A. 如何较理想的去除乳化液废水COD
1、化学沉淀法:石灰水、硫化物、钡盐.
向污水中投加某种化学物质,使它与污水中的溶解性物质发生互换反应,生成难溶于水的沉淀物,以降低污水中溶解物质的方法.这种处理法常用于含重金属、氰化物等工业生产污水的处理.按使用沉淀剂的不同,化学沉淀法可分为石灰法(又称氢氧化物沉淀法)、硫化物法和钡盐法.
2.混凝法:硫酸铝、碱式氯化铝、铁盐(主要指硫酸亚铁、三氯化铁及硫酸铁)等.
向水中投加混凝剂,可使污水中的胶体颗粒失去稳定性,凝聚成大颗粒而下沉.通过混凝法可去除污水中细分散固体颗粒、乳状油及胶体物质等.该法可用于降低污水的浊度和色度,去除多种高分子物质、有机物、某种重金属毒物(汞、镉、铅)和放射性物质等,也可以去除能够导致富营养化物质如磷等可溶性无机物,此外还能够改善污泥的脱水性能.因此混凝法在工业污水处理中使用得非常广泛,既可作为独立处理工艺,又可与其他处理法配合使用,作为预处理、中间处理或最终处理.目前常采用的混凝剂有硫酸铝、碱式氯化铝、铁盐(主要指硫酸亚铁、三氯化铁及硫酸铁)等.
当单独使用混凝剂不能达到应有净水效果时,为加强混凝过程、节约混凝剂用量,常可同时投加助凝剂.
3.中和法:石灰、氢氧化钠、石灰石、稀硫酸、CO2等.
用于处理酸性废水和碱性废水.向酸性废水中投加碱性物质如石灰、氢氧化钠、石灰石等,使废水变为中性.对碱性废水可吹入含有CO2的烟道气进行中和,也可用其他的酸性物质进行中和.
4.氧化还原法:液氯、臭氧、高锰酸钾、还原剂等.
利用液氯、臭氧、高锰酸钾等强氧化剂或利用电解时的阳极反应,将废水中的有害物氧化分解为无害物质;利用还原剂或电解时的阴极反应,将废水中的有害物还原为无害物质,以上方法统称为氧化还原法.
氧化还原方法在污水处理中的应用实例有:空气氧化法处理含硫污水;碱性氯化法处理含氰污水;臭氧氧化法在进行污水的除臭、脱色、杀菌及除酚、氰、铁、锰,降低污水的BOD与COD等均有显著效果.还原法目前主要用于含铬污水处理.
B. 电镀污水处理毕业设计
我最近也要在做的,我们讨论下:
电镀废水文献综述
设计要求:(1)水质:铜离子30mg/L,六价铬25mg/L,锌离子12mg/L,镍离子16mg/L,氰8mg/L,其他微量,铅等,Ph4.5
(2)处理要求:执行《污水综合排放标准》(GB8978-1996)一级标
中文摘要: 电镀行业的废水量在整个工业系统废水中虽然所占比重较小,但电镀废水含有氰化物、酸、碱以及六价铬、铜、镍、锌、镉等金属污染物,对环境有严重的危害,因此,国内外对这类废水积极的展开了治理方法的研究与应用。本文在吸取微电解和生物吸附处理重金属离子废水的优点以及已有实验对单一重金属离子废水进行处理的基础上,确定了使用微电解—生物膜复合工艺对实际电镀废水进行处理。
关键词:含铬废水 处理 还原
英文摘要: The plating wastewater with cyanide, acid, alkali and heavy metal ions such as chromium, copper, nickel, zinc, cadmium etc. has appeared to be environmental serious damage despite its small quantity proportion in all through the instrial wastewater. For the moment, the research and application of the wastewater treatment has commenced forwardly in domestic and overseas. In this paper, micro-electrolysis and biological lessons Absorption of Heavy Metal Ions wastewater treatment, as well as have the experimental advantage of heavy metal ions on a single wastewater treatment on the basis of determining the use of micro-electrolysis – biofilm composite plating process on the actual wastewater treatment.
Keywords: Electroplating wastewater, treatment,restore
铬在水环境中的存在形态主要是三价铬(Cr(Ⅲ)和六价铬(Cr(Ⅵ)),它们在水体中的迁移转化有一定的规律性。Cr(Ⅲ)主要被吸附在固体物质上面而存在于沉积物中;Cr(Ⅵ)多溶于水中,而且是稳定的,只有在厌氧的情况下,才还原为Cr(Ⅲ)。铬的毒性与其存在状态有关,通常认为Cr(Ⅵ)的毒性远比Cr(Ⅲ)大[1]。在电镀含铬废水中,Cr(Ⅵ)是主要的特征污染物。
1 Cr(Ⅵ)污染的来源
Cr(Ⅵ)化合物,是冶金工业、金属加工电镀、制革、颜料、纺织品生产、印染以及化工等行业必不可少的原料,这些工业分布点多面广,每天排放出大量含铬废水,这些废水的排放可造成水体和土壤的污染直接影响人类饮用水的卫生状况。WHO所规定的饮用水中Cr(Ⅵ)的含量标准为1~2μmol/L[2],国内有不少地方的饮用水由于受到工业废水的污染或因地质背景所致使生活饮用水中Cr(Ⅵ)含量严重超标。
2 含Cr(VI)污水的处理技术
通过查资料,电镀工业含铬废水的处理最常用的方法有还原法、电解法,工艺成熟,运行效果好。但是近来又有很多其他的方法被研究出来,综合比较会发现这些方法也各有优缺点。作为新方法,他们自有借鉴之处。
2.1还原沉淀法
化学沉淀法处理电镀含Cr(Ⅵ)废水,一种是通过还原法,把Cr(Ⅵ)还原成Cr(Ⅲ),然后沉淀;另一种是用钡盐,使铬酸根生成铬酸钡沉淀。袁智斌[3]通过建调节池,使含铬废水经调节池后进入还原池,在还原池通过加H2SO4控制pH值在2.5~3投加NaHSO3,将Cr(Ⅵ)还原成Cr(Ⅲ),并在反应池通过投加NaOH形成Cr(OH)3沉淀。窦秀冬等[4]通过研究比较,发现通过还原-沉淀法Cr去除率均达到99%以上,MgO的铬泥沉降性能非常优越,NaOH和CaO中掺入部分MgO可以较大地改善所生成铬泥的性能,最佳投药量以投加后pH≈8.3为宜。郑新卿[5]对还原-沉淀法处理含铬废水工艺步骤、固-液分离后的上清液和沉降污泥Cr(Ⅵ)含量以及Cr(Ⅲ)-Cr(Ⅵ)之间的形态转化相关性进行研究和分析,提出要特别注意控制含铬污水中铬反弹及全过程处理的完整性。
2.2电解法沉淀过滤
1.工艺流程概况
电镀含铬废水首先经过格栅去除较大颗粒的悬浮物后自流至调节池, 均衡水量水质, 然后由泵提升至电解槽电解,在电解过程中阳极铁板溶解成亚铁离子,在酸性条件下亚铁离子将六价铬离子还原成三价铬离子,同时由于阴极板上析出氢气,使废水pH 值逐步上升,最后呈中性。此时Cr3+ 、Fe3+ 都以氢氧化物沉淀析出,电解后的出水首先经过初沉池,然后连续通过(废水自上而下)两级沉淀过滤池。一级过滤池内有填料:木炭、焦炭、炉渣;二级过滤池内有填料:无烟煤、石英砂。污水中沉淀物由过滤池填料过滤、吸附,出水流入排水检查井。而后通过泵进入循环水池作为冷却用水。过滤用的木炭、焦炭、无烟煤、炉渣定期收集在锅炉房掺烧。
2.主要设备
调节池1座;初沉池1座、沉淀过滤池2座;循环水池1 座;电源控制柜、电解槽、电解电源、电解电压1套;水泵5台。
3.结果与分析
某电镀厂电镀废水处理设备在正常工况条件下,间隔不同的时间多次取样。
电镀含铬废水采用电解法沉淀过滤工艺处理后全部回用,过滤池内填料定期集中于锅炉房掺烧,达到了综合治理电镀含铬废水的目的。
该处理技术虽然运行可靠,操作简单,但应注意几个方面:
a)需要定期更换极板;
b)在一定的酸性介质中,氢氧化铬有被重新溶解的可能;
c)沉淀过滤池内的填料必须定期处理,焚烧彻底,否则会引起二次污染。由此可见,对处理设施加强管理非常重要。
4.结论
1)该处理工艺对电镀含铬废水治理彻底,过滤池内填料定期统一处理,不会引起二次污染;处理后清水全部回用,可节省水资源,具有明显的经济效益。
2)该工艺投资较小,技术成熟,运行稳定可靠,操作方便,易于管理,适应于不同规模的电镀生产企业。
2.3吸附法
