导航:首页 > 废水知识 > sbr污水处理工艺反应时间

sbr污水处理工艺反应时间

发布时间:2024-02-29 16:46:50

1. 小麦淀粉废水请问UASB和SBR水力停留多长时间比较好

1、UASB一般设定水里停留时间是3小时左右。不过,.UASB不像好氧生化处理那样以水力停留时间来计算的。通常是以容积负荷和流速来设计的。
2、SBR的水力停留时间一般在5-7天。
武汉格林环保的工艺还不错,可以多了解一下,希望对你有帮助。

2. 污水处理站SBR池污泥接种培养及驯化调试方案

一、培养、驯化调试方案的制定
SBR反应器运行方式应根据废水的性质确定,易降解的有机废水宜采用限制曝气进水方式,难降解的有机废水神巧宜采用非限制进水方式。其周期各工序的时间控制与最终处理指标要求有关。如:若处理中仅考虑CODCr和BOD5的处理效果,曝气时间可适当减少,以达到节能的目的;若考虑N、P的去除,曝气时间至少需2.5小时;本工艺处蠢早理的氨氮废水运行方式采用短时间的搅拌加上长时间的曝气交替运行。不同的污水处理工程其调试方案及操作步骤各不相同。本工艺主要处理气化等生产、清洁废水和全厂生活污水等,特制定适合本工艺的调试方案。1、接种:根据反应器有效容积及污泥浓度(一般1—2g/l)计算所需接种污泥总量。SBR池有效池容为:3600m3。2、培养、驯化:a、配料:配料本应该在调节池中进行,但是目前调节池氨氮浓度超标,COD也非常高。因此直接在SBR池中进行营养物质的添加。外加营养物质进行调配,需加入一定量的营养源(甲醇、磷肥)(刚开始时一般要求其CODCr=600—800mg/l,PH=6—9,温度:15--35℃),碳源由甲醇提供,氮源由调节池提供,磷源由磷酸二氢钾提供。由于开始培养、驯化时候需要较多低浓度的污水(氨氮小于20mg/l,COD小于200mg/l),才能有进有出,而调节池超标严重,因此需要引进其它浓度较低的水进行培养,以保证培养时候及时换水。b、进料运行:料配好后即可直接在SBR反应器中曝气,每个SBR池需要进低浓度水150m3,然开始连续曝气约1—3天(注意观察污泥性状,以接种污泥恢复活性为准)。c、排水:当污泥恢复活性,停止曝气,静沉2.5小时。放出上清液,约150m3。d、重复上述a、b、c步骤。换料间隙为1天1次或2次。e、当污泥活性明显增强,沉降性能良好,污泥中含有大量的菌胶团和纤毛类原生动物,如种虫、等枝虫、盖纤虫等,SV=10---30%时,表明污泥已经成熟,培养期基本结束。f、注意事项:在曝气过程中,每天至少测1次溶解氧、pH、污泥沉降比;记录测量数据。一般正常指标为:DO=2—4mg/lPH=6---9SV=15---30%。上述过游档键程大致需要20天。g、当污泥SV=20%后,进入驯化阶段,大约需时20—30天。在保障来水水质稳定即,NH3-N≤200mg/L,COD≤800mg/L的情况下,采用逐步增加进水水量的方法。每7天增加一级进水量,每一级进水量采用时间控制的方法实施,每一级提高约为现有进水量的25%。在一个月内分四次把SBR池进水时间由目前的每周期进水1小时提高到每周期进水2小时,使污水中的微生物逐步适应进水的水质。具体的操作方法如下:a) 第一周,水量控制在150m3/h,进水时间控制在75min。b) 第二周,水量控制在150m3/h,进水时间控制在90min。c) 第三周,水量控制在150m3/h,进水时间控制在105min。d) 第四周,水量控制在150m3/h,进水时间控制在120min。在现调试阶段需要注意的是:a) 严格监控2#调节池的COD以及氨氮浓度,保证2#调节池的平均浓度NH3-N=200mg/L,COD=800mg/L左右,如果长时间出现COD以及氨氮浓度大于平均值的情况则减少进水时间。具体进水时间根据水质情况决定。b) 根据2#调节池的TP浓度,适当的增加污泥的营养配比。c) 每天观察SBR池混合液SV指数。3、调试运行:当污泥恢复活性、培养完成以后即可进入驯化试运行阶段。此阶段不但要培养出适当的菌种,还要确定活性污泥系统的最佳运行条件。第一阶段:A、配料:CODCr控制在200~250mg/L,NH3-N控制在10~25mg/L、TP控制在2mg/L 左右。监测该水质指标(CODCr、NH3-N、PH、水温、TP)。B、强制驯化完成后,停止曝气,静沉。根据固液分离情况决定静沉时间(一般为1小时)。C、排出上清液约150m3。取上清液100ml放入锥形瓶中,以备监测CODCr、NH3-N、PH、TP 所用。D、进料运行:将调节池水加入SBR反应器,进料量为150m3/池。控制调节池NH3-N=200mg/L,COD=800mg/L左右。先按6个小时为一周期进行运行。进料75分钟后开始曝气,连续曝气3 小时,搅拌1 小时,沉淀1小时,滗水1小时。曝气过程中要及时监测DO和SV%;一般指标为:DO=2—4mg/lPH=6---9SV=10---30%,水温:15--35℃。E、按以上A、B、C、D四步骤重复操作7天。注意观察污泥性状及生长情况和出水去除率等,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、CODCr、NH3-N、PH、SS、TP),做好记录。第二阶段:可根据第一阶段调试情况调整运行周期,也可按上阶段周期运行,这主要根据处理后水质情况及污泥性能而定。当第一阶段稳定后,进水量又以前的75分钟增加到90分钟。在此阶段要注意污泥性状,看污泥有无增加,出水是否有较高去除率,如果去除率不高,则需要及时调整运行周期或者降低负荷,直至进水90分钟能获得较好的处理效果再进行下一步。第三阶段:与第二阶段操作相同,进水量需要提高到105分钟。第四阶段:与第三阶段操作相同,进水量需要提高到120分钟。二、注意事项:a、为了顺利完成调试工作,一定要保证此阶段SBR反应器运行条件的稳定,避免进水浓度、悬浮物、酸碱度、有毒有害物质的较大波动,而给SBR反应器造成较大的冲击负荷,导致污泥恶化。b、运行过程中,每运行周期一定要至少测量一次DO、PH、SV水质指标。改变污染物浓度前、后一定要监测反应器中及要进入反应器的水质的全套指标,重点CODCr、NH3-N、TP、PH ,保证反应器中污泥负荷的合理性。c、每次改变污水加入量的初期一定要注意观察污泥性状,及记录其适应时间,为下次污水加入量的改变提供参考依据。d、当污泥SV%≥30时,要少量排泥,每次排泥水量大约为15---30m3。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

