❶ 请教ab-8型大孔吸附树脂的预处理方法
AB-8大孔吸附树脂
预处理方法1.用无水乙醇1~2BV 过柱,水洗至无醇味即可
方法2. 4%HCl过柱,水洗至中性,4%NaOH过柱,水洗至中性,待用
若对产品纯度要求不高,可用方法2即可,若树脂孔道内未完全洗净的致孔剂对所吸附组分有影响,建议用醇预处理。
❷ 大孔树脂预处理及再生
大孔吸附树脂是一种由有机单体、交联剂、致孔剂和分散剂等添加剂聚合而成的特殊材料,如D201树脂。在使用前,需要进行预处理以去除可能存在的有毒有机残留物。首先,用饱和食盐水(工业级,约是树脂量的2倍)浸泡树脂18-20小时,然后用清水漂洗干净,直到排出的水清澈无黄色。接着,用2%~4%的氢氧化钠(或5%的盐酸)溶液(量与食盐水相同)浸泡2-4小时(或小流量清洗),清洗至中性后备用。实验室通常采用95%的乙醇进行预处理,通过加热回流或改良索氏提取器洗脱,直至洗脱液蒸干无残留物。洗净的树脂需挥去溶剂后储存备用。
装柱时,采用乙醇湿法,边装边用乙醇清洗柱子,直到混合后的乙醇与水无白色混浊昌或。然后用大量蒸馏水冲洗去乙醇,备用。少量乙醇残留会降低树脂的吸附性能。
树脂柱在反复使用后,表面和内部可能积聚非吸附性成分或杂质,影响柱效。此时需要再生,通常用95%的乙醇清洗至无色,再用大量水洗净醇化部分。如颜色变深,可使用稀酸或稀碱洗脱后清水冲洗。如有悬浮物,可通过反洗排除,即用水或醇从柱下向上冲洗。若树脂床紧实或颗粒破碎,需取出树脂,用水漂洗并重新装柱。
样品处理时,可将样品溶于少量水或先溶于乙醇,然后与树脂混合,挥去乙醇后加到柱上。洗脱过程中,通常从水开始,逐步提高乙醇浓度,同时结合高效液相色谱法指导。洗脱至无色时,树脂再生完成,再用水洗净即可进行下一步操作。在使用过程中,要定期检查和维护树脂柱,确保吸附效果。
大孔树脂(macroporous resin) 又称全多孔树脂,聚合物吸附剂,它是一类以吸附为特点,对有嫌中机物具有浓缩、分离作用的高分子聚合物。1964年,Rohm&Haas公司开发了对硼进行选择性络合吸附的吸附树脂Amberlite XE-243,这可看作是最早开发的吸附树脂。60年代末,日本三菱化成公司也开发生产了Diaion HP系列的大孔吸附耐者伍树脂。中国吸附树脂的研究工作开展于1974年,现已有H系列、CHA系列、NKA系列等多个系列产品。
❸ 请教下AB-8大孔吸附树脂再生的方法~
乙醇--水--氢氧化钠----水--盐酸---水
❹ 各类离子交换树脂的再生方法
离子交换树脂再生方法:
1、首先将树脂床里面的水完全排放。
2、只需要打开进酸/碱阀、回上排阀,关答闭其他阀门。
3、然后将酸/碱泵打开,放入酸/碱液,液面最好超过树脂20厘米以上,然后打开下排,流速和进酸/碱速度相同。
4、酸/碱洗时间一般最好不能低于40分钟,酸/碱洗之后可以直接清洗树脂。
5、打开砂过滤和精密过滤,然后放掉酸/碱液,再打开上进和下进,清除掉残留的酸/碱液。
6、然后关闭树脂床下进阀,开始进行清洗,清洗时打开树脂床上排阀,树脂床内的水必须要超过树脂,不能让树脂失水。清洗至出水接近中性为止。
再生时的注意事项:
