椂锛屽弽搴斿櫒鑴辨爱鎬ц兘鐨勫急鍖栫▼搴︽洿涓烘樉钁楋紝璇存槑娓╁害绾挎у彉鍖栨椂锛屽井鐢熺墿鐨勬椿鎬у皢鍙戠敓澶嶆潅鐨勫彉鍖栵紝杩欎笌J.A.SanchezGuillen绛夌殑璇曢獙缁撴灉鐩镐竴鑷淬傚彟澶栵紝M.Tomaszewski绛夊湪鐮旂┒涓鍙戠幇锛岄殢鐫娓╁害鐨勯檷浣庯紝AnAOB鏈閫傚疁鐨刾H鑼冨洿鍑忓皬锛屽嵆鍦ㄤ綆娓╂潯浠朵笅锛岄傚綋鍦版彁楂榩H鍙浠ユ彁楂楢nammox宸ヨ壓鐨勮劚姘鏁堢巼銆
2.2鏈夋満鐗
2.2.1鏈夋満鐗╃殑褰卞搷
涓鑸璁や负锛屾湁鏈虹墿浼氫績杩涘紓鍏诲井鐢熺墿鐨勫炴畺锛岃繖浜涘井鐢熺墿浼氬崰鎹瓵nAOB鐢熷瓨绌洪棿锛屼粠鑰屽奖鍝嶈劚姘鎬ц兘銆備絾涓嶅悓鐨勬湁鏈虹墿瀵笰nammox鐨勫奖鍝嶄笉鍚屻傜爺绌跺彂鐜帮紝鐢查唶銆佷箼閱囩瓑閱囩被浼氭姂鍒禔nammox杩囩▼;钁¤悇绯栥佺敳閰哥洂绛夊瑰叾鎬ц兘涓嶄細閫犳垚褰卞搷;鑰屼箼閰哥洂銆佷笝閰哥洂涓嶄粎涓嶅奖鍝嶏紝杩樺彲浠ヨ獳nAOB鍒╃敤銆
濡侰a.Brocadiafulgida鑳藉熶互涔欓吀浣滅數瀛愪緵浣擄紝Ca.Anammoxoglobuspropionicus鍙浠ュ埄鐢ㄤ笝閰搞傛昏岃█涔嬶紝鏈夋満鐗╁笰nammox鐨勬姂鍒朵笌淇冭繘灏氶渶杩涗竴姝ョ爺绌讹紝杩欏笰nammox鍦ㄤ富娴佸伐鑹轰腑鐨勫簲鐢ㄥ叿鏈夐噸瑕佹剰涔夈
2.2.2纰虫爱姣旂殑褰卞搷
瀵逛簬鍏ㄧ▼鑷鍏昏劚姘宸ヨ壓锛屽湪杩涙按C/TN<0.5鏃讹紝鍙浠ヨ幏寰楄緝濂界殑鑴辨爱鎬ц兘锛屼篃鏈夎や负0.7涓洪傚悎Anammox宸ヨ壓鐨凜/N銆斻傚綋璋冩暣C/N鍦ㄦ渶浣宠寖鍥翠箣鍐呮椂锛屽彲浠ヤ繚璇佺郴缁熼暱鏈熷勪簬绋冲畾鐘舵併備絾鏈夌爺绌跺彂鐜帮紝鍦ㄨ緝楂樼殑C/N鏉′欢涓嬩篃鍙鑳藉疄鐜板弽搴斿櫒鐨勫惎鍔ㄤ笌姝e父杩愯屻
F.Persson绛夊湪涓娈靛紡PN/AMBBR鍙嶅簲鍣ㄤ腑锛岃冨療浜嗕笉鍚岀殑C/NH4+-N瀵瑰弽搴斿櫒鑴辨爱鎬ц兘鐨勫奖鍝嶃傜粨鏋滆〃鏄庯紝褰撹繘姘碈/NH4+-N鍗囬珮鑷1.12鏃讹紝鑴辨爱鏁堟灉鏄庢樉涓嬮檷銆
浣嗗疄楠屼篃鍙戠幇锛屾爱鍘婚櫎璐熻嵎骞堕潪闅忕潃C/NH4+-N鐨勫崌楂樿岀粷瀵归檷浣庯紝濡傜2闃舵典笌绗1闃舵电浉姣旓紝C/NH4+-N涓婂崌锛屼絾姘鍘婚櫎璐熻嵎澧炲姞锛岃繖鍙鑳戒笌杩涙按姘ㄦ爱娴撳害瓒冲熼珮鎴朇/NH4+-N灏氫綆锛岃繕涓嶈冻浠ュ奖鍝嶇郴缁熺殑鑴辨爱鎬ц兘鏈夊叧銆