3. SBR生物反应器的周期有哪些

SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
SBR的运行周期由充水、曝气反应、沉淀、排水排泥和闲置组成。
充水时间一般取1~4h.曝气反应时间是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。一般在2~8h.沉淀排水时间一般按2~4h设计。闲置时间一般按2h设计。

4. 污水处理工艺有哪些

一般污水处理包括五种典型的工艺,具体如下:

(1)间歇活性污泥法(SBR)
间歇活性污泥法也称序批式活性污泥法(Sequencing Batch Reactor-SBR),它由个或多个SBR池组成,运行时,废水分批进入池中,依次经历5个独立阶段,即进水、反应、沉淀、排水和闲置。进水及排水用水位控制,反应及沉淀用时间控制,一个运行周期的时间依负荷及出水要求而异,一般为4~12h,其中反应占40%,有效池容积为周期内进水量与所需污泥体积之和。
比连续流法反应速度快,处理效率高,耐负荷冲击的能力强;由于底物浓度高,浓度梯度也大,交替出现缺氧、好氧状态,能抑制专性好氧菌的过量繁殖,有利于生物脱氮除磷,又由于泥龄较短,丝状菌不可能成为优势,因此,污泥不易膨胀;与连续流方法相比,SBR法流程短、装置结构简单,当水量较小时,只需一个间歇反应器,不需要设专门沉淀池和调节池,不需要污泥回流,运行费用低。