1、树脂再生完之后,需要进行检测,能够达到标准之后,再进行正常的使用,防止再生时有其他物质影响树脂的产水。
2、再生时所用的水,必须是处理过的水,不能直接使用自来水,因为自来水中含有一定的杂质,再生时一般都是使用软化水或者纯水。
3、再生过程中,水必须要超过树脂,防止树脂失水。
详情点击:网页链接
❺ 大孔树脂先用酸和先用碱处理有影响吗
大孔树脂先用酸和先用碱处理有影响的。处理新树脂的方法再生,先用酒精浸泡,用水洗至无酒精味。后用7%的盐酸浸泡,后用水洗至pH3左右,接着用氢氧化钠14%浸泡,阴离子用阳离子处理水洗至pH8左右,阳离子树脂的话用水洗至pH8左右后还要用7%的盐酸浸泡,后用水洗至pH3左右。浸泡时间一般在12--24h。
❻ 各类离子交换树脂的再生方法
1. 针对大孔吸附树脂的简单再生方法,可使用不同浓度的溶剂按照极性从大到小进行剃度洗脱,接着用2到3倍的稀酸或稀碱溶液浸泡洗脱,最后用水洗至pH值中性后即可重新使用。
2. 钠型强酸性阳树脂的再生可使用10%的NaCl溶液,其用量应为树脂交换容量的两倍。对于氢型强酸性树脂,再生时应避免硫酸与树脂吸附的钙离子反应生成硫酸钙沉淀,因此建议先通入1到2%的稀硫酸。
3. 氯型强碱性树脂主要使用NaCl溶液进行再生,加入少量碱有助于将树脂吸附的色素和有机物溶解洗出。通常使用的碱盐液含10%的NaCl和0.2%的NaOH,每升树脂用量为150到200克NaCl及3到4克NaOH。OH型强碱阴树脂则使用4%的NaOH溶液进行再生。
4. 某些脱色树脂(特别是弱碱性树脂)在微酸性条件下效果更佳。此时,可通过通入稀盐酸使树脂pH值降至约6,随后进行水和正洗、反洗各一次。
5. 阳树脂的再生过程包括:首先通入盐酸,在环境温度下,将4%的树脂床体积4倍的HCl通过树脂床,通过时间约2小时;接着进行慢洗,以相同流速和流向,通2倍树脂体积的除盐水;最后进行快洗,以运行流速和流向,通除盐水至pH=5-6,树脂床即可备用。
6. 阴树脂的再生过程包括:首先通入氢氧化钠,在环境温度下,将4%的树脂体积4倍量的NaOH通过树脂床,通过时间约为2小时;接着进行慢洗,以相同流速和流向,通2倍树脂体积的除盐水;最后进行快洗,以运行流速和流向,通除盐水至pH=8,树脂床即可备用。具体操作可根据树脂使用情况适当增加酸碱的浓度和再生时间。
(6)ab大孔树脂再生扩展阅读:
1)在水处理领域,离子交换树脂的需求量占离子交换树脂产量的90%,主要应用于水中各种阴阳离子的去除。在火力发电厂的纯水处理中,离子交换树脂的消耗量最大,其次是在原子能、半导体、电子工业等领域。
2)在食品工业中,离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如,在制造高果糖浆的过程中,通过离子交换处理可以从玉米淀粉中提取出高果糖浆。
3)在制药行业,离子交换树脂对新一代抗菌素的开发及现有抗菌素质量的改进具有重要意义。例如,链霉素的开发就是一例。
4)在合成化学和石油化学工业中,离子交换树脂可作为酸和碱的催化剂进行酯化、水解、酯交换、水合等反应,具有可反复使用、产品易分离、不腐蚀反应器、不污染环境、反应易控制等优点。