A.Malovanyy绛夊湪1涓涓璇昅BBR鍙嶅簲鍣ㄤ腑鍙戠幇浜嗙浉浼肩殑鐜拌薄锛屽綋C/TN鐢1.19鍙樹负2.31鏃讹紝姘鍘婚櫎鏁堢巼鐢35%涓嬮檷鑷19%锛岃屽綋C/TN涓1.61鏃讹紝姘鍘婚櫎鏁堢巼涓40%銆傝繖璇存槑鍦ㄤ綆娓┿佷綆姘ㄦ爱娴撳害鐨勪富娴佹潯浠朵笅锛岀浉杈冧簬渚ф祦鏉′欢C/TN瀵圭郴缁熻劚姘鎬ц兘鐨勫奖鍝嶆洿澶с傛墍浠ワ紝蹇呴』灏藉彲鑳藉湴闄嶄綆涓绘祦姹℃按涓鏈夋満鐗╁惈閲忋
2.2.3纰崇殑鍘婚櫎
纰崇殑鍘婚櫎鏁堟灉涓嶄粎鍏崇郴鍒拌兘鍚︿负AnAOB钀ラ犻傚疁鐨勭幆澧冿紝杩樹細褰卞搷鑳芥簮鐨勫洖鏀躲傚湪姹℃按澶勭悊杩囩▼涓鍘婚櫎鍚纰虫湁鏈虹墿锛岄氬父閲囩敤鐨勬柟娉曟湁鍒濇矇姹犲勭悊銆佸寲瀛﹀己鍖栧垵绾у勭悊銆侀珮璐熻嵎娲绘ф薄娉ユ硶鎴栧嚑绉嶆柟娉曠殑鑱斿悎绛夈
鎹鏂囩尞鎶ラ亾锛岀敤楂樿礋鑽锋椿鎬ф薄娉ユ硶瀵圭敓娲绘薄姘磋繘琛屽墠澶勭悊锛屽彲閮ㄥ垎鍘婚櫎姘翠腑鐨凜OD锛屼粠鑰屽緱鍒颁綆C/TN鐨勫嚭姘淬備互涔嬩綔涓篈nammox宸ヨ壓鐨勮繘姘达紝鑳藉熺‘淇濊緝楂樼殑鎬绘爱鍘婚櫎鏁堢巼銆(80卤4)%銆曘侫.Malovanyy绛夊湪瀹為獙瀹よ繍琛屾潯浠朵笅锛岄噰鐢║ASB鍙嶅簲鍣ㄥ勭悊鍩庡競姹℃按锛岄檷浣庝簡姘翠腑COD鐨勯噺锛屽嚭姘碈OD骞冲潎涓61mg/L銆
浠ユゅ嚭姘翠綔涓篈nammox涓哄熀纭宸ヨ壓鐨凪BBR鍙嶅簲鍣ㄨ繘姘达紝璇ュ弽搴斿櫒绋冲畾杩愯屼簡21涓鏈堛俌andongYang绛夐噰鐢ㄥ己鍖栫敓鐗╅櫎纾峰弽搴斿櫒锛屽湪浣嶩RT銆佷綆SRT鐨勮繍琛屾潯浠朵笅锛屼娇姹℃按COD浠237.5mg/L闄嶈嚦56.1mg/L锛屼繚璇佷簡鍚庣画鍙嶅簲鍣ㄧ殑澶勭悊鏁堟灉銆
2.3婧惰В姘
鍦≒N/A绯荤粺閲岋紝涓鑸璁や负婧惰В姘(DO)鐨勫瓨鍦ㄤ細淇冭繘NOB鐨勭敓闀匡紝鍏朵笌AnAOB绔炰簤搴曠墿锛屼粠鑰屽奖鍝岮nammox鍙嶅簲鎬ц兘銆俋uemingChen绛夐噰鐢ㄨ啘鐢熺墿鍙嶅簲鍣ㄥ垎鍒澶勭悊妯℃嫙涓绘祦鍜屼晶娴佸惈姘搴熸按锛屽彂鐜伴殢姘ц〃闈㈣礋鑽风殑澧炲ぇ锛孨OB鐨勯噺鍧囧炲姞銆備絾YandongYang绛夊湪涓绘祦鏉′欢涓嬬殑鐮旂┒涓鍙戠幇锛屼繚鎸佷竴瀹氱殑姹℃偿娴撳害銆侀傚綋鍦板崌楂楧O鍙浠ユ彁楂樿劚姘鎬ц兘锛屽綋DO鐢0.15mg/L澧炶嚦0.3mg/L鏃讹紝姘鍘婚櫎璐熻嵎鍙鎻愰珮鍒0.105kg/(m3•d)銆傚彟澶栵紝姹℃偿鐨勫舰鎬佷笉鍚岋紝瀵笵O鐨勯傚簲鑳藉姏涔熶笉灏界浉鍚屻傚湪棰楃矑姹℃偿鍜岀敓鐗╄啘涓锛屽ソ姘ц弻涓庡帉姘ц弻浼氬嚭鐜板垎灞傜殑鎯呭喌锛屽嵆濂芥哀鑿屽垎甯冨湪澶栧眰姘ф皵杈冨氱殑閮ㄥ垎锛岃屽帉姘ц弻鍒嗗竷鍦ㄧ浉瀵瑰唴灞傘