(2) 吸附再生(接触稳定)法
这种方式充分利用活性污泥的初期去除能力,在较短的时间里(10~40min),通过吸附去除废水中悬浮的和胶态的有机物,再通过液固分离,废水即获得净化,BOD5可去除85%~90%左右。吸附饱和的活性污泥中,一部分需要回流的,引入再生池进一步氧化分解,恢复其活性;另一部分剩余污泥不经氧化分解即排入污泥处理系统。
分别在两池(吸附池和再生他)或在同一池的两段进行。它适应负荷冲击的能力强,还可省去初次沉淀池。主要优点是可以大大节省基建投资,最适于处理含悬浮和胶体物质较多的废水,如制革废水、焦化废水等,工艺灵活。但由于吸附时间较短,处理效率不及传统法的高。

(3)氧化沟
氧化沟是延时曝气法的一种特殊型式,它的平面象跑道,沟槽中设置两个曝气转刷(盘),也有用表面曝气机、射流器或提升管式曝气装置的。曝气设备工作时,推动沟液迅速流动,实现供氧和搅拌作用。
与普通曝气法相比,氧化沟具有基建投资省,维护管理容易,处理效果稳定,出水水质好,污泥产量少,还有较好的脱N、P作用,适应负荷冲击能力强等优点。

(4)连续进水周期循环延时曝气活性污泥法(ICEAS)
ICEAS反应器前部设有预反应区(占池容积的10%)。反应池由预反应区和主反应区组成,并实现连续进水,间歇排水。预反应区一般处在厌氧和缺氧状态,有机物在此被活性污泥吸附,该区还具有生物选择作用,抑制丝状菌生长,防止污泥膨胀。被吸附的有机物在主反应区内被活性污泥氧化分解。
反应连续进水,解决了来水与间歇进水不匹配的矛盾。但该工艺沉淀效果较差、净化效果变差,易发生污泥膨胀,污泥负荷较低,反应时间长,设备容积增大,投资较大。

(5)生物脱氮除磷工艺(A/A/O)
污水首先进入厌氧池与回流污泥混合,在兼性厌氧发酵菌的作用下,废水中易生物降解的大分子有机物转化为聚磷菌可以吸收小分子有机物(如VFA),并以PHB的形式贮存在体内,其所需的能量来自聚磷链的分解。随后,废水进入缺氧区,反硝化细菌利用废水中的有机基质对随回流混合液带入的NO3- 进行反硝化。废水进入好氧池时,废水中有机物的浓度较低,聚磷菌主要是通过分解体内的PHB而获得能量,供细菌增殖,同时将周围环境中的溶解性磷吸收到体内,并以聚磷链的形式贮存起来,随后以剩余污泥的形式排出系统。系统中好氧区的有机物浓度较低,正有利于该区中自养硝化菌的生长。
厌氧、缺氧、好氧三种不同的环境条件和不同种类的微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能;工艺简单,水力停留时间较短;SVI一般小于100,不会发生污泥膨胀;污泥中磷含量高,一般为2.5%以上;厌氧-缺氧池只需轻缓搅拌,使之混合,而以不增加溶解氧为度;沉淀池要避免发生厌氧-缺氧状态,以避免聚磷菌释放磷而降低出水水质和反硝化产生N2而干扰沉淀;脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中挟带DO和硝酸态氧的影响,因而脱氮除磷效果不可能提高。

5. SBR是什么意思污水处理里面所说的SBR是什么技术

SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。它是基于以悬浮生长的微生物在好氧条件下对有机物、氨氮等污染物进行降解的废水生物处理活性污泥工艺。按时序来以间歇曝气方式进行,改变活性污泥的生长环境,是一种被全球广泛认可和使用的废水处理工艺。
SBR 工艺的过程是按时序来完成的, 一个操作过程分五个阶段: 进水、 反应、 沉淀、 滗水、 闲置。这五个阶段都是单池运行,当处理污水量较大时,可以进行多池多组的交替运行处理,此时人工操作难以发挥它的优点,需要由高度自动化的控制系统进行管理。
SBR 的运行周期由进水时间、 反应时间、 沉淀时间、 滗水时间、 排泥时间和闲置时间来确定。具体时间根据进水量及进水时间可以进行适当调节。
计算方法:
沉淀排水时间( Ts D) 一般按2~4h 设计。闲置时间( Tx) 一般按0.5~1h 设计。 设定反应时间为( Tf) 。一个周期所需时间T≥Tf Ts D Tx。
时间分配例子,如:运行周期12h,其中进水2h,曝气4~8h,沉淀2h,排水1h。
SBR工艺优点:
1) 工艺简单,节省费用和场地;
2)理想的推流过程使生化反应推力大效率提高;
3)运行方式灵活,脱硫除氮效率好;
4)这是防止污泥膨胀的最好方法;
5)耐冲击负荷,处理能力强。
应用SBR工艺最先进的澳大利亚,先后建成SBR 工艺污水处理厂600 余座,还兴建日处理量21 万吨大型SBR工艺污水处理厂;广州兴丰垃圾卫生填埋厂处理渗透液等采用了普通SBR工艺;国祯环保应用SBR工艺的实时控制技术,去除有机物和脱氮除磷效率高,另外在高氨氮废水脱氮方面有较大突破。