5)在环境保护方面,离子交换树脂已广泛应用于许多受关注的环境问题。例如,从电镀废液中回收金属离子,从电影制片废液中回收有用物质等。
6)在湿法冶金及其他领域,离子交换树脂可用于从贫铀矿中分离、浓缩、提纯铀及提取稀土元素和贵金属。
❼ 怎样使大孔树脂再生
树脂使用一段时间后受到污染导致吸附能力下降,需要再生以恢复其吸附能力。树脂再生所用的溶剂有乙醇、甲醇、丙酮、异丙醇及稀酸、稀碱溶液等。树脂再生分为简单再生和强化再生。
简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀酸、稀碱溶液浸泡洗脱,水洗至PH值中性即可使用。树脂经过几次简单的再生后,如果吸附性能下降较多时需强化再生。强化再生的方法是先用不同浓度的有机溶剂洗脱后反复用大体积的稀酸、稀碱溶液交替强化洗脱后,水洗至PH值中性即可使用。
值得指出的是,目前很多科研人员或企业在树脂再生时,往往未经系统的实验就直接用95%的乙醇进行洗脱,这实际上是不科学的,其再生效果也会很差。因为不同的中药提取物,其对树脂的污染物质也不同,如果污染物质属水溶性杂质,在95%乙醇中溶解度差,其再生效果也会很差。因此,给据我的经验及资料报道,应该先进行梯度洗脱,以考察树脂再生的有机溶剂的浓度,或先采用低浓度的有机溶剂再生,再采用高浓度的有机溶剂再生,这样能收到较好的效果。另外,对于难再生的树脂,也可以先采用稀酸或稀碱浸泡,洗脱后再用不同浓度的有机溶剂洗脱,这样能取得较好的效果。
❽ 大孔吸收树脂在现代中药生产中的应用
大孔吸收树脂在现代中药生产中的应用
大孔吸附树脂是近代发展起来的一类有机高聚物吸附剂,70年代末开始将其应用于中草药成分的提取分离。中国医学科学院药物研究所植化室试用大孔吸附树脂对糖、生物碱、黄酮等进行吸附,并在此基础上用于天麻、赤勺、灵芝和照山白等中草药的提取分离,结果表明大孔吸附树脂是分离中草药水溶性成分的一种有效方法。用此法从甘草中可提取分离出甘草甜素结晶。以含生物碱、黄酮、水溶性酚性化合物和无机矿物质的4种中药有效部位的单味药材(黄连、葛根、丹参、石膏)水提液为样本,在LD605型树脂上进行动态吸附研究,比较其吸附特性参数。结果表明除无机矿物质外,其它中药有效部位均可不同程度的被树脂吸附纯化。不同结构的大孔吸附树脂对亲水性酚类衍生物的吸附作用研究表明不同类型大孔吸附树脂均能从极稀水溶液中富集微量亲水性酚类衍生物,且易洗脱,吸附作用随吸附物质的结构不同而有所不同,同类吸附物质在各种树脂上的吸附容量均与其极性水溶性有关。用D型非极性树脂提取了绞股蓝皂甙,总皂甙收率在2.15%左右。用D1300大孔树脂精制“右归煎液”,其干浸膏得率在4~5%之间,所得干浸膏不易吸潮,贮藏方便,其吸附回收率以5-羟甲基糖醛计,为83.3%。用D-101型非极性树脂提取了甜菊总甙,粗品收率8%左右,精品收率在3%左右。用大孔吸附树脂提取精制三七总皂甙,所得产品纯度高,质量稳定,成本低。将大孔吸附树脂用于银杏叶的提取,提取物中银杏黄酮含量稳定在26%以上。江苏色可赛思树脂有限公司整理用大孔吸附树脂分离出的川芎总提物中川芎嗪和阿魏酸的含量约为25%~29%,收率为0.6%。另外大孔吸附树脂还可用于含量测定前样品的预分离。
黄酮精制纯化