吸附法是利用多孔性固态物质吸附水中污染物来处理废水的一种常用方法。吸附法的关键技术是吸附剂的选择,目前工业应用中最常用的吸附剂是活性炭,活性炭吸附容量大,对Cr(Ⅵ)阳离子也具有较强还原作用[6],用20%硫酸溶液浸泡后,Cr(Ⅵ)去除率达91.6%,易于再生[7]。Valix等[8]研究了活性炭表面的杂环原子(如S、N、O、H等)以及活性炭的结构特性对吸附Cr(Ⅵ)的影响,认为杂环原子辅助活性炭起还原剂作用,提高活性炭吸附铬酸根离子,此外提高活性炭的总表面积有助于提高吸附容量和取出Cr(Ⅵ)。
活性炭虽然性能优良,但我国活性炭产量少,价格较昂贵,限制了它们在一些经济不发达地区和一些行业的使用,因此,又开发出来了许多类型的吸附剂,一类是利用工农业废弃物做吸附剂,以废治废,不仅吸附效果好,还具有价格低,来源广的优点。李鑫金等[9]用活化赤泥处理含铬废水,处理含Cr(III)浓度在300 mg/L以下废水,去除率可达99%以上;处理含Cr(Ⅵ)废水,先加入硫酸亚铁还原,同样可使Cr(Ⅵ) 浓度在300 mg/L以下废水处理后达到国家标准。马少健等[10]利用钢渣吸附Cr(III),去除率可达99%以上,同时可去除废水中94%以上的Pb2+。蒋艳红等[11]研究了高炉渣对铬离子的吸附特性,在pH4~12范围内高炉渣对Cr(III)去除率可达97%以上,对Cr(Ⅵ)需加硫酸亚铁还原再处理。Hu等[12]研究了磁赤铁矿纳米颗粒吸附Cr(Ⅵ),吸附容量可与活性炭相比,不受其他共存离子的影响,易于再生,可用于回收废水中的Cr(Ⅵ)。程永华等[13]研究了壳聚糖高效吸附含铬废水,在强酸下壳聚糖对Cr(Ⅵ)吸附速度较快,在弱酸下壳聚糖对Cr(Ⅲ)吸附有利,通过控制pH值分段吸附,可有效除去废水中的铬含量。
另一类是用改性材料作为吸附剂,由于一些天然材料(或废弃物)的吸附效果不理想,许多学者就对它们进行改性,目前有许多这方面的报道。韩毅等[14]以氯化铁为改性剂制得改性赤泥,任乃林等[15]用木屑经酸化、与8-羟基喹啉金属络合剂浸泡处理制得改性木屑,马小隆等[16]用无机酸对钙基膨润土进行活化改性,Li等[17]用氯化铁改性汽爆秸秆吸附Cr(Ⅲ),隋国舜等[18]研究了低聚合羟基铁离子-蛭石复合体对Cr(Ⅵ)的吸附,结果都表明了改性后的吸附剂对Cr(Ⅵ)吸附能力明显提高,废水中Cr(Ⅵ)去除能力更强。
2.4其他国内外含铬废水处理方法的研究进展
1.1 生物法
生物法治理含铬废水,国内外都是近年来开始的。生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。国内外对SRB菌(硫酸盐还原菌)、SR系列复合功能菌、SR复合能菌、脱硫孤菌、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramigera)、酵母菌、含糊假单胞菌、荧光假单胞菌、乳链球菌、阴沟肠杆菌、铬酸盐还原菌等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-.已用于埃及轻型车辆公司的含铬废水的处理。
生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。投资少,能耗低,运行费用少。
1.2 膜分离法
膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。超滤法也是在静压差推动下进行溶质分离的膜过程。液膜包括无载体液膜、有载体液膜、含浸型液膜等。液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。膜分离法的优点:能量转化率高,装置简单,操作容易,易控制、分离效率高。但投资大,运行费用高,薄膜的寿命短。主要用于回收附加值高的物质,如金等。
电镀工业漂洗水的回收是电渗析在废液处理方面的主要应用,水和金属离子可达到全部循环利用,整个过程可在高温和更广的pH值条件下运行,且回收液浓度可大大提高,缺点为仅能用于回收离子组分。液膜法处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜稳定剂,工艺操作方便,设备简单,原料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,分离过程分为:萃取、反萃等步骤。近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等。
1.3 黄原酸酯法
70年代,美国研制成新型不溶重金属离子去除剂ISX,使用方便,水处理费用低。ISX不仅能脱除多种重金属离子,而且在酸性条件下能将Cr6+还原为Cr3+,但稳定性差。不溶性淀粉黄原酸酯脱除铬的效果好,脱除率>99%,残渣稳定,不会引起二次污染。钟长庚等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很容易达到排放标准。研究者认为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬通过沉淀、吸附几种过程共同起作用,但黄原酸铬盐起主要作用。此法成本低,反应迅速,操作简单,无二次污染。
1.4 光催化法
光催化法是近年来在处理水中污染物方面迅速发展起来的新方法,特别是利用半导体作催化剂处理水中有机污染物方面已有许多报道。以半导体氧化物(ZnO/TiO2)为催化剂,利用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(1182.5W/m2),使六价铬还原成三价铬,再以氢氧化铬形式除去三价铬,铬的去除率达99%以上。
1.5 槽边循环化学漂洗
这一技术由美国ERG/Lancy公司和英国的Ef fluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀生产线后设回收槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的还原剂(亚硫酸氢钠或水合肼)漂洗,使90%的带出液被还原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则连续流回处理槽,不断循环。加碱沉淀系在处理槽中进行,它的排泥周期很长。广州电器科学研究所开发了分别适用于各种电镀废水的三大类体系的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高等优点。有时,用槽边循环和车间循环相结合。
1.6 水泥基固化法处理中和废渣
对于暂时无法处理的有毒废物,可以采用固化技术,将有害的危险物转变为非危险物的最终处置办法。这样,可避免废渣的有毒离子在自然条件下再次进入水体或土壤中,造成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。
2、电镀含铬废液及污泥的综合利用
由于电镀含铬老化废液有害物质含量高,成分复杂,在综合利用之前应对各种废液进行单独和分类处理。对于镀锌钝化液、铜钝化液及含磷酸的铝电解抛光液均用酸碱调节pH;对于阴离子交换树脂,只需将它变为Na2CrO4即可。
2.1 利用铬污泥生产红矾钠
在高温碱性条件介质Na2CrO4中三价铬可被空气氧化为Na2Cr2O7,同时污泥中所含的铁、锌等转化为相应的可溶盐NaFeO2、Na2ZnO2.用水浸取碱熔体时,大部分铁分解为Fe(OH)3沉淀而除去。将滤液酸化至pH<4,Na2CrO4即转变为Na2Cr2O7,利用Na2SO4与Na2Cr2O7溶解度差异,分别结晶析出。采用高温碱性氧化铬污泥制红矾钠的条件是n(Na2CO3)∶n(Cr2O3)=3.0∶1.0,温度780℃,时间2.5h,铬的转化率在85%以上。
2.2 生产铬黄
利用纯碱作沉淀剂去除电镀废液中的杂质金属离子,再利用净化后的电镀废液替代部分红矾钠生产铅铬黄。电镀液加入Na2CO3饱和液后,调整pH至8.5~9.5.进行过滤,滤液备用。在碱性条件下将滤渣中的Cr3+用H2O2氧化为Cr6+,再经过滤,滤液与上述滤液混合。将滤液与硝酸铅溶液和助剂,在50~60℃反应1h,然后经过滤、水洗,洗去氯根、硫酸根以及其它部分可溶性杂质,再经干燥粉碎即得成品铅铬黄。利用电镀废液生产铅铬黄,不仅解决了污染问题,而且使电镀废液中的铬得到了回收利用。据估算,按年处理电镀废液200t,年平均回收18t红矾钠,可实现年创收4万余元。效益可观。
2.3 生产液体铬鞣剂及皮革鞣剂碱式硫酸铬