6. 序批式活性污泥处理系统(SBR)的运行过程及主要特点。

SBR工艺去除污染物的机理与传统活性污泥工艺完全相同,只是运行方式不同。传统工艺采用连续运行方式,污水连续进入生化反应系统并连续排出,SBR工艺采用间歇运行方式,初沉池出水流入曝气池,按时间顺序进行进水、反应(曝气)、沉淀、出水、排泥或待机等5个基本运行程序。从污水的流入开始到待机时间结束称为一个运行周期,这种运行周期周而复始反复进行,从而达到不断进行污水处理之目的,因此,SBR工艺不需要设置二沉池和污泥回流系统。
3、SBR工艺的好氧生物处理运行工序
Ⅰ阶段为污水流入工序,在污水流入的同时采用曝气设备进行曝气搅拌,此阶段进水时间为2h。
Ⅱ阶段仍是曝气反应工序,控制DO在2.0mg/L以上,在该阶段进行有机物生物降解过程,一般曝气时间应大于8h。
Ⅲ阶段为沉淀排水工序,该阶段先进行泥水分离,然后通过滗水器将上分离后的上清液排出,并排放剩余污泥,此阶段中沉淀时间一般为1~2h,排水时间为1h,排泥时间为20min。
Ⅳ阶段为排水待机阶段。总的运行周期一般为13~15h。
下图为SBR运行过程的图解说明。