涓绘祦鏉′欢涓嬶紝姘翠腑鐨凢A涓嶈冻浠ユ姂鍒禢OB鐨勬椿鎬э紝鐗瑰埆鏄闀挎湡澶勫湪浣庢哀鏉′欢鏃讹紝NOB瀵规哀鐨勭珵浜夎佹瘮AOB寮猴紝杩欎篃瀵艰嚧绯荤粺涓鏇村规槗浜х敓纭濋吀鐩愯岄潪姘姘斻備絾E.Isanta绛夊彂鐜帮紝涓嶅悓灞炵殑NOB瀵规哀鐨勪翰鍜屽姏涓嶅悓銆侱O杈冧綆鏃讹紝纭濆寲鏉嗚弻鐨勬椿鎬у急浜嶢OB锛岃繖涓篘OB鐨勬姂鍒舵彁渚涗簡鍙鑳姐備笉杩囷紝濡備綍鍦ㄥ惎鍔ㄩ樁娈典娇纭濆寲鏉嗚弻鍦ㄨ弻缇ゅ唴鍗犳瘮鏈澶э紝闇瑕佽繘涓姝ョ爺绌躲
2.4绯荤粺鏋勬垚
PN/A宸ヨ壓鐨勭郴缁熸瀯鎴愭湁涓娈靛紡鍜屼袱娈靛紡2绉嶏紝鍦ㄥ凡鎶曞叆鐢熶骇鐨勪互PN/A涓哄熀纭宸ヨ壓鐨勬薄姘村勭悊鍘備腑锛屼竴娈靛紡鍗犳瘮杩90%锛屽叾涓昏佸簲鐢ㄤ簬渚ф祦銆備竴娈靛紡鍩哄缓璐圭敤浣庯紝涓姘у寲姘銆佷竴姘у寲浜屾爱鎺掓斁閲忓皯锛屽彲浠ラ檷浣庡瑰ぇ姘旂殑姹℃煋绋嬪害銆
浣嗕竴娈靛紡鐨勮繍琛岄氬父鍙楀埌DO鍜孨O2-鐨勫奖鍝嶏紝DO闇鎺у埗鍦ㄨ緝浣庢祿搴;NOB娑堣桸O2-浼氶犳垚Anammox杩囩▼搴曠墿涓嶈冻銆備袱娈靛紡鏄鍦2涓鍙嶅簲鍣ㄥ唴鍒嗗埆杩涜岀煭绋嬬濆寲鍜孉nammox杩囩▼锛屼笖鍙瀵圭煭绋嬬濆寲娈佃繘琛屾洕姘旓紝Anammox鍙浠ュ湪缂烘哀鏉′欢涓嬭繍琛岋紝閬垮厤浜哊OB绔炰簤NO2-銆傚彟澶栵紝鍦ㄥ勭悊楂樻皑姘搴熸按鏃讹紝涓ゆ靛紡鐩稿逛簬涓娈靛紡宸ヨ壓杩愯屾垚鏈杈冧綆锛屽彲浠ヤ竴瀹氱▼搴︿笂琛ュ伩楂樺熀寤烘姇鍏ャ
涓娈靛紡PN/A鍦ㄤ晶娴佷笂鐨勫簲鐢ㄥ凡鏃ユ笎鎴愮啛锛屼絾鍩庡競姹℃按涓绘祦鍏锋湁娓╁害浣庛佹皑姘娴撳害浣庛佹爱璐熻嵎涓嶇ǔ瀹氫互鍙婂嚭姘存按璐ㄨ佹眰涓ヨ嫑绛夌壒寰侊紝鍥犳ゅ叾鍦ㄤ富娴佷笂鐨勫簲鐢ㄥ皢闈涓存洿澶х殑鎸戞垬銆備袱娈靛紡宸ョ▼涓婂簲鐢ㄧ浉瀵硅緝灏戯紝鍩哄缓鎴愭湰鍋忛珮绛夌粡娴庡洜绱犲彲鑳介檺鍒跺叾鍦ㄤ富娴佹潯浠朵笅鐨勫簲鐢ㄣ
3銆丄nammox鍦ㄤ富娴佸勭悊宸ヨ壓涓鐨勭ǔ瀹氳繍琛
鐢变簬AnAOB鐢熼暱閫熺巼姣擜OB鎱锛屾墍浠ュ湪PN/A鍚鍔ㄩ樁娈碉紝AnAOB鐨勫瘜闆嗘槸闄愬埗姝ラゃ傚ぇ澶氭暟Anammox宸ヨ壓鐨勫惎鍔ㄦ槸浠庨傚疁鐨勬俯搴﹀拰杈冮珮鐨勬皑姘娴撳害鏉′欢涓嬪紑濮嬬殑锛岀1搴х敓浜ц勬ā鐨勫帉姘ф皑姘у寲姹℃按澶勭悊鍘傜殑鍚鍔ㄨ繘姘翠负鍘屾哀娑堝寲娑层