含铬废液先用氢氧化钠去除金属离子杂质,控制pH=5.5~6.0,然后过滤,滤液待用,污泥用铁氧体无害化处理。然后,在滤液中投加还原剂葡萄糖,使Na2Cr2O7还原为Cr(OH)SO4,在100℃条件下,进一步聚合,当碱度为40%时,分子式为4Cr(OH)3.3Cr2(SO4)3,即为铬鞣剂。河北省无极县某皮革厂就是利用电镀含铬废水生产液体铬鞣剂。按每天生产5t液体铬鞣剂,每天可得利润为6000余元。可见利用含铬废液生产铬鞣剂的经济效益是十分显著的。另外,可将含铬的污泥与碳粉混合,在高温下煅烧,从而可制得金属铬。因为含铬污泥是电镀车间污泥的主要品种,根据电镀处理方法不同,污泥的回收利用也不同。
电解法污泥:
(1)做中温变换催化剂的原料;
(2)做铁铬红颜料的原料。
化学法的污泥:
(1)回收氢氧化铬;
(2)回收三氧化二铬抛光膏。铁氧体污泥做磁性材料的原料等等。
3、结束语
以上介绍的含铬废水的处理方法及其资源化利用,有的已经实现了工业化,有的尚处于实验室基础研究阶段。在实际使用过程中并不一定限定于上述的处理方法,也可将上述的几种处理方法一起使用。从环保角度出发,人们将摈弃传统的化学法,而选择微生物法、膜分离法等。微生物法将代表21世纪电镀含铬废水处理方法的发展趋势,可以预计在不久的将来,微生物法会得到更为广泛的应用。
参考文献
[1] 马广岳,施国新,徐勤松,等.2004.Cr6+、Cr3+胁迫对黑藻生理生化影响的比较研究[J].广西植物,24(2):161-165
[2] Costa M.2003.Potential hazards of hexavalent chromate in our drinking water[J].Toxicol Appl Pharmacol,188(1):1-5
[3] 袁智斌.2005.化学分类沉淀法处理铜箔废水的工程应用[J].铜业工程,4:23-25
[4] 窦秀冬,方建德,郭振仁,等.2003.皮革废水除铬碱剂筛选[J].新疆环境保护,25(2):27-30
[5] 郑新卿.2005.还原——固液法镀铬废水处理后Cr(Ⅵ)反弹成因与防治对策[J].中国环境管理,3:29-30
[6] 王宝庆,陈亚雄,宁平.2002.活性炭水处理技术应用[J].云南环境科学,19(3):46-50
[7] 李英杰,纪智玲,侯凤,等.2005.活性炭吸附法处理含铬废水的研究[J].沈阳化工学院学报,19(3):184-187
[8] Valix M,Cheung W H,Zhang K.Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters[J].J Hazard Mater,2006,In press
[9] 李鑫金,赵景联.2005.微波煅烧活化赤泥处理含铬废水的研究[J].轻金属,9:16-19
[10] 马少健,刘盛余,胡治流,等.2004.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶,20(4):57-59
[11] 蒋艳红,马少健,廖芳艳.2005.高炉渣对铬离子的吸附特性研究[J].有色矿冶,21(s):155-156
[12] Hu J,Chen G H,Lo I M C.2005.Removal and recovery of Cr(VI)from wastewater by maghemite nanoparticles[J].Water Res,39(18):4528-4536
[13] 程永华,闫永胜,王智博,等.2005.壳聚糖高效吸附处理含铬废水的研究[J].华中科技大学学报(城市科学版),22(4):51-53
[14] 韩毅,王京刚,唐明述.2005.用改性赤泥吸附废水中的六价铬[J].化工环保,25(2):132-136
[15] 任乃林,黄俊盛,李红.2004.用改性木屑吸附处理含铬废水[J].广东化工,9/10:53-54
[16] 马小隆,刘晓明,宋吉勇.2005.膨润土的改性及其对废水中铬的吸附性能研究[J].能源环境保护,19(4):18-21
[17] Li C,Chen H Z,Li Z H.2004.Adsorptive removal of Cr(VI) by Fe-modified steam exploded wheat straw[J].Process Biochem,39(5):541–545
[18] 隋国舜,廖立兵,胡鸿佳.2005.低聚合羟基铁离子-蛭石复合体吸附铬的实验研究[J].矿物岩石,25(3):131-136
C. 鐢甸晙宸ュ巶搴熸按澶勭悊鏂规硶鏈夊摢浜
鎽樿侊細鐢甸晙鍘傦紙鎴栬溅闂达級鎺掓斁鐨勫簾姘村拰搴熸恫锛屽傜數闀闆朵欢鐨勫啿娲楁按銆佸簾妲芥恫銆佽惧囧喎鍗存按鍜屽啿娲楀湴琛ㄦ按绛夛紝鐢变簬鐢熶骇宸ヨ壓鐨勪笉鍚屼骇鐢熺殑姘磋川涓嶅悓锛屾垚鍒嗗嶆潅銆傜數闀宸ュ巶鎺掑嚭鐨勫簾姘村拰搴熸恫涓鍚鏈夊ぇ閲忛噾灞炵诲瓙濡傦細閾銆侀晲銆侀晬锛屽惈姘帮紝鍚閰革紝鍚纰憋紝涓鑸甯稿惈鏈夋湁鏈烘坊鍔犲墏銆傜數闀搴熸按澶勭悊甯哥敤涓鍜屾矇娣娉曘佷腑鍜屾贩鍑濇矇娣娉曘佹哀鍖栨硶銆佽繕鍘熸硶銆侀挕鐩愭硶銆侀搧姘т綋娉曠瓑鍖栧︽柟娉曘傛帴涓嬫潵甯︽偍绠瑕佷簡瑙d竴涓嬬數闀鍘傜殑姹℃按澶勭悊鏂规堛傜數闀搴熸按鐨勬潵婧愮數闀鐢熶骇涓浜х敓鐨勫簾姘存垚鍒嗛潪甯稿嶆潅锛岄櫎鍚姘(CN-)鍜岄吀纰卞栵紝閲嶉噾灞炴槸鐢甸晙涓氭綔鍦ㄥ嵄瀹虫ф瀬澶х殑姹℃按绫诲埆锛岃繖浜涚墿璐ㄤ弗閲嶅嵄瀹崇幆澧冨拰浜虹被韬浣撳仴搴枫傜數闀搴熸按鐨勪富瑕佹潵婧愭湁锛
1銆侀晙浠舵竻娲楁按(鏄涓昏佺殑搴熸按鏉ユ簮)銆傝ュ簾姘翠腑闄ゅ惈閲嶉噾灞炵诲瓙澶栵紝杩樺惈鏈夊皯閲忕殑鏈夋満鐗╋紝鍏跺惈閲忚緝浣庯紝浣嗘暟閲忚緝澶с
2銆侀晙娑茶繃婊ゅ啿娲楁按鍜屽簾闀娑茬殑鎺掓斁銆傝繖閮ㄥ垎搴熸按鏁伴噺涓嶅ぇ锛屼絾鍚閲忛珮锛屾薄鏌撳ぇ銆
3銆佸伐鑹烘搷浣滃拰璁惧囥佸伐鑹烘祦绋嬩腑绛夐犳垚鐨勨滆窇銆佸啋銆佹淮銆佹紡鈥濇帓鏀剧殑搴熸恫銆
4銆佸啿娲楄惧囥佸湴鍧绛変骇鐢熺殑搴熸按銆
鐢甸晙姹℃按娌荤悊鍦ㄥ浗鍐呭栨櫘閬嶅彈鍒伴噸瑙嗭紝宸茬爺鍒跺嚭澶氱嶆不鐞嗘妧鏈锛岄氳繃灏嗘湁姣掓不鐞嗕负鏃犳瘨銆佹湁瀹宠浆鍖栦负鏃犲炽佸洖鏀惰吹閲嶉噾灞炪佹按寰鐜浣跨敤绛夋帾鏂芥秷闄ゅ拰鍑忓皯姹℃煋鐗╃殑鎺掓斁閲忋傞殢鐫鐢甸晙宸ヤ笟鐨勫揩閫熷彂灞曞拰鐜淇濊佹眰鐨勬棩鐩婃彁楂橈紝鐢甸晙姹℃按娌荤悊宸插紑濮嬭繘鍏ユ竻娲佺敓浜у伐鑹恒佹婚噺鎺у埗鍜屽惊鐜缁忔祹鏁村悎闃舵碉紝璧勬簮鍥炴敹鍒╃敤鍜岄棴璺寰鐜鏄鍙戝睍鐨勪富娴佹柟鍚戙
鐢甸晙宸ュ巶搴熸按澶勭悊鏂规硶鎴戝浗澶勭悊鐢甸晙搴熸按甯哥敤鐨勬柟娉曟湁鍖栧︽硶銆佺敓鐗╂硶銆佺墿鍖栨硶鍜岀數鍖栧︽硶绛夈
鍖栧︽硶鍖栧︽硶鏄渚濋潬姘у寲杩樺師鍙嶅簲鎴栦腑鍜屾矇娣鍙嶅簲灏嗘湁姣掓湁瀹崇殑鐗╄川鍒嗚В涓烘棤姣掓棤瀹崇殑鐗╄川锛屾垨鑰呯洿鎺ュ皢閲嶉噾灞炵粡娌夋穩鎴栨皵娴浠庡簾姘翠腑闄ゅ幓銆
1銆佹矇娣娉
(1)涓鍜屾矇娣娉曘傚湪鍚閲嶉噾灞炵殑搴熸按涓鍔犲叆纰辫繘琛屼腑鍜屽弽搴旓紝浣块噸閲戝睘鐢熸垚涓嶆憾浜庢按鐨勬阿姘у寲鐗╂矇娣褰㈠紡鍔犱互鍒嗙汇備腑鍜屾矇娣娉曟搷浣滅畝鍗曪紝鏄甯哥敤鐨勫勭悊搴熸按鏂规硶銆
(2)纭鍖栫墿娌夋穩娉曘傚姞鍏ョ~鍖栫墿浣垮簾姘翠腑閲嶉噾灞炵诲瓙鐢熸垚纭鍖栫墿娌夋穩鑰岄櫎鍘荤殑鏂规硶銆備笌涓鍜屾矇娣娉曠浉姣旓紝纭鍖栫墿娌夋穩娉曠殑浼樼偣鏄锛氶噸閲戝睘纭鍖栫墿婧惰В搴︽瘮鍏舵阿姘у寲鐗╃殑婧惰В搴︽洿浣庯紝鍙嶅簲pH鍊煎湪7锝9涔嬮棿锛屽勭悊鍚庣殑搴熸按涓鑸涓嶇敤涓鍜岋紝澶勭悊鏁堟灉鏇村ソ銆備絾纭鍖栫墿娌夋穩娉曠殑缂虹偣鏄锛氱~鍖栫墿娌夋穩棰楃矑灏忥紝鏄撳舰鎴愯兌浣擄紝纭鍖栫墿娌夋穩鍦ㄦ按涓娈嬬暀锛岄亣閰哥敓鎴愭皵浣擄紝鍙鑳介犳垚浜屾℃薄鏌撱
(3)铻鍚堟矇娣娉曘傞氳繃楂樺垎瀛愰噸閲戝睘鎹曢泦娌夋穩鍓(DTCR)鍦ㄥ父娓╀笅涓庡簾姘翠腑Hg2+銆丆d2+銆丆u2+銆丳b2+銆丮n2+銆丯i2+銆乑n2+鍙奀r3+绛夐噸閲戝睘绂诲瓙杩呴熷弽搴旓紝鐢熸垚涓嶆憾姘寸殑铻鍚堢洂锛屽啀鍔犲叆灏戦噺鏈夋満鎴(鍜)鏃犳満绲鍑濆墏锛屽舰鎴愮诞鐘舵矇娣锛屼粠鑰岃揪鍒版崟闆嗗幓闄ら噸閲戝睘鐨勭洰鐨勩侱TCR绯诲垪鑽鍓傚勭悊鐢甸晙搴熸按鐨勭壒鐐规槸鍙鍚屾椂鍘婚櫎澶氱嶉噸閲戝睘绂诲瓙锛屽归噸閲戝睘绂诲瓙浠ョ粶鍚堢洂褰㈠紡瀛樺湪鐨勬儏鍐碉紝涔熻兘鍙戞尌鑹濂界殑鍘婚櫎鏁堟灉锛屽幓闄よ兌璐ㄩ噸閲戝睘涓嶅彈鍏卞瓨鐩愮被鐨勫奖鍝嶏紝鍏锋湁杈冨ソ鐨勫彂灞曞墠鏅銆
2銆佹哀鍖栨硶
閫氳繃鎶曞姞姘у寲鍓傦紝灏嗙數闀搴熸按涓鏈夋瘨鐗╄川姘у寲涓烘棤姣掓垨浣庢瘨鐗╋紝涓昏佺敤浜庡勭悊搴熸按涓鐨凜N-銆丗e2+銆丮n2+浣庝环鎬佺诲瓙鍙婇犳垚鑹插害銆佹槯銆佸梾鐨勫悇绉嶆湁鏈虹墿浠ュ強鑷寸梾寰鐢熺墿銆傚傚勭悊鍚姘板簾姘存椂锛屽父鐢ㄦ℃隘閰哥洂鍦ㄧ⒈鎬ф潯浠朵笅姘у寲鍏朵腑鐨勬鞍绂诲瓙锛屼娇涔嬪垎瑙f垚浣庢瘨鐨勬鞍閰哥洂锛岀劧鍚庡啀杩涗竴姝ラ檷瑙d负鏃犳瘨鐨勪簩姘у寲纰冲拰姘銆