7. SBR活性污泥法工艺

如果你在北京,延庆污水处理厂是做SBR的,我去看过。你可以搜搜联系一下。
下面是SBR的一些简单介绍,希望能有帮助。

摘要: 序批式活性污泥法(SBR-Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。

关键词: SBR工艺 序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。
由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。因此,SBR工艺发展速度极快,并衍生出许多种新型SBR处理工艺。
间歇式循环延时曝气活性污泥法(ICEAS—Intermittent Cyclic Extended System)是在1968年由澳大利亚新威尔士大学与美国ABJ公司合作开发的。1976年世界上第一座ICEAS工艺污水厂投产运行。ICEAS与传统SBR相比,最大特点是:在反应器进水端设一个预反应区,整个处理过程连续进水,间歇排水,无明显的反应阶段和闲置阶段,因此处理费用比传统SBR低。由于全过程连续进水,沉淀阶段泥水分离差,限制了进水量。
好氧间歇曝气系统(DAT-IAT—Demand Aeration Tank-Intermittent Tank)是由天津市政工程设计研究院提出的一种SBR新工艺。主体构筑物是由需氧池DAT池和间歇曝气池IAT池组成,DAT池连续进水连续曝气,其出水从中间墙进入IAT池,IAT池连续进水间歇排水。同时,IAT池污泥回流DAT池。它具有抗冲击能力强的特点,并有除磷脱氮功能。
循环式活性污泥法(CASS—Cyclic Activated Sludge System)是Gotonszy教授在ICEAS工艺的基础上开发出来的,是SBR工艺的一种新形式。将ICEAS的预反应区用容积更小,设计更加合理优化的生物选择器代替。通常CASS池分三个反应区:生物选择器、缺氧区和好氧区,容积比一般为1:5:30。整个过程间歇运行,进水同时曝气并污泥回流。该处理系统具有除氮脱磷功能。
UNITANK单元水池活性污泥处理系统是比利时SEGHERS公司提出的,它是SBR工艺的又一种变形。它集合了SBR工艺和氧化沟工艺的特点,一体化设计使整个系统连续进水连续出水,而单个池子相对为间歇进水间歇排水。此系统可以灵活的进行时间和空间控制,适当的增大水力停留时间,可以实现污水的脱氮除磷。
改良式序列间歇反应器(MSBR—Modified Sequencing Batch Reactor)是C,Y.Yang等人根据SBR技术特点结合A2-O工艺,研究开发的一种更为理想的污水处理系统。采用单池多方格方式,在恒定水位下连续运行。通常MSBR池分为主曝气池、序批池1、序批池2、厌氧池A、厌氧池B、缺氧池、泥水分离池。
每个周期分为6个时段,每3个时段为一个半周期。一个半周期的运行状况:污水首先进入厌氧池A脱氮,再进入厌氧池B除磷,进入主曝气池好氧处理,然后进入序批池,两个序批池交替运行(缺氧—好氧/沉淀—出水)。脱氮除磷能力更强。
SBR工艺优点
1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围
由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。就近期的技术条件,SBR系统更适合以下情况:
1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
4) 用地紧张的地方。
5) 对已建连续流污水处理厂的改造等。
6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
SBR设计要点、主要参数
SBR设计要点
1、运行周期(T)的确定
SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。充水时间(tv)应有一个最优值。如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。充水时间一般取1~4h。反应时间(tR)是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。一般在2~8h。沉淀排水时间(tS+D)一般按2~4h设计。闲置时间(tE)一般按2h设计。一个周期所需时间tC≥tR+tS+tD ,周期数 n=24/tC
2、反应池容积的计算
假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n·N。各反应池的容积为:
V:各反应池的容量
1/m:排出比
n:周期数(周期/d)
N:每一系列的反应池数量
q:每一系列的污水进水量(设计最大日污水量)(m3/d)
3、曝气系统
序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。
在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。
4、排水系统
⑴上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,排出方式有重力排出和水泵排出。
⑵为预防上清液排出装置的故障,应设置事故用排水装置。
⑶在上清液排出装置中,应设有防浮渣流出的机构。
序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的特征:
1) 应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。(定量排水)
2) 为获得分离后清澄的处理水,集水机构应尽量靠近水面,并可随上清液排出后的水位变化而进行排水。(追随水位的性能)
3) 排水及停止排水的动作应平稳进行,动作准确,持久可靠。(可靠性)
排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。
5、排泥设备
设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000 ,在高负荷运行(0.1~0.4 kg-BOD/kg-ss·d)时污泥产量以每流入1 kgSS产生1 kg计算,在低负荷运行(0.03~0.1 kg-BOD/kg-ss·d)时以每流入1 kgSS产生0.75 kg计算。
在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。
SBR设计主要参数
序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理、处理水质指标等)适当的确定。
用于设施设计的设计参数应以下值为准:
项 目 参 数
BOD-SS负荷(kg-BOD/kg-ss·d) 0.03~0.4
MLSS(mg/l) 1500~5000
排出比(1/m) 1/2~1/6
安全高度ε(cm)(活性污泥界面以上的最小水深) 50以上
序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。序批式活性污泥法的BOD-SS负荷,由于将曝气时间作为反应时间来考虑,定义公式如下:
QS:污水进水量(m3/d)
CS:进水的平均BOD5(mg/l)
CA:曝气池内混合液平均MLSS浓度(mg/l)
V:曝气池容积
e:曝气时间比 e=n·TA/24
n:周期数 TA:一个周期的曝气时间
序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。
在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。
在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。
不同负荷条件下的特征
有机物负荷条件(进水条件) 高负荷运行 低负荷运行
间歇进水 间歇进水、连续
运行条件BOD-SS负荷(kg-BOD/kg-ss·d)0.1~0.4 0.03~0.1
周期数大(3~4) 小(2~3)
排出比大小
处理特性有机物去除 处理水BOD<20mg/l 去除率比较高
脱氮较低高
脱磷高较低
污泥产量多少
维护管理 抗负荷变化性能比低负荷差 对负荷变化的适应性强,运行的灵活性强
用地面积 反应池容积小,省地 反应池容积较大