鍦ㄥ疄楠屽ゅ煿鍏讳腑锛屽弽搴斿櫒澶氭帴绉嶇嶆偿锛岃繍琛屾潯浠堕噰鐢ㄩ樁姊寮忛掑噺鐨勬柟寮忥紝閫愭笎绋冲畾鍦伴檷浣庢俯搴﹀拰姘ㄦ爱娴撳害锛屼娇AnAOB鍦ㄤ笉鍒╃殑杩愯屾潯浠朵笅鏈夎緝寮虹殑娲绘с傚逛簬绉嶆偿鎺ョ嶏紝鏈夌爺绌朵汉鍛樻彁鍑轰簡鈥滅敓鎬佸啘鍦衡濇傚康锛屽嵆鍙浠ヤ粠鈥滃啘鍦衡濅腑鎻愬彇閮ㄥ垎濉鏂欙紝鐢ㄤ互鍙嶅簲鍣ㄧ殑蹇閫熷惎鍔ㄣ
Anammox鍦ㄤ富娴佹按澶勭悊宸ヨ壓涓鐨勭ǔ瀹氳繍琛屼細鍙楀埌姹℃偿褰㈡併丏O銆佹俯搴︺乸H绛夊氱嶅洜绱犵殑褰卞搷銆傛薄娉ュ舰鎬佷笉鍚岋紝浼氶犳垚寰鐢熺墿绉嶇被涓嶅悓锛岃繘鑰屽奖鍝嶄富娴佸伐鑹虹殑绋冲畾杩愯屻俆.Lotti绛夌爺绌跺彂鐜帮紝鎮娴姹℃偿涓瑼nAOB鐨勯噺寰涔庡叾寰锛岃屽湪棰楃矑姹℃偿涓瀛樺湪鍒嗗眰缁撴瀯锛屽嵆棰楃矑姹℃偿鐨勫栧眰涓篈OB绛夊ソ姘ц弻锛屽唴灞傚寘瑁圭潃AnAOB銆傚悓鏍凤紝鍦ㄧ敓鐗╄啘涓婁篃浼氱敱琛ㄥ強閲屽嚭鐜板垎灞傜粨鏋勩
姝ゅ栵紝鎮娴姹℃偿涓嶆槗鍦ㄧ郴缁熶腑鎸佺暀锛岃岄楃矑姹℃偿銆佺敓鐗╄啘鏈夊埄浜庡井鐢熺墿鍦ㄤ綋绯讳腑鐨勫瓨鐣欍傝繖琛ㄦ槑锛岀敓鐗╄啘鍜岄楃矑姹℃偿鍦ㄤ富娴丄nammox搴旂敤涓鏇存湁浼樺娍銆
鍊煎緱涓鎻愮殑鏄锛屽綋棰楃矑姹℃偿绮掑緞<400渭m鏃讹紝CandidatusJettenia鍦ㄦ薄娉ヤ腑鍗犱富瀵煎湴浣嶏紝璇存槑璇ュ睘瀵逛簬鑴辨爱鍙鑳芥湁閲嶈佺殑浣滅敤銆侻.Ali绛夐噰鐢ㄥ嚌鑳跺浐瀹氭硶鍥哄畾寰鐢熺墿锛屽叾涓庨楃矑姹℃偿鐩告瘮锛屽彲鍦ㄧ煭鏃堕棿鍐呭揩閫熸彁楂樻爱鍘婚櫎璐熻嵎锛岃ユ柟娉曟瀬澶у湴淇冭繘浜咥nAOB鍦ㄧ敓鐞嗐佺敓鍖栫瓑鏂归潰鐨勭爺绌躲
DO浼氫績杩汵OB绛夊紓鍏诲井鐢熺墿鐨勫炴畺锛屼负浜嗙淮鎸佽繍琛岀ǔ瀹氾紝涓鏂归潰闇瀵笵O杩涜岀簿纭鎺у埗锛屽彟涓鏂归潰闇娣樻礂鍑轰互绲鐘跺舰鎬佸瓨鍦ㄧ殑NOB姹℃偿锛屽湪浣撶郴涓浠呯暀涓嬮楃矑褰㈡佺殑AOB銆丄nAOB锛屼互闄嶄綆寮傚吇寰鐢熺墿瀵瑰伐鑹虹ǔ瀹氭х殑褰卞搷銆
AnAOB鍦ㄤ綆娓╂潯浠(10銆20鈩)涓嬮暱鏈熷煿鍏诲悗锛屽彲浠ラ傚簲杩欎竴娓╁害鏉′欢锛屼絾娓╁害浠ュ強pH鐨勫彉鍖栦細瀵圭ǔ瀹氱殑浣撶郴閫犳垚鍐插嚮銆傛俯搴﹀奖鍝嶆晥搴斾細闅忔俯搴︾殑闄嶄綆鑰岃秺鍙戞槑鏄撅紝杩欒〃鏄庡湪浣庢俯鏉′欢涓嬶紝Anam-mox鏇存槗澶辩ǔ銆
鎵浠ュ湪宸ヨ壓鍚鍔ㄤ互鍙婄ǔ瀹氳繍琛岄樁娈碉紝娓╁害搴旈愮骇闃舵寮忛掑噺銆傛ゅ栵紝鍦ㄤ綆娓╂潯浠朵笅锛岄傚綋鍦版彁楂榩H鍙浠ヤ繚鎸佺郴缁熺殑鎬ц兘銆侼.Morales绛夎や负锛岀敓鐗╅噺瓒婂ぇ锛岃秺鏈夊埄浜庢姷鎶楁俯搴︾瓑涓嶅埄鏉′欢鐨勫奖鍝嶃
