离子交换树脂的结构:
离子交换树脂主要由高分子骨架和活性基团两部分组成,高分子骨架是惰性的网状结构骨架,是不溶于酸或碱的高分子物质,常用的离子交换树脂是由苯乙烯和二乙烯苯聚合得到树脂的骨架。
而活性基团不能自由移动的官能团离子和可以自由移动的可交换离子两部分组成,可交换离子能够决定树脂所吸附的离子,比如可交换离子为H型阳离子交换树脂,那么这个树脂能够吸附的离子,就是H型阳离子,而官能团离子能够决定树脂的“酸"、“碱"性和交换能力的强弱,比如官能团离子是强酸性离子,那么树脂就是强酸性离子交换树脂。
离子交换树脂的内部结构:
1.凝胶型树脂是由纯单体混合物经缩合或聚合而成的,结构为微孔状,合成的工艺比较简单,孔径大概在1-2nm左右,凝胶型树脂的操作容量高,产水量高,物理强度好,且再生效率高,被广泛应用在食品饮料加工,超纯水制备,饮用水过滤,硬水软化,制糖业,制药等领域。
2.大孔型树脂的孔径一般在10nm左右,在树脂中孔径是比较大的,所以被称为大孔型树脂,且孔径不会随着周围的环境而变化,能够弥补凝胶型树脂不能在非水系统中使用的缺点,吸附能力非常强大,不易碎裂,耐氧化好,操作容量高,能够应用在医药领域、除重金属污染、药品纯化、水处理中除去碳酸硬度、冷凝水精处理等领域。
详情点击:网页链接
⑵ 用于造纸的化学药品有哪些
现代造纸使用的药品非常多:
中国造纸用精细化学品的产品分类
A、制浆用化学品
(1)蒸煮助剂——蒽醌、绿氧
(2)废纸脱墨剂
1.非离子型:烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、脂肪醇环乙环丙嵌段共聚物
2.阴离子型:烷基苯磺酸钠、烷基醚硫酸钠、脂肪酸皂类
3.多种表面活性剂有选择的复配物
(3) 纸浆漂白剂——二氧化氯、 双氧水
(4) 纸浆漂白助剂——氨基磺酸、二氧化硫脲
(5) 绒毛浆松解剂—季铵盐类的复配物
B、造纸过程化学品
(1)助留助滤剂——阳离子淀粉、聚丙烯酰胺、聚乙烯亚胺(PEI)、阴离子淀粉
及多元助留体系
(2)消泡剂——有机硅型、聚醚型或脂肪酰胺型表面活性剂
(3)防腐剂——均三嗪、异噻唑啉酮类、有机溴化合物
(4)絮凝剂——聚丙烯酸钠、聚丙烯酰胺及其改性产品
(5)沉积物控制剂——阳离子聚酰胺等
(6)纤维分散剂——聚氧化乙烯、高分子量阴离子聚丙烯酰胺等
C、功能性化学品
(1) 浆内施胶剂
1.酸性抄纸用:白色松香胶、强化松香胶阴离子乳液松香胶
2.近中性抄纸用:阳离子乳液松香胶
3.中性抄纸用:烷基烯酮二聚体(AKD)、链烯基琥珀酐(ASA)、松香系中性施胶剂、树脂型中性施胶剂
(2)干增强剂——阳离子淀粉、聚丙烯酰胺(阴离子型、阳离子型、两性)、两性淀粉、多元变性淀粉等
(3)湿增强剂——三聚氰胺甲醛树脂(MF)、脲醛树脂(UF)、聚酰胺环氧氯丙烷树脂(PPE)等
(4)表面施胶剂—聚乙烯醇、氧化淀粉、高留着阳离子淀粉、苯乙烯马来酸酐共聚物、丙烯酸—苯乙烯共
聚物、CMC等
(5)增白剂—VBL、APB-L、APC
(6)柔软剂——咪唑啉类、甜菜碱等
(7)阻燃剂——氨基磺酸盐、聚磷酸铵等
(8)防水剂——有机硅、丙烯酸酯共聚物
(9)防油剂——含氟有机化合物
(10)填(颜)料——滑石粉、轻质碳酸钙、超细磨重质碳酸钙、高岭土、钛白粉等
D、涂布加工纸用化学品
(1)涂布粘合剂(胶料)——羧基丁苯胶、苯一丙共聚乳液及CMC、变性淀粉、干酪素等。
(2)颜料 无机颜料: 高岭土、碳酸钙(轻质、超细磨)、钛白粉等。
有机颜料:尿醛树脂微粒、聚苯丙高分子塑料颜料
(3)颜料分散剂——六偏磷酸钠、聚丙烯酸钠(DC)、丙烯酸与丙烯酰胺共聚物(DA)
(4)印刷适性改进剂——两性聚酰胺聚脲树脂
(5)润滑剂——硬脂酸钙分散液(乳液)
(6)抗水剂——改性三聚氰胺甲醛树脂、有机及无机锆盐等
(7)消泡剂——聚醚、有机硅
(8)防腐剂——均三嗪、异噻唑啉酮类、有机溴化合物
E、水处理化学品
(阴离子型、阳离子型、两性)聚丙烯酰胺、壳聚糖类化合物、聚合氯化铝、聚合氯化铝铁、硫酸铝、
聚丙烯酸钠等
⑶ 离子交换树脂的基本类型
1.离子交换树脂的基本类型
(1) 强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3) 强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
(4) 弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
(5) 离子树脂的转型
以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。
2、离子交换树脂基体的组成