3銆佸寲瀛﹁繕鍘熸硶
鍖栧﹁繕鍘熸硶鍦ㄧ數闀搴熸按娌荤悊涓鏈鍏稿瀷鐨勬槸瀵瑰惈閾搴熸按鐨勬不鐞嗐傚叾鏂规硶鏄鍦ㄥ簾姘翠腑鍔犲叆杩樺師鍓侳eS04銆丯aHS03銆丯a2S03銆丼02鎴栭搧绮夌瓑锛屼娇Cr(鈪)杩樺師鎴怌r(III)锛岀劧鍚庡啀鍔犲叆NaOH鎴栫煶鐏颁钩娌夋穩鍒嗙汇傝ユ硶浼樼偣鏄璁惧囩畝鍗曘佹姇璧勫皯銆佸勭悊閲忓ぇ锛屼絾瑕侀槻姝㈡矇娓f薄娉ラ犳垚浜屾℃薄鏌撱
4銆佷腑鍜屾硶
閫氳繃閰哥⒈涓鍜屽弽搴旓紝璋冭妭鐢甸晙搴熸按鐨勯吀纰卞害锛屼娇鍏跺憟涓鎬ф垨鎺ヨ繎涓鎬ф垨閫傚疁涓嬫ュ勭悊鐨勯吀纰卞害鑼冨洿锛屼富瑕佺敤鏉ュ勭悊鐢甸晙鍘傜殑閰告礂搴熸按銆
5銆佹皵娴娉
姘旀诞娉曚綔涓哄勭悊鐢甸晙搴熸按鐨勬妧鏈鏄杩戝嚑骞村彂灞曡捣鏉ョ殑涓椤规柊宸ヨ壓銆傚叾鍩烘湰鍘熺悊鏄鐢ㄩ珮鍘嬫按娉靛皢姘村姞鍘嬪埌鍑犱釜澶ф皵鍘嬫敞鍏ユ憾缃愪腑锛屼娇姘斻佹按娣峰悎鎴愭憾姘旀按锛屾憾姘旀按閫氳繃婧舵皵閲婃斁鍣ㄨ繘鍏ユ按姹犱腑锛岀敱浜庣獊鐒跺噺鍘嬶紝婧惰В鍦ㄦ按涓鐨勭┖姘斿舰鎴愬ぇ閲忓井姘旀场锛屼笌鐢甸晙搴熸按鍒濇ュ勭悊浜х敓鐨勫嚌鑱氱姸鐗╅粡闄勫湪涓璧凤紝浣垮叾鐩稿瑰瘑搴﹀皬浜庢按鑰屾诞鍒版按闈涓婃垚涓烘诞娓f帓闄わ紝浠庤屼娇搴熸按寰楀埌鍑鍖栥
鐢熺墿娉曠敓鐗╁勭悊鏄涓绉嶅勭悊鐢甸晙搴熸按鐨勬柊鎶鏈銆備竴浜涘井鐢熺墿浠h阿浜х墿鑳戒娇搴熸按涓鐨勯噸閲戝睘绂诲瓙鏀瑰彉浠锋侊紝鍚屾椂寰鐢熺墿鑿岀兢鏈韬杩樻湁杈冨己鐨勭敓鐗╃诞鍑濄侀潤鐢靛惛闄勪綔鐢锛岃兘澶熷惛闄勯噾灞炵诲瓙锛屼娇閲嶉噾灞炵粡鍥烘恫鍒嗙诲悗杩涘叆鑿屾偿楗硷紝浠庤屼娇寰楀簾姘磋揪鏍囨帓鏀炬垨鍥炵敤銆
1銆佺敓鐗╁惛闄勬硶
鍑″叿鏈変粠婧舵恫涓鍒嗙婚噾灞炶兘鍔涚殑鐗╀綋鎴栫敓鐗╀綋鍒跺囩殑琛嶇敓鐗╃О涓虹敓鐗╁惛闄勫墏銆傜敓鐗╁惛闄勫墏涓昏佹槸鑿屼綋銆佽椈绫诲強涓浜涙彁鍙栫墿銆傚井鐢熺墿瀵归噸閲戝睘鐨勫惛闄勬満鐞嗗彇鍐充簬璁稿氱墿鐞嗐佸寲瀛﹀洜绱狅紝濡傚厜銆佹俯搴︺乸H鍊笺侀噸閲戝睘鍚閲忓強鍖栧﹀舰鎬併佸叾浠栫诲瓙銆佽灚鍚堝墏鐨勫瓨鍦ㄥ拰鍚搁檮鍓傜殑棰勫勭悊绛夈傜敓鐗╁惛闄勬妧鏈娌荤悊閲嶉噾灞炴薄鏌撳叿鏈変竴瀹氱殑浼樺娍锛屽湪浣庡惈閲忔潯浠朵笅锛岀敓鐗╁惛闄勫墏鍙浠ラ夋嫨鎬у湴鍚搁檮鍏朵腑鐨勯噸閲戝睘锛屽彈姘存憾娑蹭腑閽欍侀晛绂诲瓙鐨勫共鎵板奖鍝嶈緝灏忋傝ユ柟娉曞勭悊鏁堢巼楂橈紝鏃犱簩娆℃薄鏌擄紝鍙鏈夋晥鍦板洖鏀朵竴浜涜吹閲嶉噾灞炪備絾鏄鐢熺墿鎴愰暱鐜澧冧笉瀹规槗鎺у埗锛屽線寰浼氬洜姘磋川鐨勫彉鍖栬屽ぇ閲忎腑姣掓讳骸銆
2銆佺敓鐗╃诞鍑濇硶
鐢熺墿绲鍑濇硶鏄鍒╃敤寰鐢熺墿鎴栧井鐢熺墿浜х敓鐨勪唬璋㈢墿杩涜岀诞鍑濇矇娣鐨勪竴绉嶉櫎姹℃柟娉曘傚井鐢熺墿绲鍑濆墏鏄鐢卞井鐢熺墿鑷韬浜х敓鐨勩佸叿鏈夐珮鏁堢诞鍑濅綔鐢ㄧ殑澶╃劧楂樺垎瀛愮墿璐锛屽畠鐨勪富瑕佹垚鍒嗘槸绯栬泲鐧姐侀粡澶氱硸銆佺氦缁寸礌銆佽泲鐧借川鍜屾牳閰哥瓑銆傚畠鍏锋湁杈冮珮鐢佃嵎鎴栬緝寮虹殑浜叉按鎬у拰鐤忔按鎬э紝鑳戒笌棰楃矑閫氳繃绂诲瓙閿銆佹阿閿鍜岃寖寰峰崕鍔涘悓鏃跺惛闄勫氫釜鑳朵綋棰楃矑锛屽湪棰楃矑闂翠骇鐢熸灦妗ョ幇璞★紝褰㈡垚涓绉嶇綉鐘朵笁缁寸粨鏋勮屾矇娣涓嬫潵銆傚归噸閲戝睘鏈夌诞鍑濅綔鐢ㄧ殑鐢熺墿绲鍑濆墏绾︽湁鍗佸嚑涓鍝佺嶏紝鐢熺墿绲鍑濆墏涓鐨勬皑鍩哄拰缇熷熀鍙涓嶤u2+銆丠g2+銆丄g+銆丄u2+绛夐噸閲戝睘绂诲瓙褰㈡垚绋冲畾鐨勮灟鍚堢墿鑰屾矇娣涓嬫潵銆傝ユ柟娉曞勭悊搴熸按鍏锋湁瀹夊叏鏂逛究鏃犳瘨锛屼笉浜х敓浜屾℃薄鏌擄紝绲鍑濊寖鍥村箍锛岀诞鍑濇椿鎬ч珮銆佺敓闀垮揩锛岀诞鍑濅綔鐢ㄦ潯浠剁矖鏀撅紝澶у氫笉鍙楃诲瓙寮哄害銆乸H鍊煎強娓╁害鐨勫奖鍝嶏紝鏄撲簬瀹炵幇宸ヤ笟鍖栫瓑鐗圭偣銆
3銆佺敓鐗╁寲瀛︽硶
鐢熺墿鍖栧︽硶鏄閫氳繃寰鐢熺墿涓庨噾灞炵诲瓙涔嬮棿鍙戠敓鐩存帴鐨勫寲瀛﹀弽搴旓紝灏嗗彲婧舵х诲瓙杞鍖栦负涓嶆憾鎬у寲鍚堢墿鑰屽幓闄ゃ傚叾浼樼偣鏄锛氶夋嫨鎬у己銆佸惛闄勫归噺澶с佷笉浣跨敤鍖栧﹁嵂鍓傘傛薄娉ヤ腑閲戝睘鍚閲忛珮锛屼簩娆℃薄鏌撴槑鏄惧噺灏戯紝鑰屼笖姹℃偿涓閲嶉噾灞炴槗鍥炴敹锛屽洖鏀剁巼楂樸備絾鍏剁己鐐规槸鍔熻兘鑿屽拰搴熸按涓閲戝睘绂诲瓙鐨勫弽搴旀晥鐜囧苟涓嶉珮锛屼笖鍩瑰吇鑿岀嶇殑鍩瑰吇鍩烘秷鑰楅噺杈冨ぇ锛屽勭悊鎴愭湰杈冮珮銆
鐗╁寲娉曠墿鍖栨硶鏄鍒╃敤绂诲瓙浜ゆ崲鎴栬啘鍒嗙绘垨鍚搁檮鍓傜瓑鏂规硶鍘婚櫎鐢甸晙搴熸按鎵鍚鐨勬潅璐锛屽叾鍦ㄥ伐涓氫笂搴旂敤骞挎硾锛岄氬父涓庡叾浠栨柟娉曢厤鍚堜娇鐢ㄣ
1銆佺诲瓙浜ゆ崲娉
绂诲瓙浜ゆ崲娉曟槸鍒╃敤绂诲瓙浜ゆ崲鍓傚垎绂诲簾姘翠腑鏈夊崇墿璐ㄧ殑鏂规硶銆傛渶甯哥敤鐨勪氦鎹㈠墏鏄绂诲瓙浜ゆ崲鏍戣剛锛屾爲鑴傞ケ鍜屽悗鍙鐢ㄩ吀纰卞啀鐢熷悗鍙嶅嶄娇鐢ㄣ傜诲瓙浜ゆ崲鏄闈犱氦鎹㈠墏鑷韬鎵甯︾殑鑳借嚜鐢辩Щ鍔ㄧ殑绂诲瓙涓庤澶勭悊鐨勬憾娑蹭腑鐨勭诲瓙閫氳繃绂诲瓙浜ゆ崲鏉ュ疄鐜扮殑銆傚氭暟鎯呭喌涓嬶紝绂诲瓙鏄鍏堣鍚搁檮锛屽啀琚浜ゆ崲锛屽叿鏈夊惛闄勩佷氦鎹㈠弻閲嶄綔鐢ㄣ傚逛簬鍚閾绛夐噸閲戝睘绂诲瓙鐨勫簾姘达紝鍙鐢ㄩ槾绂诲瓙浜ゆ崲鏍戣剛鍘婚櫎Cr(VI)锛岀敤闃崇诲瓙浜ゆ崲鏍戣剛鍘婚櫎Cr(鈪)銆侀搧銆侀摐绛夌诲瓙銆備竴鑸鐢ㄤ簬澶勭悊浣庢湁瀹崇墿璐ㄥ惈閲忓簾姘达紝鍏锋湁鍥炴敹鍒╃敤銆佸寲瀹充负鍒┿佸惊鐜鐢ㄦ按绛変紭鐐癸紝浣嗗畠鐨勬妧鏈瑕佹眰杈冮珮銆佷竴娆℃ф姇璧勫ぇ銆
2銆佽啘鍒嗙绘硶
鑶滃垎绂绘槸鎸囩敤鍗婇忚啘浣滀负闅滅嶅眰锛屽熷姪浜庤啘鐨勯夋嫨娓楅忎綔鐢锛屽湪鑳介噺銆佸惈閲忔垨鍖栧︿綅宸鐨勪綔鐢ㄤ笅瀵规贩鍚堢墿涓鐨勪笉鍚岀粍鍒嗚繘琛屽垎绂汇傚埄鐢ㄨ啘鍒嗙绘妧鏈锛屽彲浠庣數闀搴熸按涓鍥炴敹閲嶉噾灞炲拰姘磋祫婧愶紝鍑忚交鎴栨潨缁濆畠瀵圭幆澧冪殑姹℃煋锛屽疄鐜扮數闀鐨勬竻娲佺敓浜э紝瀵归檮鍔犲艰緝楂樼殑閲戙侀摱銆侀晬銆侀摐绛夌數闀搴熸按鐢ㄨ啘鍒嗙绘妧鏈鍙瀹炵幇闂璺寰鐜锛屽苟浜х敓鑹濂界殑缁忔祹鏁堢泭銆傚逛簬缁煎悎鐢甸晙搴熸按锛岀粡杩囩畝鍗曠殑鐗╃悊鍖栧︽硶澶勭悊鍚庯紝閲囩敤鑶滃垎绂绘妧鏈鍙鍥炵敤澶ч儴鍒嗘按锛屽洖鏀剁巼鍙杈60%锝80%锛屽噺灏戞薄姘存绘帓鏀鹃噺锛屽墛鍑忔帓鏀惧埌姘翠綋涓鐨勬薄鏌撶墿銆
3銆佽捀鍙戞祿缂╂硶
璇ユ柟娉曟槸瀵圭數闀搴熸按杩涜岃捀鍙戯紝浣块噸閲戝睘搴熸按寰椾互娴撶缉锛屽苟鍔犱互鍥炴敹鍒╃敤鐨勪竴绉嶅勭悊鏂规硶锛屼竴鑸閫傜敤浜庡勭悊鍚閾銆侀摐銆侀摱銆侀晬绛夊惈閲嶉噾灞炵殑鐢甸晙搴熸按銆備竴鑸灏嗕箣浣滀负鍏朵粬鏂规硶鐨勮緟鍔╁勭悊鎵嬫点傚畠鍏锋湁鑳借楀ぇ銆佹垚鏈楂樸佸崰鍦伴潰绉澶с佽繍杞璐圭敤楂樼瓑缂虹偣銆
4銆佹椿鎬х偔鍚搁檮娉
娲绘х偔鍚搁檮娉曟槸澶勭悊鐢甸晙搴熸按鐨勪竴绉嶇粡娴庢湁鏁堢殑鏂规硶锛屼富瑕佺敤浜庡惈閾銆佸惈姘板簾姘淬傚畠鐨勭壒鐐规槸澶勭悊璋冭妭娓╁拰锛屾搷浣滃畨鍏锛屾繁搴﹀噣鍖栫殑澶勭悊姘村彲浠ュ洖鐢ㄣ備絾璇ユ柟娉曞瓨鍦ㄦ椿鎬х偔鍐嶇敓澶嶆潅鍜屽啀鐢熸恫涓嶈兘鐩存帴鍥為晙妲藉埄鐢ㄧ殑闂棰橈紝鍚搁檮瀹归噺灏忥紝涓嶉備簬鏈夊崇墿鍚閲忛珮鐨勫簾姘淬
鐢靛寲瀛︽硶1銆佺數瑙f硶
鐢佃В娉曟槸鍒╃敤鐢佃В浣滅敤澶勭悊鎴栧洖鏀堕噸閲戝睘锛屼竴鑸搴旂敤浜庤吹閲戝睘鍚閲忚緝楂樻垨鍗曚竴鐨勭數闀搴熸按銆傜數瑙f硶澶勭悊Cr(VI)锛屾槸鐢ㄩ搧浣滅數鏋侊紝閾侀槼鏋佷笉鏂婧惰В浜х敓鐨勪簹閾佺诲瓙鑳藉湪閰告ф潯浠朵笅灏咰r(VI)杩樺師鎴怌r(鈪)锛屽湪闃存瀬涓奀r(鈪)鐩存帴杩樺師涓篊r(鈪)锛岀敱浜庡湪鐢佃В杩囩▼涓瑕佹秷鑰楁阿绂诲瓙锛屾按涓浣欑暀鐨勬阿姘ф牴绂诲瓙浣挎憾娑蹭粠閰告у彉涓虹⒈鎬э紝骞剁敓鎴愰摤鍜岄搧鐨勬阿姘у寲鐗╂矇娣鍘婚櫎閾銆傜數瑙f硶鑳藉熷悓鏃堕櫎鍘诲氱嶉噾灞炵诲瓙锛屽叿鏈夊噣鍖栨晥鏋滃ソ銆佹偿娓i噺灏戙佸崰鍦伴潰绉灏忕瓑浼樼偣锛屼絾鏄娑堣楃數鑳藉拰閽㈡潗杈冨氾紝宸茶緝灏戦噰鐢ㄣ
2銆佸師鐢垫睜娉
浠ラ楃矑鐐銆佺叅娓f垨鍏朵粬瀵肩數鎯版х墿璐ㄤ负闃存瀬锛岄搧灞戜负闃虫瀬锛屽簾姘翠腑瀵肩數鐢佃В璐ㄨ捣瀵肩數浣滅敤鏋勬垚鍘熺數姹狅紝閫氳繃鍘熺數姹犲弽搴旀潵杈惧埌澶勭悊搴熸按鐨勭洰鐨勩傝繎骞存潵锛岄搧纰冲井鐢佃В鎶鏈鍦ㄧ數闀搴熸按鐨勫勭悊涓鍙楀埌瓒婃潵瓒婂氱殑閲嶈嗐
3銆佺數娓楁瀽娉
鐢垫笚鏋愭妧鏈鏄鑶滃垎绂绘妧鏈鐨勪竴绉嶃傚畠鏄灏嗛槾銆侀槼绂诲瓙浜ゆ崲鑶滀氦鏇垮湴鎺掑垪浜庢h礋鐢垫瀬涔嬮棿锛屽苟鐢ㄧ壒鍒剁殑闅旀澘灏嗗叾闅斿紑锛屽湪鐢靛満浣滅敤涓嬶紝浠ョ數浣嶅樊涓烘帹鍔ㄥ姏锛屽埄鐢ㄧ诲瓙浜ゆ崲鑶滅殑閫夋嫨閫忚繃鎬э紝鎶婄數瑙h川浠庢憾娑蹭腑鍒嗙诲嚭鏉ワ紝浠庤屽疄鐜扮數闀搴熸按鐨勬祿缂┿佹贰鍖栥佺簿鍒跺拰鎻愮函銆
4銆佺數鍑濊仛姘旀诞娉