鍙瑙侊紝鍗曞洜绱犵殑鍙樺寲鍗充細瀵笰nammox鎬ц兘閫犳垚褰卞搷銆傚洜姝わ紝涓轰簡鏇村ソ鍦板湪涓绘祦宸ヨ壓涓缁存寔Anam-mox杩囩▼锛岄渶瑕佽繘琛屽氬洜绱犳帶鍒讹紝浠ュ厖鍒嗕繚璇佺郴缁熺殑绋冲畾鎬с
4缁撹
(1)鍘屾哀姘ㄦ哀鍖栧湪姹℃按涓绘祦澶勭悊宸ヨ壓涓搴旂敤鐨勯檺鍒跺洜绱犱富瑕佹湁浣庢俯銆佷綆姘ㄦ爱娴撳害銆佽緝楂樼殑C/N浠ュ強NOB鐨勭敓闀跨瓑銆傚皢鍘屾哀姘ㄦ哀鍖栧簲鐢ㄤ簬涓绘祦宸ヨ壓鏃讹紝閫氬父闇瑕侀氳繃棰勫勭悊鏉ヨ繘琛岀⒊姘纾峰垎绂伙紝灏藉彲鑳介檷浣庢湁鏈虹墿鍜岀7瀵笰nammox杩囩▼鐨勫奖鍝嶏紝鍚屾椂瀹炵幇璧勬簮鍜岃兘婧愮殑鍥炴敹銆
(2)鍘屾哀姘ㄦ哀鍖栧湪涓绘祦宸ヨ壓涓鐨勭ǔ瀹氳繍琛岋紝鍙浠ラ氳繃鍏堝湪渚ф祦鏉′欢涓嬪瑰帉姘ф皑姘у寲鑿岃繘琛屽煿鍏汇佸炴畺锛岃幏寰椾竴瀹氶噺鐨凙nammox鐢熺墿閲;鐩稿圭ǔ瀹氫箣鍚庯紝鍐嶉檷浣庢俯搴︺佽繘姘存皑姘娴撳害绛;鍦ㄦ俯搴︺佹皑姘娴撳害閫愭搴﹂掑噺鏃讹紝搴斿悎鐞嗘帶鍒舵搴︾殑澶у皬鍜岀ǔ瀹氭椂闂淬傜敱浜庡崟鍥犵礌鐨勫彉鍖栧嵆浼氶犳垚绯荤粺鐨勫け绋筹紝鍥犳わ紝閫氳繃娓╁害銆乸H绛夊氬洜绱犳帶鍒跺彲浠ョ淮鎸佹洿濂界殑涓绘祦Anammox绋冲畾鎬с
(3)褰撲粖Anammox鍦ㄦ薄姘翠富娴佸伐鑹轰腑鐨勫簲鐢ㄥ氫负涓娈靛紡PN/A绯荤粺锛岄楃矑姹℃偿銆佺敓鐗╄啘鐩稿逛簬绲鐘舵薄娉ユ洿閫傚疁AnAOB鍦ㄧ郴缁熶腑鐨勭敓闀垮拰鎸佺暀锛屼篃鍏锋湁鏇村己鐨勮愬啿鍑绘с傚洜姝わ紝涓绘祦鍘屾哀姘ㄦ哀鍖栫殑鍙戝睍搴旂潃閲嶄簬閲囩敤杩2绉嶆薄娉ュ舰寮忋
鏇村氬叧浜庡伐绋/鏈嶅姟/閲囪喘绫荤殑鏍囦功浠e啓鍒朵綔锛屾彁鍗囦腑鏍囩巼锛屾偍鍙浠ョ偣鍑诲簳閮ㄥ畼缃戝㈡湇鍏嶈垂鍜ㄨ锛https://bid.lcyff.com/#/?source=bdzd
㈥ 废水处理的技术
【技术概述】
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
【技术特点】
⑴反应速率快,一般工业废水只需要半小时至数小时;
⑵作用有机污染物质范围广,如:含有偶氟、碳双键、硝基、卤代基结构的难除降解有机物质等都有很好的降解效果;
⑶工艺流程简单、使用寿命长、投资费用少、操作维护方便、运行成本低、处理效果稳定。处理过程中只消耗少量的微电解填料。填料只需定期添加无需更换,添加时直接投入即可。
⑷废水经微电解处理后会在水中形成原生态的亚铁或铁离子,具有比普通混凝剂更好的混凝作用,无需再加铁盐等混凝剂,COD去除率高,并且不会对水造成二次污染;