离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。
这两类树脂的吸附性能都很好,但有不同特点。丙烯酸系树脂能交换吸附大多数离子型色素,脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。
树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。
除上述苯乙烯系和丙烯酸系这两大系列以外,离子交换树脂还可由其他有机单体聚合制成。如酚醛系(FP)、环氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
3、离子交换树脂的物理结构
离子树脂常分为凝胶型和大孔型两类。
凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。
这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。
大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waal's force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。
大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、效率高,所需处理时间缩短。大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。
4、离子交换树脂的离子交换容量
离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。
1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。
2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。
3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。
通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。
在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。
离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。
5、离子交换树脂的吸附选择性
离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。主要规律如下:
(1) 对阳离子的吸附
高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
(2) 对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:
SO42-> NO3- > Cl- > HCO3- > OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
(3) 对有色物的吸附
糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。这被认为是由于前两者通常带负电,而焦糖的电荷很弱。
通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。这种选择性在稀溶液中较大,在浓溶液中较小。
6、离子交换树脂的物理性质
离子交换树脂的颗粒尺寸和有关的物理性质对它的工作和性能有很大影响。
(1) 树脂颗粒尺寸
离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。因此,树脂颗粒的大小应选择适当。如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。
树脂颗粒大小的测定通常用湿筛法,将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50……目筛网上的留存量,以90%粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。多数通用的树脂产品的有效粒径在0.4~0.6mm之间。
树脂颗粒是否均匀以均匀系数表示。它是在测定树脂的“有效粒径”坐标图上取累计留存量为40%粒子,相对应的筛孔直径与有效粒径的比例。如一种树脂(IR-120)的有效粒径为0.4~0.6mm,它在20目筛、30目筛及40目筛上留存粒子分别为:18.3%、41.1%、及31.3%,则计算得均匀系数为2.0。