閲囩敤鍙婧舵ч槼鏋(Fe銆丄I绛)鏉愭枡锛岀敓鎴怓e2+銆丗e3+銆丄l3+绛夊ぇ閲忛槼绂诲瓙锛岄氳繃绲鍑濈敓鎴怓e(OH)2銆丗e(OH)3銆丄I(OH)3绛夋矇娣鐗╋紝浠ュ幓闄ゆ按涓鐨勬薄鏌撶墿銆傚悓鏃讹紝闃存瀬涓婁骇鐢熷ぇ閲忕殑H2寰姘旀场锛岄槼鏋佷笂浜х敓澶ч噺鐨凮2寰姘旀场锛屼互杩欎簺姘旀场浣滀负姘旀诞杞戒綋锛屼笌绲鍑濇薄鐗╀竴璧蜂笂娴銆傚ぇ閲忕诞浣撳湪涓板瘜鐨勫井姘旀场鎼哄甫涓嬭繀閫熶笂娴锛岃揪鍒板噣鍖栨按璐ㄧ殑鐩鐨勩
鎴戝浗鐢甸晙搴熸按鐨勫父瑙勫勭悊鎶鏈宸茬粡姣旇緝鎴愮啛锛岀幇浠g敓鐗╂硶澶勭悊鐢甸晙搴熸按鏄闈炲父鏈夊彂灞曞墠閫旂殑涓椤瑰簾姘村勭悊鎶鏈锛屼笖涓嶄骇鐢熶簩娆℃薄鏌擄紝鍏抽敭鏄瑕佽繍鐢ㄦ柊鎶鏈瀵瑰叾杩涜屾繁搴﹀勭悊锛岃繘涓姝ユ彁楂樺嚭姘存按璐ㄣ傝啘澶勭悊鎶鏈鍥犲叾鍒嗙绘晥鐜囬珮锛屼笖鑳藉洖鏀堕噸閲戝睘锛屼粖鍚庡繀灏嗗湪鐢甸晙搴熸按澶勭悊涓鍗犳嵁閲嶈佺殑鍦颁綅銆傚悓鏃堕氳繃鎺ㄥ箍娓呮磥鐢熶骇宸ヨ壓锛屼粠鐢甸晙鐢熶骇鐨勫悇涓鐜鑺備笂鍑忓皯鎺掓薄閲忥紝鍙樷滆鍔ㄦ不鐞嗏濅负鈥滅Н鏋佹不鐞嗏濓紝涔熸槸瑙e喅鐢甸晙搴熸按姹℃煋鐨勬牴鏈鏂规硶銆
D. 油田污水预处理中投加氢氧化钠的作用原理是什么
污水处理技术概述
污水处理技术,就是采用各种方法将污水中所含有的污染物质分离出来,或将其转化为无害和稳定的物质,从而使污水得以净化。
一、污水处理方法的分类
现代的污水处理技术,按其作用原理可分为物理法、化学法、物理化学法和生物处理法四大类。
(一)物理法
通过物理作用,以分离、回收污水中不溶解的呈悬浮状的污染物质(包括油膜和油珠),在处理过程中不改变其化学性质。物理法操作简单、经济。常采用的有重力分离法、离心分离法、过滤法及蒸发、结晶法等。
1.重力分离(即沉淀)法
利用污水中呈悬浮状的污染物和水密度不同的原理,借重力沉降(或上浮)作用,使水中悬浮物分离出来。沉淀(或上浮)处理设备有沉砂池、沉淀池和隔油池。
在污水处理与利用方法中,沉淀与上浮法常常作为其他处理方法前的预处理。如用生物处理法处理污水时,一般需事先经过预沉池去除大部分悬浮物质减少生化处理构筑物的处理负荷,而经生物处理后的出水仍要经过二次沉淀池的处理,进行泥水分离保证出水水质。
2.过滤法
利用过滤介质截流污水中的悬浮物。过滤介质有钢条、筛网、砂布、塑料、微孔管等,常用的过滤设备有格栅、栅网、微滤机、砂滤机、真空滤机、压滤机等(后两种滤机多用于污泥脱水)。
3.气浮(浮选)
将空气通入污水中,并以微小气泡形式从水中析出成为载体,污水中相对密度接近于水的微小颗粒状的污染物质(如乳化油)黏附在气泡上,并随气泡上升至水面,从而使污水中的污染物质得以从污水中分离出来。根据空气打入方式不同,气浮处理方法有加压溶气气浮法、叶轮气浮法和射流气浮法等。为了提高气浮效果,有时需向污水中投加混凝剂。
4.离心分离法
含有悬浮污染物质的污水在高速旋转时,由于悬浮颗粒(如乳化油)和污水受到的离心力大小不同而被分离的方法。常用的离心设备按离心力产生的方式可分为两种:由水流本身旋转产生离心力的为旋流分离器,由设备旋转同时也带动液体旋转产生离心力的为离心分离机。
旋流分离器分为压力式和重力式两种。因它具有体积小、单位容积处理能力高的优点,近几十年来广泛用于轧钢污水处理及高浊度河水的预处理。离心机的种类很多,按分离因素分有常速离心机和高速离心机。常速离心机用于分离低浆废水效果可达60%~70%,还可用于沉淀池的沉渣脱水等。高速离心机适用于乳状液的分离,如用于分离羊毛废水,可回收30%~40%的羊毛脂。
(二)化学法
向污水中投加某种化学物质,利用化学反应来分离、回收污水中的某些污染物质,或使其转化为无害的物质。常用的方法有化学沉淀法、混凝法、中和法、氧化还原(包括电解)法等。
1.化学沉淀法
向污水中投加某种化学物质,使它与污水中的溶解性物质发生互换反应,生成难溶于水的沉淀物,以降低污水中溶解物质的方法。这种处理法常用于含重金属、氰化物等工业生产污水的处理。按使用沉淀剂的不同,化学沉淀法可分为石灰法(又称氢氧化物沉淀法)、硫化物法和钡盐法。
2.混凝法
向水中投加混凝剂,可使污水中的胶体颗粒失去稳定性,凝聚成大颗粒而下沉。通过混凝法可去除污水中细分散固体颗粒、乳状油及胶体物质等。该法可用于降低污水的浊度和色度,去除多种高分子物质、有机物、某种重金属毒物(汞、镉、铅)和放射性物质等,也可以去除能够导致富营养化物质如磷等可溶性无机物,此外还能够改善污泥的脱水性能。因此混凝法在工业污水处理中使用得非常广泛,既可作为独立处理工艺,又可与其他处理法配合使用,作为预处理、中间处理或最终处理。目前常采用的混凝剂有硫酸铝、碱式氯化铝、铁盐(主要指硫酸亚铁、三氯化铁及硫酸铁)等。
当单独使用混凝剂不能达到应有净水效果时,为加强混凝过程、节约混凝剂用量,常可同时投加助凝剂。
3.中和法
用于处理酸性废水和碱性废水。向酸性废水中投加碱性物质如石灰、氢氧化钠、石灰石等,使废水变为中性。对碱性废水可吹入含有CO2的烟道气进行中和,也可用其他的酸性物质进行中和。
4.氧化还原法
利用液氯、臭氧、高锰酸钾等强氧化剂或利用电解时的阳极反应,将废水中的有害物氧化分解为无害物质;利用还原剂或电解时的阴极反应,将废水中的有害物还原为无害物质,以上方法统称为氧化还原法。
氧化还原方法在污水处理中的应用实例有:空气氧化法处理含硫污水;碱性氯化法处理含氰污水;臭氧氧化法在进行污水的除臭、脱色、杀菌及除酚、氰、铁、锰,降低污水的BOD与COD等均有显著效果。还原法目前主要用于含铬污水处理。
(三)物理化学法
利用萃取、吸附、离子交换、膜分离技术、气提等操作过程,处理或回收利用工业废水的方法可称为物理化学法。工业废水在应用物理化学法进行处理或回收利用之前,一般均需先经过预处理,尽量去除废水中的悬浮物、油类、有害气体等杂质,或调整废水的pH值,以便提高回收效率及减少损耗。常采用的物理化学法有以下几种。
1.萃取(液-液)法
将不溶于水的溶剂投入污水之中,使污水中的溶质溶于溶剂中,然后利用溶剂与水的密度重差,将溶剂分离出来。再利用溶剂与溶质的沸点差,将溶质蒸馏回收,再生后的溶剂可循环使用。常采用的萃取设备有脉冲筛板塔、离心萃取机等。
2.吸附法
利用多孔性的固体物质,使污水中的一种或多种物质被吸附在固体表面而去除的方法。常用的吸附剂有活性炭。此法可用于吸附污水中的酚、汞、铬、氰等有毒物质,且还有除色、脱臭等作用。吸附法目前多用于污水的深度处理。吸附操作可分为静态和动态两种。静态吸附,在污水不流动的条件下进行的操作。动态吸附则是在污水流动条件下进行的吸附操作。污水处理中多采用动态吸附操作,常用的吸附设备有固定床、移动床和流动床三种方式。
3.离子交换法
用固体物质去除污水中的某些物质,即利用离子交换剂的离子交换作用来置换污水中的离子化物质。随着离子交换树脂的生产和使用技术的发展,近年来在回收和处理工业污水的有毒物质方面,由于效果良好,操作方便而得到一定的应用。
在污水处理中使用的离子交换剂有无机离子交换剂和有机离子交换剂两大类。采用离子交换法处理污水时必须考虑树脂的选择性。树脂对各种离子的交换能力是不同的。交换能力的大小主要取决于各种离子对该种树脂亲和力(又称选择性)的大小。目前离子交换法广泛用于去除污水中的杂质,例如去除(回收)污水中的铜、镍、镉、锌、汞、金、银、铂、磷酸、有机物和放射性物质等。
4.电渗析法(膜分离技术的一种)
电渗析法是在离子交换技术基础上发展起来的一项新技术。它与普通离子交换法不同,省去了用再生剂再生树脂的过程,因此具有设备简单、操作方便等优点。电渗析是在外加直流电场作用下,利用阴、阳离子交换膜对水中离子的选择透过性,使一部分溶液中的离子迁移到另一部分溶液中去,以达到浓缩、纯化、合成、分离的目的。另用于海水、苦咸水除盐,制取去离子水等。
5.反渗透(膜分离技术的一种)
利用一种特殊的半渗透膜,在一定的压力下,将水分子压过去,而溶解于水中的污染物质则被膜所截留,污水被浓缩,而被压透过膜的水就是处理过的水。目前该处理方法已用于海水淡化、含重金属的废水处理及污水的深度处理等方面。制作半透膜的材料有醋酸纤维素、磺化聚苯醚等有机高分子物质。为降低操作压力以节省设备和运转费用,目前对于膜的材料和性能正在深入试验研究。
反渗透处理工艺流程由三部分组成:预处理、膜分离及后处理。
6.超过滤法
也是利用特殊半渗透膜的一种膜分离技术。以压力为推动力,使水溶液中大分子物质与水分离,膜表面孔隙大小是主要控制因素。用于电泳涂漆废液等工业废水处理。具体参见http://www.dowater.com更多相关技术文档。
(四)生物法
污水的生物处理法就是利用微生物新陈代谢功能,使污水中呈溶解和胶体状态的有机污染物被降解并转化为无害的物质,使污水得以净化。属于生物处理法的工艺,又可以根据参与作用的微生物种类和供氧情况分为两大类即好氧生物处理及厌氧生物处理。