⑸具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高废水的可生化性。
⑹该方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属;
⑺对已建成未达标的高浓度有机废水处理工程,用该技术作为已建工程废水的预处理,即可确保废水处理后稳定达标排放。也可将生产废水中浓度较高的部分废水单独引出进行微电解处理。
⑻该技术各单元可作为单独处理方法使用,又可作为生物处理的前处理工艺,利于污泥的沉降和生物挂膜
【适用废水种类】
⑴.染料、化工、制药废水;焦化、石油废水; ------上述废水处理水后的BOD/COD值大幅度提高。
⑵. 印染废水;皮革废水;造纸废水、木材加工废水;
------对脱色有很好的应用,同时对COD与氨氮有效去除。
⑶. 电镀废水;印刷废水;采矿废水;其他含有重金属的废水;
------可以从上述废水中去除重金属。
⑷. 有机磷农业废水;有机氯农业废水;
------大大提高上述废水的可生化性,且可除磷,除硫化物
新型填料
【技术概述】
它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
【铁炭原电池反应】
阳极:Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V
阴极:2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V 电镀和金属加工业废水中锌的主要来源是电镀或酸洗的拖带液。污染物经金属漂洗过程又转移到漂洗水中。酸洗工序包括将金属(锌或铜)先浸在强酸中以去除表面的氧化物,随后再浸入含强铬酸的光亮剂中进行增光处理。
该废水中含有大量的盐酸和锌、铜等重金属离子及有机光亮剂等,毒性较大,有些还含致癌、致畸、致突变的剧毒物质,对人类危害极大。因此,对电镀废水必须认真进行回收处理,做到消除或减少其对环境的污染。
电镀混合废水处理设备由调节池、加药箱、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、清水池、气浮反应,活性炭过滤器等组成。