(2) 树脂的密度
树脂在干燥时的密度称为真密度。湿树脂每单位体积(连颗粒间空隙)的重量称为视密度。树脂的密度与它的交联度和交换基团的性质有关。通常,交联度高的树脂的密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性者,而大孔型树脂的密度则较低。例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1.26g/mL,视密度为0.85g/mL;而丙烯酸系凝胶型弱酸阳离子树脂的真密度为1.19g/mL,视密度为0.75g/mL。
(3) 树脂的溶解性
离子交换树脂应为不溶性物质。但树脂在合成过程中夹杂的聚合度较低的物质,及树脂分解生成的物质,会在工作运行时溶解出来。交联度较低和含活性基团多的树脂,溶解倾向较大。
(4) 膨胀度
离子交换树脂含有大量亲水基团,与水接触即吸水膨胀。当树脂中的离子变换时,如阳离子树脂由H+转为Na+,阴树脂由Cl-转为OH-,都因离子直径增大而发生膨胀,增大树脂的体积。通常,交联度低的树脂的膨胀度较大。在设计离子交换装置时,必须考虑树脂的膨胀度,以适应生产运行时树脂中的离子转换发生的树脂体积变化。
(5) 耐用性
树脂颗粒使用时有转移、磨擦、膨胀和收缩等变化,长期使用后会有少量损耗和破碎,故树脂要有较高的机械强度和耐磨性。通常,交联度低的树脂较易碎裂,但树脂的耐用性更主要地决定于交联结构的均匀程度及其强度。如大孔树脂,具有较高的交联度者,结构稳定,能耐反复再生。
7、离子交换树脂的品种
离子交换树脂在国内外都有很多制造厂家和很多品种。国内制造厂有数十家,主要的有上海树脂厂、南开大学化工厂、晨光化工研究院树脂厂、南京树脂厂等;国外较著名的如美国Rohm & Hass公司生产的Amberlite系列、Dow化学公司的Dowex系列、法国Duolite系列和Asmit系列、日本的Diaion系列,还有Ionac系列、Allassion系列等。树脂的牌号多数由各制造厂或所在国自行规定。国外一些产品用字母C代表阳离子树脂(C为cation的第一个字母),A代表阴离子树脂(A为Anion的第一个字母),如Amberlite的IRC和IRA分别为阳树脂和阴树脂,亦分别代表阳树脂和阴树脂。我国化工部规定(HG2-884-76),离子交换树脂的型号由三位阿拉伯数字组成。第一位数字代表产品的分类:0 代表强酸性,1代表弱酸性,2代表强碱性,3代表弱碱性,4代表螯合性,5代表两性,6代表氧化还原。第二位数字代表不同的骨架结构:0代表苯乙烯系,1代表丙烯酸系,2代表酚醛系,3代表环氧系等。第三位数字为顺序号,用以区别基体、交联基等的差异。此外大孔型树脂在数字前加字母D。因此,D001是大孔强酸性苯乙烯系树脂。
⑷ 怎么制成树脂粉
消光树脂聚氯乙烯PVC树脂粉介绍
特 性:其本身具有独特的消光性能,经过多次加工仍保持消光性。
用 途:消光硬制品、磨砂片、亚光片,压延片材、压延薄膜、吹膜。人造革、硬质板、分模板、汽车涂料、电缆外套、电线外皮、各种软管、化妆品盒、圣诞树叶、塑料鞋类及容器等。消光树脂为加工低光泽聚氯乙烯等制品的专用料,可广泛用于绝缘电缆、电线、电话线、音响喇叭线、消光膜、门窗密封条、仪表盘等深加工产品。
消光树脂为加工低光泽聚氯乙烯等制品的专用料,可广泛用于绝缘电缆、电线、电话线、音响喇叭线、消光膜、门窗密封条、仪表盘等深加工产品。
使用方法:适用于各种普通聚氯乙烯树脂的加工设备,可压延、挤出、注射各种制品。在制品表面产生消光性,在视觉和手感方面具有良好的特性。用户可根据不同产品的具体要求,在其原有产品配方的基础上,加入适量消光树脂,即可生产出符合要求的消光制品。
高聚合度PVC树脂在电缆料中的应用
高聚合度PVC树脂的特性聚氯乙烯树脂由于其特殊的结构,具有优良的阻
燃性、机械性能和良好的电性能。
而高聚合度PVC树脂因为其分子量比普通聚氯乙烯树脂高得多,分子链
明显增长,所以与普通型聚氯乙烯树脂相比,又具有以下特征:
(1)较高的耐热性。
(2)较好的耐寒性。
(3)较高的机械性能。
(4)较小的热变形。
(5)较好的柔软性和弹性。
在电缆料中的应用由于高聚合度PVC树脂具有以上特征,可以利用它生产
各种特殊用途的电缆料。
耐高温的电缆绝缘及护层料 随着聚合度的增长,聚氯乙烯树脂耐热性提
高,机械性能也明显提高,它将成为生产耐热聚氯乙烯电缆料的理想原材料。
目前国外均采用高聚合度PVC树脂生产耐高温电缆料,而国内只能用一般聚
合度的S G-2型PVC树脂生产。
如果采用国产高聚合度PVC树脂生产耐高温电缆料,可使质量提高到一个新的水平。
辐照交联PVC电缆料 随着计算机、航天技术等高技术领域的飞速发