1.好氧生物处理法
在有氧的条件下,借助于好氧微生物(主要是好氧菌)的作用来进行的。依据好氧微生物在处理系统中所呈的状态不同,又可分为活性污泥法和生物膜法两大类。
(1)活性污泥法 这是当前使用最广泛的一种生物处理法。该法是将空气连续鼓入曝气池的污水中,经过一段时间,水中即形成繁殖有巨量好氧性微生物的絮凝体——活性污泥,它能够吸附水中的有机物,生活在活性污泥上的微生物以有机物为食料,获得能量并不断生长繁殖。从曝气池流出并含有大量活性污泥的污水——混合液,进入沉淀池经沉淀分离后,澄清的水被排放,沉淀分离出的污泥作为种泥,部分地回流进入曝气池,剩余的(增殖)部分从沉淀池排放。活性污泥法有多种池型及运行方式,常用的有普通活性污泥法、完全混合式表面曝气法、吸附再生法等。废水在曝气池内停留一般为4~6小时,能去除废水中的有机物(BOD5)90%左右。
(2)生物膜法 使污水连续流经固体填料(碎石、煤渣或塑料填料),在填料上大量繁殖生长微生物形成污泥状的生物膜。生物膜上的微生物能够起到与活性污泥同样的净化作用,吸附和降解水中的有机污染物,从填料上脱落下来的衰老生物膜随处理后的污水流入沉淀池,经沉淀泥水分离,污水得以净化而排放。
生物膜法多采用的处理构筑物有生物滤池、生物转盘、生物接触氧化池及生物流化床等。除此之外,土地处理系统(污水灌溉)和氧化塘皆属于生物处理法中的自然生物处理范畴。
2.厌氧生物处理法
在无氧的条件下,利用厌氧微生物的作用分解污水中的有机物,达到净化水的目的。它已有百年悠久历史,但由于它与好氧法相比存在着处理时间长、对低浓度有机污水处理效率低等缺点,使其发展缓慢,过去厌氧法常用于处理污泥及高浓度有机废水。近30多年来,出现世界性能源紧张,促使污水处理向节能和实现能源化方向发展,从而促进了厌氧生物处理的发展,一大批高效新型厌氧生物反应器相继出现,包括厌氧生物滤池、升流式厌氧污泥床、厌氧流化床等。它们的共同特点是反应器中生物固体浓度很高,污泥龄很长,因此处理能力大大提高,从而使厌氧生物处理法所具有的能耗小并可回收能源,剩余污泥量少,生成的污泥稳定、易处理,对高浓度有机污水处理效率高等优点,得到充分地体现。厌氧生物处理法经过多年的发展,现已成为污水处理的主要方法之一。目前,厌氧生物处理法不但可用于处理高浓度和中等浓度的有机污水,还可以用于低浓度有机污水的处理。
二、污水处理流程
污水中的污染物质是多种多样的,不能预期只用一种方法就能够把污水中所有的污染物质去除殆尽,一种污水往往需要通过几种方法组成的处理系统,才能达到处理要求的程度。
按污水的处理程度划分,污水处理可分为一级、二级和三级(深度)处理。一级处理主要是去除污水中呈悬浮状的固体污染物质,物理处理法中的大部分用作一级处理。经一级处理后的污水,BOD只能去除30%左右,仍不宜排放,还必须进行二级处理,因此针对二级处理来说,一级处理又属于预处理。二级处理的主要任务,是大幅度地去除污水中呈胶体和溶解状态的有机性污染物质(即BOD物质),常采用生物法,去除率(BOD)可达90%以上,处理后水中的BOD5含量可降至20~30mg/L,一般污水均能达到排放标准。但经二级处理后的污水中仍残存有微生物不能降解的有机污染物和氮、磷等无机盐类。深度处理往往是以污水回收、再次复用为目的而在二级处理工艺后增设的处理工艺或系统,其目的是进一步去除废水中的悬浮物质、无机盐类及其他污染物质。污水复用的范围很广,从工业上的复用到充作饮用水,对复用水水质的要求也不尽相同,一般根据水的复用用途而组合三级处理工艺,常用的有生物脱氮法、混凝沉淀法、活性炭过滤、离子交换及反渗透和电渗析等。
污水处理流程的组合,一般应遵循先易后难,先简后繁的规律,即首先去除大块垃圾及漂浮物质,然后再依次去除悬浮固体、胶体物质及溶解性物质。亦即,首先使用物理法,然后再使用化学法和生物法。
对于某种污水,采取由哪几种处理方法组成的处理系统,要根据污水的水质、水量,回收其中有用物质的可能性和经济性,排放水体的具体规定,并通过调查、研究和经济比较后决定,必要时还应当进行一定的科学试验。调查研究和科学试验是确定处理流程的重要途径。以下介绍一些常用的污水处理工艺流程。
(一)城市污水处理的典型流程
以去除污水中的BOD物质为主要对象的,一般其处理系统的核心是生物处理设备(包括二次沉淀池),处理流程如图6-1所示。污水先经格栅、沉砂池,除去较大的悬浮物质及砂粒杂质,然后进入初次沉淀池,去除呈悬浮状的污染物后进入生物处理构筑物(或采用活性污泥曝气池或采用生物膜构筑物)处理,使污水中的有机污染物在好氧微生物的作用下氧化分解,生物处理构造物的出水进入二次沉淀池进行泥水分离,澄清的水排出二沉池后再经消毒直接排放;二沉池排放出的剩余污泥再经浓缩、污泥消化、脱水后进行污泥综合利用;污泥消化过程产生的沼气可回收利用,用作热源能源或沼气发电。
以去除污水中BOD的同时达到脱氮除磷目的的城市污水处理流程有水解(酸化)-好氧生物处理工艺,A1/A2/O流程即厌氧-兼氧-好氧生物处理工艺,如图6-2所示。
(二)炼油厂废水处理的典型流程
炼油厂废水处理的典型流程如图6-3所示。
三、污泥处理、利用与处置
污泥是污水处理的副产品,也是必然产物。在城市污水和工业废水处理过程中,产生很多沉淀物与漂浮物。有的是从污水中直接分离出来的,如沉砂池中的沉渣,初沉池中沉淀物,隔油池和浮选池中的渣渣等;有的是在处理过程中产生的,如化学沉淀污泥与生物化学法产生的活性污泥或生物膜。一座二级污水处理厂,产生的污泥量约占处理污水量的0.3%~5%(含水率以97%计)。如进行深度处理,污泥量还可增加0.5~1.0倍。污泥的成分非常复杂,不仅含有很多有毒物质,如病原微生物、寄生虫卵及重金属离子等,也可能含有可利用的物质如植物营养素、氮、磷、钾、有机物等。这些污泥若不加妥善处理,就会造成二次污染。所以污泥在排入环境前必须进行处理,使有毒物质得到及时处理,有用物质得到充分利用。一般污泥处理的费用约占全污水处理厂运行费用的20%~50%。所以对污泥的处理必须予以充分的重视。
污泥处置的一般方法与流程如图6-4所示。
(一)污泥的脱水与干化
从二次沉淀池排出的剩余污泥含水率高达99%~99.5%,污泥体体积大,在堆放及输送方面都不方便,所以污泥的脱水、干化是当前污泥处理方法中较为主要的方法。
二次沉淀池排出的剩余污泥一般先在浓缩池中静止沉降,使泥水分离。污泥在浓缩池内静止停留12~24小时,可使含水率从99%降至97%,体积缩小为原污泥体积的1/3。
污泥进行自然干化(或称晒泥)是借助于渗透、蒸发与人工撇除等过程而脱水的。一般污泥含水率可降至75%左右,使污泥体积缩小许多倍。污泥机械脱水是以过滤介质(一种多孔性物质)两面的压力差作为推动力,污泥中的水分被强制通过过滤介质(称滤液),固体颗粒被截留在介质上(称滤并),从而达到脱水的目的。常采用的脱水机械有真空过滤脱水(真空转鼓、真空吸滤)、压滤脱水机(板框压滤机、滚压带式过滤机)、离心脱水机等,一般采用机械法脱水,污泥的含水率可降至70%~80%。
(二)污泥消化
1.污泥的厌氧消化
将污泥置于密闭的消化池中,利用厌氧微生物的作用,使有机物分解稳定,这种有机物厌氧分解的过程称为发酵。由于发酵的最终产物是沼气,污泥消化池又称沼气池。当沼气池温度为30~35℃时,正常情况下1m3污泥可产生沼气10~15m3,其中甲烷含量大约为50%左右。沼气可用作燃料和作为制造CCl4等化工原料。
2.污泥好氧消化
利用好氧和兼氧菌,在污泥处理系统中曝气供氧,微生物分解生物可降解的有机物(污泥)及细胞原生质,并从中获得能量。
近年来人们通过实践发现污泥厌氧消化工艺的运行管理要求高,比较复杂,而且处理构筑物要求密闭、容积大、数量多而且复杂,所以认为污泥厌氧消化法适用于大型污水处理厂污泥量大、回收沼气量多的情况。污泥好氧消化法设备简单、运行管理比较方便,但运行能耗及费用较大些,它适用于小型污水处理厂污泥量不大、回收沼气量少的场合。而且当污泥受到工业废水影响,进行厌氧消化有困难时,也可采用好氧消化法。
3.污泥的最终处理
对主要含有机物的污泥,经过脱水及消化处理后,可用作农田肥料。
脱水后的污泥,如需要进一步降低其含水率时,可进行干燥处理或加以焚烧。经过干燥处理,污泥含水率可降至20%左右,便于运输,可作为肥料使用。当污泥中含有有毒物质不宜用作肥料时,应采用焚烧法将污泥烧成灰烬,以作彻底的无害化处理,可用于填地或充作筑路材料使用。(谷腾水网)