电镀废水处理采用铁屑内电解处理工艺,该技术主要是利用经过活化的工业废铁屑净化废水,当废水与填料接触时,发生电化学反应、化学反应和物理作用,包括催化、氧化、还原、置换、共沉、絮凝、吸附等综合作用,将废水中的各种金属离子去除,使废水得到净化。 重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。如果不对重金属废水处理,就会严重污染环境。废水处理中重金属的种类、含量及存在形态随不同生产企业而异。除重金属在废水处理中显得很重要。
由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态,达到除重金属的目的。例如,废水处理过程中,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化合物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,废水处理除重金属原则是:
除重金属原则一:最根本的是改革生产工艺.不用或少用毒性大的重金属;
除重金属原则二:是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水处理应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经除重金属处理直接排入城市下水道,以免扩大重金属污染。
废水处理除重金属的方法,通常可分为两类:
除重金属方法一:是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等废水处理法;
除重金属方法二:是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些废水处理方法应根据废水水质、水量等情况单独或组合使用。 陶瓷膜也称GT膜,是以无机陶瓷原料经特殊工艺制备而成的非对称膜,呈管状或多通道状。陶瓷膜管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体颗粒、液体液滴)被膜截留从而达到固液分离、浓缩和纯化之目的。
在膜科学技术领域开发应用较早的是有机膜,这种膜容易制备、容易成型、性能良好、价格便宜,已成为应用最广泛的微滤膜类型。但随着膜分离技术及其应用的发展,对膜的使用条件提出了越来越高的要求,需要研制开发出极端条件膜固液分离系统,和有机膜相比,无机陶瓷膜具有耐高温、化学稳定性好,能耐酸、耐碱、耐有机溶剂、机械强度高,可反向冲洗、抗微生物能力强、可清洗性强、孔径分布窄,渗透量大,膜通量高、分离性能好和使用寿命长等特点。