适用范围 能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施 适用于小型污水处理厂,处理规模约为2000m3/d以下,适用于不需要脱氮的设施
SBR设计需特别注意的问题
(一)主要设施与设备
1、设施的组成
本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。
2、反应池
反应池的形式为完全混合型,反应池十分紧凑,占地很少。形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。
反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。
反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。②与其他相同BOD—SS负荷的处理方式相比,其优点是用地面积较少。
反应池的数量,考虑清洗和检修等情况,原则上设2个以上。在规模较小或投产初期污水量较小时,也可建一个池。
3、排水装置
排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴潜水泵单点或多点排水。这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。缺点操作不方便,排水容易带泥;⑶专用设备滗水器。滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:①单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。
在设定一个周期的排水时间时,必须注意以下项目:
①上清液排出装置的溢流负荷——确定需要的设备数量;
②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小;
③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大;
④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。
SBR工艺的需氧与供氧
SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。
SBR工艺排出比(1/m)的选择
SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。排出比小,初始有机物浓度低,反之则高。根据微生物降解有机物的规律,当有机物浓度高时,有机物降解速率大,曝气时间可以减少。但是,当有机物浓度高时,耗氧速率也大,供氧与耗氧的矛盾可能更大。此外,不同的废水活性污泥的沉降性能也不同。污泥沉降性能好,沉淀后上清液就多,宜选用较小的排出比,反之则宜采用较大的排出比。排出比的选择还与设计选用的污泥负荷率、混合液污泥浓度等有关。
SBR反应池混合液污泥浓度
根据活性污泥法的基本原理,混合液污泥浓度的大小决定了生化反应器容积的大小。SBR工艺也同样如此,当混合液污泥浓度高时,所需曝气反应时间就短,SBR反应池池容就小,反之SBR反应池池容则大。但是,当混合液污泥浓度高时,生化反应初期耗氧速率增大,供氧与耗氧的矛盾更大。此外,池内混合液污泥浓度的大小还决定了沉淀时间。污泥浓度高需要的沉淀时间长,反之则短。当污泥的沉降性能好,排出比小,有机物浓度低,供氧速率高,可以选用较大的数值,反之则宜选用较小的数值。SBR工艺混合液污泥浓度的选择应综合多方面的因素来考虑。
关于污泥负荷率的选择
污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池最终出水有机物浓度的高低。当要求的出水有机物浓度低时,污泥负荷率宜选用低值;当废水易于生物降解时,污泥负荷率随着增大。污泥负荷率的选择应根据废水的可生化性以及要求的出水水质来确定。
SBR工艺与调节、水解酸化工艺的结合
SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。
在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述:
进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制;
进水结束通过液位控制,整个进水时间可能是变化的。
水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在最小流量下充满SBR反应池所需的时间。
曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。
沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。
排水时间由滗水器的性能决定,滗水结束可以通过液位控制。
闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。
SBR调试程序及注意事项
(一) 活性污泥的培养驯化
SBR反应池去除有机物的机理与普通活性污泥法基本相同,主要大量繁殖的微生物群体降解污水中的有机物。
活性污泥处理系统在正式投产之前的首要工作是培养和驯化活性污泥。活性污泥的培养驯化可归纳为异步培驯法、同步培驯法和接种培驯法,异步法为先培养后驯化,同步法则培养和驯化同时进行或交替进行,接种法系利用其他污水处理厂的剩余污泥,再进行适当的培驯。
培养活性污泥需要有菌种和菌种所需要的营养物。对于城市污水,其中的菌种和营养都具备,可以直接进行培养。对于工业废水,由于其中缺乏专性菌种和足够的营养,因此在投产时除用一般的菌种和所需要营养培养足够的活性污泥外,还应对所培养的活性污泥进行驯化,使活性污泥微生物群体逐渐形成具有代谢特定工业废水的酶系统,具有某种专性。
(二) 试运行
活性污泥培养驯化成熟后,就开始试运行。试运行的目的使确定最佳的运行条件。
在活性污泥系统的运行中,影响因素很多,混合液污泥浓度、空气量、污水量、污水的营养情况等。活性污泥法要求在曝气池内保持适宜的营养物与微生物的比值,供给所需要的氧,使微生物很好的和有机物相接触,全体均匀的保持适当的接触时间。
对SBR处理工艺而言,运行周期的确定还与沉淀、排水排泥时间及闲置时间有关,还和处理工艺中所设计的SBR反应器数量有关。运行周期的确定除了要保证处理过程中运行的稳定性和处理效果外,还要保证每个池充水的顺序连续性,即合理的运行周期应满足运行过程中避免两个或两个以上的池子同时进水或第一个池子和最后一个池子进水脱节的现象。同时通过改变曝气时间和排水时间,对污水进行不同的反应测试,确定最佳的运行模式,达到最佳的出水水质、最经济的运行方式。
(三) 污泥沉降性能的控制
活性污泥的良好沉降性能是保证活性污泥处理系统正常运行的前提条件之一。如果污泥的沉降性能不好,在SBR的反应期结束后,污泥难以沉淀,污泥的压密性差,上层清液的排除就受到限制,水泥比下降,导致每个运行周期处理污水量下降。如果污泥的絮凝性能差,则出水中的悬浮固体(SS)含量将升高,COD上升,导致处理出水水质的下降。
导致污泥沉降性能恶化的原因是多方面的,但都表现在污泥容积指数(SVI)的升高。SBR工艺中由于反复出现高浓度基质,在菌胶团菌和丝状菌共存的生态环境中,丝状菌一般是不容易繁殖的,因而发生污泥丝状菌膨胀的可能性是非常低的。SBR较容易出现高粘性膨胀问题。这可能是由于SBR法是一个瞬态过程,混合液内基质逐步降解,液相中基质浓度下降了,但并不完全说明基质已被氧化去除,加之许多污水的污染物容易被活性污泥吸附和吸收,在很短的时间内,混合液中的基质浓度可降至很低的水平,从污水处理的角度看,已经达到了处理效果,但这仅仅是一种相的转移,混合液中基质的浓度的降低仅是一种表面现象。可以认为,在污水处理过程中,菌胶团之所以形成和有所增长,就要求系统中有一定数量的有机基质的积累,在胞外形成多糖聚合物(否则菌胶团不增长甚至出现细菌分散生长现象,出水浑浊)。在实际操作过程中往往会因充水时间或曝气方式选择的不适当或操作不当而使基质的积累过量,致使发生污泥的高粘性膨胀。
污染物在混合液内的积累是逐步的,在一个周期内一般难以马上表现出来,需通过观察各运行周期间的污泥沉降性能的变化才能体现出来。为使污泥具有良好的沉降性能,应注意每个运行周期内污泥的SVI变化趋势,及时调整运行方式以确保良好的处理效果。