张纪兴等对地锦草的提取工艺进行了研究,旨在提高总黄酮的收率,选用D101型大孔树脂,以地锦草总黄酮含量为考察指标,采用L9(34)正交试验表,以直接影响地锦草总黄酮收率的上柱量、吸附时间及洗脱液的浓度为实验因素,每个因素取3个水平。结果10ml样品液(每1ml75%乙醇液含地锦草干浸膏0.5g)上柱、静置吸附时间30min、用95%乙醇洗脱地锦草总黄酮为最佳工艺;洗脱液干燥后的总固体物中的地锦草总黄酮含量大于16%,高于醇提干浸膏的7.61%,且洗脱率大于93%。高红宁等采用紫外分光光度法测定苦参中总黄酮的含量,使用AB-8型大孔吸附树脂对苦参总黄酮的吸附性能及原液浓度、pH值、流速、洗脱剂的种类对吸附性能的影响进行了研究,结果AB-8型树脂对苦参总黄酮的适宜吸附条件为原液浓度0.285mg/ml、pH值4、流速每小时3倍树脂体积、洗脱剂用50%乙醇时,解吸效果较好,表明AB-8型树脂精制苦参总黄酮是可行的。麻秀萍等用不同型号的大孔吸附树脂研究了中药银杏叶的提取物银杏叶黄酮的分离,发现S-8型树脂吸附量为126.7mg/g,洗脱溶剂的乙醇浓度90%,解吸率52.9%,AB-8型树脂吸附量102.8mg/g,用溶剂为90%的乙醇解吸,解吸率是97.9%,表明不同型号的树脂对同一成分的吸附量、解吸率不同。崔成九等用大孔树脂分离葛根中的总黄酮,将用70%乙醇提取的葛根浓缩液加到大孔树脂柱上,先用水洗脱,再用70%乙醇洗脱至薄层色谱(TLC)检查无葛根素斑点为止,结果葛根总黄酮收率为9.92%(占生药总黄酮的84.58%),高于正丁醇法的5.42%。两种方法的主要成分基本一致,但用大孔树脂法分离葛根总黄酮具有收率高、成本低、操作简便等优点,可供大生产使用。
皂苷精制纯化
赤芍为中药,其主要成分为芍药苷、羟基芍药苷、芍药苷内酯等化合物,简称赤芍总苷。姜换荣等用大孔吸附树脂分离赤芍总苷,芍药以70%的乙醇回流提取,减压浓缩,过大孔吸附树脂柱,分别用水、20%乙醇洗脱,收集20%乙醇洗脱液,减压浓缩得赤芍总苷,并用高效液相色谱法(HPLC)对所得赤芍总苷中的芍药苷含量进行测定,赤芍总苷的收率为5.4%,其中芍药苷的含量为75%。本法操作简便,得率稳定,产品质量稳定。金芳等用D101型大孔吸附树脂吸附含芍药中药复方提取液,以排除其他成分的干扰,并将50%乙醇洗脱液用HPLC法测定,结果可以快速准确地测定复方中药制剂中的芍药苷含量,且重现性好,回收率较高。臧琛等以中药抗感冒颗粒中芍药苷含量为指标,比较了醇沉、超滤及大孔吸附树脂精制3种方法,结果芍药苷的含量大小依次为醇沉、大孔树脂、超滤法。醇沉法含量虽高,但工艺较为复杂,耗时长。陈延清采用HPLC法测定丹参素、芍药苷的含量,选用7种不同类型的大孔吸附树脂(X-5,AB-8,NK-2,NKA-2,NK-9,D3520,D101,WLD),精制后提取物的含固率显著降低,丹参素的损失都很大,X-5,AB-8,WLD3种树脂对芍药苷的保留率都在80%以上。7种大孔树脂在乐脉胶囊的精制中对丹参素保留率都很低,因而对丹参药材不宜采用;部分类型树脂对精制芍药苷类成分可以采用。苟奎斌等采用大孔吸附树脂,用HPLC法测定肝得宁片中的连翘苷的含量,用DA-101型树脂吸附样品,以水洗脱干扰成分,将70%乙醇洗脱液用于含量测定。