无机陶瓷膜在废水处理中应用最大的障碍主要有二个方面,其一是制造过程复杂,成本高,价格昂贵;其二是膜通量问题,只有克服膜污染并提高膜的过滤通量,才能真正推广应用到水处理的各个领域。
特点
⑴独有的双层膜结构:涤饵DEAR无机陶瓷膜系统在在膜过滤层表面,通过溶胶一凝胶法制备TiO2溶胶,采用浸渍提拉法在陶瓷膜上涂敷纳米TiO2光催化材料,使陶瓷膜表面具有“自洁”功能,减缓有机在膜表面积累和堵塞,一方面降低膜污染,另一方面提高陶瓷膜管强度和膜过滤通量,提高膜通量稳定性;Al2O3—ZrO2复合膜结构:使膜管机械性能更加优良,由于材料本身的性能缺陷或制备过程中存在的一些实际问题,单一无机膜材料一般不能满足实际需要,因此无机负载复合分离膜的研制得到迅速发展,涤饵DEAR无机陶瓷膜采用整体复合技术,通过溶胶凝胶法,制备Al2O3—ZrO2复合膜,由于含ZrO2材料与Al2O3、SiO2和TiO2等材料相比具有更好的机械强度、化学耐久性和抗碱侵蚀等特性,涤饵DEAR®;无机陶瓷膜具有更强的机械强度和热稳定性,而且复合膜的孔径分布窄,呈单峰。
⑵可实现在线反冲,膜通量稳定:由于复合陶瓷膜独特结构和机械性能,能有效承受0.4mp以下的反冲压力,可实现在线反冲,从而获得稳定的膜通量,克服了无机膜系统在水处理应用中价格高、易污染、膜通量小、设备庞大等问题,使无机陶瓷膜系统在水处理中应用成为可能。涤饵DEAR无机陶瓷膜是专为污水处理设计的,其最大特点是膜通量大,其运行膜通量是有机膜10-100倍,是普通多孔陶瓷膜的50-10倍、机械强度高、耐污染、可实现在线反冲。
技术参数
膜层厚度:50—60μm,膜孔径0.01-0.5μm;
气孔率:44—46%;
过滤压力:1.0 Mpa,反冲压力:0.4 Mpa以下;
膜材质:双层膜,外膜TiO2;内膜Al2O3—ZrO2复合膜
应用领域
中水回用;
工业废水回用:
工厂化养殖原水解毒处理;
发电厂、化工厂等大型冷却循环水旁滤系统;
油田采出水回用处理;
轧钢乳化液废液处理;
金属表面清洗液再生处理。
㈦ 污水处理中主流工艺和侧流工艺的区别
这两个不是一个意思的。
所谓主流工艺,就是常规的、有代表性的处理工版艺。例如A2O,CASS都是主流权工艺。
侧流工艺是一种专门的工艺名称。通俗理解就是一种液体分离系统。在常规工艺里添加一个有足够停留时间的停留池。然后上清液和下层浓缩液分别用不同的方法进行处理,然后再汇合后进入下个操作单元,就是常规的测流工艺