展,对电线电缆的性能要求愈来愈高。辐照交联PVC绝缘电线由于在拉伸强
度,耐热老化性,热压变形,热收缩,耐切割性和耐烙铁性能方面,都明显优于
耐热PVC电线和尼龙护层PVC电线,所以它是计算机等产品的
⑸ 什么是涂料用树脂的水性化
我们可以理解来为涂料从溶剂源型(油性)向水性体系(乳液型)转变的过程,这个过程其是最关键的就是涂料树脂的水性化技术,目前国内涂料行业的水性化进程是从政府到行业到企业都在关注的重要课题。乳胶漆是国内最为成功的水性涂料品种,但木器家具涂料、工业涂料、防腐涂料的水性化技术还不成熟,这需要水性树脂及其配套原料生产企业共同努力,为涂料的水性化发展作出自己应有的贡献。
涂料树脂水性化技术的开发的现状:水性涂料所用的树脂是由多种化工原料,采用各种聚合工艺来制成的。制备水性树脂一般有3种方法:(1)成盐法。通过酸碱反应将聚合物主链转变为可溶于水的阴离子或阳离子;(2)在聚合物中引入非离子基团;(3)将聚合物转变成两性离子中间体。其中应用最多的是成盐法。常见的涂料用水性有机树脂类型主要有:水性醇酸树脂、水性聚酯树脂、水性聚氨酯树脂、水性丙烯酸树脂、水性环氧树脂和最近发展起来的水性氟碳树脂等。
⑹ 树脂有什么用
树脂可以作为乳胶漆和胶合剂等材料作使用,因此被重视其价值。是多种高分子化专合物的混合物,所以有不属同的熔点。
树脂可分为天然树脂和合成树脂两种。本身只有天然树脂这一种,但随着化工的发展,有很多由人工合成的聚合物产生,当中有些聚合物的化学性质及物理性质会和天然树脂很相似,因此,聚合物会被称为合成树脂。
⑺ 树脂是做什么用的
树脂是制造塑料的主要原料,也用来制涂料、黏合剂、绝缘材料等,合成树脂在工业生产中,被广泛应用于液体中杂质的分离和纯化,有大孔吸附树脂、离子交换树脂、以及一些专用树脂。
树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。
树脂定义
相对分子量不确定但通常较高,常温下呈固态、中固态、假固态,有时也可以是液态的有机物质。具有软化或熔融温度范围,在外力作用下有流动倾向,破裂时常呈贝壳状。
广义上是指用作塑料基材的聚合物或预聚物。一般不溶于水,能溶于有机溶剂。按来源可分为天然树脂和合成树脂;按其加工行为不同的特点又有热塑性树脂和热固性树脂之分。
(7)两性丙烯酸树脂扩展阅读:
树脂分类
1、按来源
树脂有天然树脂和合成树脂之分。天然树脂是指由自然界中动植物分泌物所得的无定形有机物质,如松香、琥珀、虫胶等。
合成树脂是指由简单有机物经化学合成或某些天然产物经化学反应而得到的树脂产物,如酚醛树脂、聚氯乙烯树脂等,其中合成树脂是塑料的主要成分。
2、按合成反应
按此方法可将树脂分为加聚物和缩聚物。加聚物是指由加成聚合反应制得的聚合物,其链节结构的化学式与单体的分子式相同,如聚乙烯、聚苯乙烯、聚四氟乙烯等。
缩聚物是指由缩合聚合反应制得的聚合物,其结构单元的化学式与单体的分子式不同,如酚醛树脂、聚酯树脂、聚酰胺树脂等。
3、按分子主链组成
按此方法可将树脂分为碳链聚合物、杂链聚合物和元素有机聚合物。
碳链聚合物是指主链全由碳原子构成的聚合物,如聚乙烯、聚苯乙烯等。
杂链聚合物是指主链由碳和氧、氮、硫等两种以上元素的原子所构成的聚合物,如聚甲醛、聚酰胺、聚砜、聚醚等。
元素有机聚合物是指主链上不一定含有碳原子,主要由硅、氧、铝、钛、硼、硫、磷等元素的原子构成,如有机硅。
4、按性质
热固性树脂(玻璃钢一般用这类树脂):不饱和聚酯/乙烯基酯/环氧/酚醛/双马来酰亚胺(BMI)/聚酰亚胺树脂等。
热塑性树脂:聚丙烯(PP)/聚碳酸酯(PC)/尼龙(NYLON)/聚醚醚酮(PEEK)/聚醚砜(PES)等。
⑻ UV胶水的成分
UV胶水指无影胶,成分抄有环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯、丙烯酸树脂等。它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。
紫外线(UV)是肉眼看不见的,是可见光以外的一段电磁辐射,波长在10~400nm的范围。
无影胶固化原理是UV 固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联化学反应,使粘合剂在数秒钟内由液态转化为固态。
产品特点
通用型产品适用范围极广、塑料与各种材料的粘接都有极好的粘接效果;
粘接强度高、通过破坏试验的测试可达到塑料本体破裂而不脱胶,UV胶可几秒钟定位、一分钟达到最高强度、极大地提高了工作效率;固化后完全透明、产品长期不变黄、不白化;
对比传统的瞬干胶粘接、具有耐环测、不白化、柔韧性好等优点;P+R 按键(油墨或电镀按键)破坏实验可使硅橡胶皮撕裂;耐低温、高温高湿性能极优;可通过自动机械点胶或网印施胶、方便操作。