8. sbr污水处理装置的原理和运行

其技术原理是活性污泥法,即利用微生物的代谢作用将污染物分解成无害物质内(异化容作用),或被微生物利用用以合成自身成分(同化作用)。
SBR运行一个周期分为进水、曝气、沉淀、滗水、闲置共5个阶段,每个工艺阶段的时间可根据实际情况自行调节,一般一个周期为4个小时。运行中主要工艺控制参数就是进水深度、曝气时间、DO、MLSS(需要根据污泥负荷确定)、污泥龄等,曝气时间需要根据进水水质进行负荷调整,要求池内DO至少2mg/L。SBR工艺脱氮除磷效果较氧化沟等工艺较差。

阅读全文

与sbr污水处理工艺反应时间相关的资料

热点内容
干蒜片切片废水cod 浏览:396
过滤器里黑色的碳 浏览:613
超滤广泛使用在什么方面 浏览:363
罐头怎么做纯净水 浏览:881
小车更换机油滤芯需要多少钱 浏览:979
超滤膜的精密度 浏览:179
地下式污水处理厂图片 浏览:61
鱼糕废水 浏览:522
瓜尔胶能增调树脂液吗 浏览:747
踏板空气滤芯全套怎么换 浏览:262
只有饮水机没桶怎么用 浏览:649
美的净水机如何清理 浏览:329
圣洛威净水机不上水怎么办 浏览:932
冷却液蒸馏水在哪里买 浏览:509
美的牌饮水机为什么贵 浏览:549
日本葡萄核废水为什么越来越多 浏览:3
香醋除水垢要浸泡多久 浏览:928
中药蒸馏水提取设备 浏览:977
废水检测铜是什么 浏览:192
蒸馏酒与道家 浏览:99