有污水需要处理的单位,如需了解完整污水处理方案或报价,可以通过污水宝发布方案报价海选公告;全国几千家环保公司供您选择,污水宝资深工程师团队帮您寻找最省钱的污水处理方案,货比三家花最少的钱将污水处理达标。
E. 电镀废水怎么处理
电镀生产排出的废水或废液的处理。电镀工厂排出的废水和废液中含有大量金属离子如:铬、镐、镍,含氰,含酸,含碱,一般常含有有机添加剂。金属离子有的以简单的阳离子形式存在,有的则以酸根阴离于形式存在,有的以复杂的络合离子存在。电镀废水处理常用中和沉淀法、中和混凝沉淀法、氧化法、还原法、钡盐法、铁氧体法等化学方法。化学法设备简单,投资少,应用较广,但常留下污泥需要进一步处理。
F. 工厂常见污水处理办法
大体上来说,工厂常见的污水处理过程是:截流井→粗格栅→污水泵→细格栅→沉砂池→生化池→终沉池→D形滤池→消毒→最终出水。
污水处理主要有两种方法:一种是物理法,一种是化学法。二者通常是结合使用的!
G. 综合医院废水处理工艺流程_城市废水处理工艺流程
综合医院废水处理工艺流程
医院污水主要是医院产生的含有病原体、重金属、消毒剂、有机溶剂、酸、碱以及放射性等的污水。
同时产生污泥,主要是污水处理过程中产生的污泥和化粪池污泥。污水处理过程中产生的废气。
医院各部门的功能、设施和人员组成情况不同,产生污水的主要部门和设施有:诊疗室、化验室、病房、洗衣房、X光照相洗印、同位素治疗诊断、手术室等排水;医院医务人员病人排放的生活污水,食堂、宿舍、家属宿舍排水。不同科室产生的污水成分和水量都各不相同,如重金属废水、含油废水、洗印废水、放射性废水等等。所以医院污水较一般生活污水排放情况相对复杂:含有病原性微生物、有毒、有害的物理化学污染物和放射性污染等,具有空间污染、急性传染和潜伏性传染等特征,不经有效处理会成为一条疫病扩散的重要途径和严重污染环境。
医院污水受到粪便、传染性细菌和病毒等病原性微生物污染,具有传染性,可以诱发疾病或造成伤害。
医院污水中含有酸、碱、悬浮固体、BOD、COD和动植物油等有毒、有害物质。
牙科治疗、洗印和化验等过程产生污水含有重金属、消毒剂、有机溶剂等,部分具有致癌、致畸或致突变性,危害人体健康并对环境有长远影响。
同位素治疗和诊断产生放射性污水。放射性同位素在衰变过程中产生a-、β-和γ-放射性,在人体内积累而危害人体健康。
医院污水处理后搜孝排放去向分为排入自然水体和通过市政下水道排入城市污水处理厂两类。医院污水处理所用工艺必须确保处理出水达标,主要采用的三种工艺有:加强处理效果的一级处理、二级处理和A/O、A2/O等生化处理。
1、所有医院必须采用二级处理,并需进行预消毒杀菌处理。
2、处理出水排入城市下水道(下游设有二级污水处理厂)的综合医院推荐采用二级处理,对需要采用一级处理工艺的必须加强加大处理效果。一级强化处理工艺流程医院污水经化粪池进入调节池,调节池前部设置自动格栅,调节池内设提升水泵。污水经提升后进入混凝沉淀池进行混凝沉淀,沉淀池出水进入接触池进行消毒,接触池出水达标排放。调节池、二沉池、好氧接触池的污泥及栅渣等污水处理站内产生的垃圾集中消毒外运。消毒可采用巴氏蒸汽消毒或投加石灰等方式
3、对于小型综合医院,条件不具备时可采用预处理灭菌---生化系统处理---消毒处理工艺。通过混凝沉淀(过滤)紫外线灭菌等方法去除携带病毒、病菌的颗粒物,提高消毒效果并降低后期消毒剂的用量,从而避免消毒剂用量过大对环境产生的不世衫稿良影响。
4、一级强化处理加强处理工艺对于处理出水最终进入二级处理城市污水处理厂的综合医院,应加强其处理效果,提高SS、COD与氨氮的去除率,减少消毒剂用量。加强一级处理效果宜通过两种途径实现:对现有一级处理工艺进行改造以加强去除效果和采用一级强化处理技术。
5、加强处理的可将携带病毒、病菌的颗粒物去除,提高后续深化消毒的效果并降低消毒剂的用量。其中对现有一级处理工艺进行改造可充分利用现有设施,
减少投资费用
医院污水处理工艺:生活污水直接进入预消毒池进行消毒处理后进入调节池,病人的粪便紫外线灭菌后进入化粪池、废水储池再进入调节池,调节池前部设置自动格栅,内设提升水泵,污水经提升后进入紫外线灭菌后进入厌氧池进行厌氧处理,出水进塌郑入好氧池进行生物硝解氨氮,硝解出水进入絮凝池进行絮凝进入二沉池,进行泥水分离,出水加入次氯酸钠进行消毒,使出水达标排放。调节池、生化处理池、接触池的污泥及栅渣等污水处理站内产生的垃圾集中消毒外运焚烧。消毒可采用巴氏蒸汽消毒或投加石灰等方式。
对有放射性的废水需用石灰乳加入钡盐沉淀处理。
工艺流程图
H. 污水处理的基本方法
针对于现阶段的污水处理,总结出以下几点方法。
1、物理法
物理法污水处理就是利用物理作用,分离污水中主要呈悬浮状态的污染物,在处理过程中不改变水的化学性质。
⑴沉淀(重力分离)
污水流入池内由于流速降低,污水中的固体物质在中立的作用下进行沉淀,而使固体物质与水分离。
这种工艺分离效果好,简单易行,应用广泛,如污水处理厂的沉砂池和沉淀池。沉砂池主要去除污水中密度较大的固体颗粒物,沉淀池则主要用于去除污水中大量的呈颗粒状的悬浮固体。
⑵筛选(截流)
利用筛滤介质截流污水中的悬浮物。属于砂滤处理的设备有格栅、微滤机、砂滤池、真空滤机、压滤机(后两种主要用于污泥脱水)等。
⑶气浮(上浮)
对一些相对密度接近于水的细微颗粒,因其自重难于在水中下沉或上浮,可采用气浮装置。此法将空气打入污水中,并使其以微小气泡的形势由水中析出,污水中密度 近于水的微小颗粒状污染杂质(如乳化油)黏附到气泡上,并随气泡升至水面,形成泡沫浮渣而去除。根据空气打入方式的不同,气浮设备有加压溶汽气浮法、叶轮气浮法和射流气浮法等。为提高气浮效果,有时需要向污水中投加混凝剂。
⑷离心与旋流分离
使含有悬浮固体或乳化油的污水,由于悬浮固体和废水的质量不同,受到的离心力也不同,质量大的悬浮固体被抛甩到污水外侧,这样就可使悬浮固体和污水分别通过各自的排出口排出设备之外,从而使污水得以净化。
2.化学法
污水的化学处理方法就是向污水投加化学物质,利用化学反应来分离回收污水中的污染物,或是其转化为无害物质。属于化学处理法的有以下几种。
⑴混凝法
混凝法是向污水中投加一定量的药剂,经过脱稳、架桥等反应过程,使污水中的污染物凝聚并沉降。水中呈胶体状态的污染物质通常带有负电荷,胶体颗粒之间互相排 斥形成稳定的混合液,若水中带有相反电荷的电解质(混凝剂)可使污水中的胶体颗粒改变为呈电中性,并在分子引力作用下,凝聚成大颗粒下沉。
⑵中和法
用化学方法消除污水中过量的酸和碱,使其pH值达到中性左右的过程称为中和法。处理含酸污水以碱作为中和剂,处理含碱污水以酸作为中和剂,也可以吹入含 CO2的烟道气进行中和。酸和碱均指无机酸和无机碱,一般依照“以废制废”的原则,亦可采用药剂中和处理,可以连续进行,也可间歇进行。
⑶氧化还原法
污水中呈溶解状态的有机物和无机物,在投加氧化剂和还原剂后,由于电子的迁移而发生氧化和还原作用形成无害的物质。常用的氧化剂有空气中的氧、纯氧、漂白 粉、臭氧、氯气等,氧化法多用于处理含氰含酚废水。常用的还原剂则有铁屑、硫酸亚铁、亚硫酸氢钠等,还原法多用于处理含铬、含汞废水。
⑷电解法
在废水中插入电极并通过电流,则在阴极板上接受电子。在水的电解过程中,阳极上产生氧气,阴极上产生氢气。上述综合过程使阳极上发生氧化作用,在阴极上发生还原作用。目前电解法主要用于处理含铬及含氰废水。
⑸吸附法
污水吸附处理主要是利用固体物质表面对污水中污染物质的吸附,吸附可分为物理吸附和生物吸附等。 物理吸附是吸附剂和吸附质之间在分子力作用下产生的,不产生 化学变化,而化学吸附法则使吸附剂和吸附质在化学键力作用下起吸附作用的,因此化学吸附选择性较强。此外,在生物作用下也可产生生物吸附。在污水处理中常 用的吸附剂有活性炭、磺化煤、硅藻土、焦炭等。
⑹化学沉淀法
向污水中投加某种化学药剂,使它和某些溶解物质产生反应,生成难溶盐沉淀下来。多用于处理含重金属离子的工业废水。
⑺离子交换法
离子交换法在污水处理中应用较广。使用的离子交换剂分为无机离子交换法(天然沸石和合成沸石)、有机离子交换树脂(强酸性阳离子树脂、弱酸性阳离子树脂、强 碱性阴离子树脂、弱碱性阴离子树脂、鳌和树脂等)。采用离子交换法处理污水时,必须考虑树脂的选择性。树脂对各种离子的交换能力是不同的,这主要取决于各 种离子对该种树脂亲和力的大小,又称选择性的大小,另外还要考虑到树脂的再生方法等。
⑻膜分离法
渗析、电渗析、超滤、微滤、反渗透等通过一种特殊的半渗透膜分离水中的离子和分子的技术,统称为膜分离法。电渗析法主要用于水的脱盐,回收某些金属离子等。 反渗透作用主要是膜表面化学本性所起的作用,他分离的溶质粒径小,除盐率高,所需的工作压力大;超滤所用的材质和反渗透相同,但超滤是筛滤作用,分离溶质 粒径大,透水率高,除盐率低,工作压力小。
3、生物法
污水的生物膜法就是采取一定的人工措施,创造有利于微生物生长、繁殖的环境,使微生物大量增殖,以提高微生物氧化、分解有机污染物被降解并转化为无害物质,使污水得以净化。
生物处理法可分为好氧处理法和厌氧处理法两类。前者处理效率高,效果好,使用广泛,是生物处理的主要方法。属于生物处理法的工艺有以下几种。
⑴活性污泥法
是当前应用最广泛的一种生物处理技术。将空气连续鼓入含有大量溶解有机污染物的污水中,经过一段时间,水中既形成繁殖有大量好氧型微生物的絮凝体—活性污 泥,
活性污泥能够吸附水中的有机物,生活污水在活性污泥上的微生物以有机物为食料,获得能量,并不断省长增殖,有机物被分解、去除,使污水得以净化。 一般经曝气池处理的出水是含有大量活性污泥的污水—混合液,经沉淀分离,水被净化排放,沉淀分离后的污泥作为种泥,部分回流到曝气池。活性污泥法自出现以来,经过80多年的演变,出现了各种
活性污泥法的变法,但其原理和工艺过程没有根本性的改变。
(2)普通活性污泥法
这种方法已被广泛使用,是许多污水处理厂的常用工艺。传统活性污泥法是将污水和回流污泥从曝气池首段引入,呈推流式至曝气池末端流出,此法适用于处理要求高、水质较稳定的污水,但对负荷的变动适应性较弱,后来在此基础上产生了一些改良形式。
⑶多点进水法
为了使槽内有机负荷接近一定值,把污水从几个点分开流入,有利于解决超负荷问题。
⑷吸附再生法
接触槽内活化的活性污泥吸附污染物质,污泥与水分离后,在曝气槽内把吸附的污染物质进行氧化。该法有利于增加污水处理量,有一定的抗击冲击负荷能力。
⑸延时曝气法
污水在曝气池内延长曝气时间,有利于完全氧化,污泥量少,该法适用于小型污水处理厂。
⑹厌氧-缺氧
- 好氧活性污泥法 在常规活性污泥法去除有机污染物的同时,为了能有效的去除氮磷等营养物质,人们把厌氧、缺氧、好氧状况组合到活性污泥法中,使厌氧-缺氧-好氧状况在反应曝气池内同时存在或反复周期实现,形成了厌氧-缺氧-好氧活性污泥法。也有的工艺流程采用厌氧-好氧活性污泥法。
⑺间歇式活性污泥法
污水流至单一反应池中,按时间通过程序控制各过程。在反应池的一个工作周期,运行程序依次为进水、反应、沉淀、出水和待机等过程。该法适用于中小水量和出水水质较高的场合,有利于自动化控制;通过对运行的调整,该法也可进行除磷脱氮和化学处理,有利于污水回用。
I. 电镀厂镀铜污水处理一般采用什么工艺
电镀工艺是将金属通过电解方法镀到制品表面的过程,常用的镀种有镀镍、镀铜、镀铬、镀锌、镀镉、镀铅、镀银、镀锡、镀金。
物理法
一般使用下述方法处理电镀废水,可高效去除COD、色度的同时,脱除重金属、六价铬、氰化物等特有物质,物理法包括:
催化微电解处理技术
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附-絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
阳极: Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V阴极: 2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V
新型微电解填料是针对当前有机废水难降解难生化的特点而研发的一种多元催化氧化填料。它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
吸附法
活性炭具有非常多的微孔结构和巨大的同比表面积,通常1g活性炭的表面积达700~1700m2,因而具有极强的物理吸附力,能有效地吸附废水中的六价铬离子(Cr6+)等重金属离子。当活性炭达到吸附平衡后,还可以采用加热、酸浸泡、碱浸泡等方式除去吸附物,使活性炭再生。
生物法
生物法是处理电镀废水的高新生物技术。利用人工培养的脱硫孤菌、生枝动胶菌、铬酸盐还原菌、硫酸盐还原菌等功能菌,对电镀废水产生静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。有害金属沉淀于污泥中回收利用,排放水用于培菌及其他使用。生物法处理电镀废水成本低、效益高、容易管理、不给环境造成二次污染、有利于生态环境的改善,是未来电镀废水处理的主流方向。
化学法
一般用下述方法处理电镀废水:向废水中投加药剂,使其中的有毒物质转化成为无毒物质或毒性大为降低的沉淀物。化学法包括:
中和沉淀法
如酸性废水用碱性废水或投加碱性物质进行中和,形成沉淀物。
中和混凝沉淀法
例如在离子交换法除铬工艺中,阳离子交换柱再生废液是含有重金属离子 (Zn2+、Cr3+、Fe3+等)的强酸性废液,可用去除酸根后阴离子交换柱的再生废碱液或加碱中和,使之以氢氧化物形式沉淀。如投加高分子絮凝剂可改变这种沉淀物的沉降性能和分离性能。
氧化法
如处理含氰废水时,常用次氯酸盐在碱性条件下氧化其中的氰离子,使之分解成低毒的氰酸盐,然后再进一步降解为无毒的二氧化碳和氮。
还原法
如含铬废水用亚硫酸氢钠或硫酸亚铁加石灰处理,使Cr6+还原成毒性低的Cr3+,并形成氢氧化铬沉淀。
钡盐法
如含铬废水用钡盐处理,使铬酸根成为铬酸钡沉淀。
铁氧体法
电镀废水经过处理产生氢氧化铁或其他重金属氢氧化物沉淀,通过氧化反应使重金属转入强磁性的铁氧体结晶中。此法可用于含铬废水的处理。 化学法设备简单,投资较少,应用较广。但常留下污泥需要进一步处理,而且电镀废水分散,污泥不易集中处理和利用。
物理法
主要包括电解法、离子交换法和膜分离法,提银机处理法。
提银机处理法
guowei型本设备特点:
1、使用纯物理方法的双电解方式,只使用少量电力,无二次污染之忧。
2、提银深度在99%以上,提取银纯度高达 98%以上。
3、可以处理离子交换法、气浮法处理不了的药品浓度很高的废定影液。
4、可以处理目前国内外电解法都无法处理的含有很高漂白液成分的彩扩漂定液。
5、残留废液银含量可达到0.02克/升,经过后续环保处理后,可以将废液银含量降
至0.2ppm以下,满足最为严格的欧洲排放标准。
6、运行实现微机全自动化控制,无需专人看管,耗能低。
7、设备体积小巧紧凑,占地面积少,处理量大,可达1500-1800升/月。
8、本设备不需任何耗材和电解促进剂,运营及维护成本低。
技术参数:
1.提银后残留废液含银量低于0.01克\升
2.提银纯度:99.5%
3.尺寸360*280*800mm
4.工作电压:交流电220V
5.功率20w
6.处理量(月)30升—30,000升
-
电解法
以处理含铬废水为例,利用可溶性铁阳极,在直流电场作用下,产生亚铁离子,在酸性条件下使废水中以CrO厈和Cr2O崼存在的Cr6+离子还原成为Cr3+离子,随着电解过程中废水pH值升高,形成Cr(OH)3沉淀。采用不同材料的阳极可处理含有其他各种金属离子的废水。电解法操作管理简单,除能够处理镀铬漂洗水外,还可以处理钝化、阳极化、磷化等漂洗水,并有成套设备;但消耗钢材、电能较多,对产生的污泥还没有妥善的处理方法。
离子交换法
利用离子交换树脂活性基团上的可交换离子(H+、Na+、OH-等),去除废水中的阳、阴离子。此法处理电镀废水不仅可回用水,还可回收金属离子溶液。这种方法已用于处理含有金、镍、铜、镉、铬等废水。人工合成的专门用于处理电镀废水的弱酸、弱碱大孔树脂,可分别用于去除铬、镍和铜,以及一些金属的氰化络合阴离子(见废水离子交换处理法)。一般说来,离子交换法初次投资较大,操作管理水平要求较高,但处理效果稳定,由于能回用金属和水,是当前电镀废水实现闭路循环的主要治理方法之一。存在的主要问题是再生废液会有钠、铁、氯根等杂质离子不能直接回用于镀槽中,排入环境会造成污染。
膜分离法
利用半透膜或离子交换膜等膜材料,在外加推动力下,使废水中的溶解物和水分离浓缩,以净化废水。在膜分离法中,反渗透法用于含镍、含镉废水的浓缩处理已应用于生产。隔膜电解法用于再生镀铬废液。扩散渗析法可用于酸液回收。膜分离方法成本较高。
蒸发浓缩法 利用热源和蒸发器在常压或负压下直接浓缩废水。用这种方法处理高浓度废水比较经济,常同三级逆流漂洗、气-水喷淋,或同离子交换法联合使用。生产中广泛采用钛管薄膜蒸发器和蒸发釜来浓缩含铬废水、含氰废水等,也是闭路循环的主要处理流程之一。
展望电镀废水处理技术的发展前景,首先是压缩水量,普遍推广逆流漂洗和喷淋技术;其次,对化学法产生的污泥和离子交换再生废液进行综合利用,以及研制适用于处理电镀废水的各种优质树脂和膜,以及进一步研究和完善闭路循环系统,以实现资源的充分利用。