利用HPLC法检测大孔树脂柱处理过的样品液,操作步骤少,色谱性污染小,柱压低,具有分离度高、专属性强及重现性好、灵敏度高等特点。蔡雄等研究D101型大孔吸附树脂富集、纯化人参总皂苷的工艺条件及参数。人参提取液45ml(5.88mg/ml)上大孔树脂柱(15mm×90mm,干重2.52g),用蒸馏水100ml、50%乙醇100ml依次洗脱,人参总皂苷富集于50%乙醇洗脱液中,且该法除杂质能力强;通过大孔吸附树脂富集与纯化后,人参总皂苷洗脱率在90%以上,50%乙醇洗脱液干燥后总固物中人参总皂苷纯度可达60.1%。刘中秋等研究了大孔树脂吸附法富集保和丸中有效成分的工艺条件及参数,以保和丸中的陈皮的主要成分橙皮苷和总固物为评价指标。结果保和丸提取液(500mg/ml)5ml上D101型大孔树脂柱(15mm×10mm),吸附30min后,先用100ml蒸馏水洗脱除去杂质,然后用100ml50%乙醇洗脱橙皮苷为最佳工艺条件;通过大孔树脂富集后橙皮苷洗脱率在95%以上,50%乙醇洗脱液干燥后总固物约为处方量的4%。刘中秋等将D101型大孔树脂用于分离三七皂苷,结果吸附量为174.5mg/g,用50%乙醇解吸,解吸率达80%,产品纯度71%。金京玲用D101型树脂提取分离蒺藜总皂苷,结果吸附量为6mg/g,用浓度为80%的乙醇解吸,解吸率为96%。刘中秋等研究了中药毛冬青中的有效成分毛冬青总皂苷的提取分离工艺,选用D101型大孔吸附树脂,结果吸附量为120mg/g,用50%乙醇解吸,解吸率为95%,产品纯度71%。上述结果表明同一型号的树脂对不同成分的吸附量不同。杜江等将D3520型大孔吸附树脂用于黄褐毛忍冬总皂苷的提取分离,并与原工艺有机溶剂提取法进行比较,结果总皂苷的纯度、得率均明显高于原法,且工艺简化、成本降低。
生物碱精制纯化
传统方法一般用阴离子交换树脂分离纯化生物碱,解吸时需要用酸、碱或盐类洗脱剂,会引入杂质,给后来的分离带来不便,换用吸附树脂则可避免此类问题。刘俊红等将3种大孔吸附树脂(D101,DA-201,WLD-3)应用于延胡索生物碱的提取分离,方法是让延胡索水提取液通过已处理过的树脂柱,用水洗至流出液无色,然后分别用30%,40%,50%,60%,70%,80%,90%,95%乙醇依次洗脱,收集各段洗脱液,进行薄层鉴别。结果从树脂上洗脱的延胡索乙素占总生药量D101型为0.069%,WLD-3型为0.072%,DA-201型为0.053%。树脂柱用40%乙醇洗脱后除去了干扰性成分,便于用HPLC法测定,保护了色谱柱,且经过大孔吸附树脂提取分离的延胡索生物碱成品体积小,相对含量高,产品质量稳定,具有良好的生理活性。罗集鹏等将大孔吸附树脂用于小檗碱的富集与定量分析,把黄连粉末以70%甲醇超声提取30min,加到已处理的大孔树脂小柱上,用pH值为10~11的水洗脱,再用含0.5%硫酸的50%甲醇80ml洗脱,洗脱液用10%氢氧化钠调至碱性后,于水浴上挥去大部分溶剂,并转移至10ml量瓶中,用水稀释至刻度,以HPLC法测定,结果小檗碱与其他生物碱能很好地分离。表明大孔吸附树脂对醛式或醇式小檗碱具有良好的吸附性能,且不易被弱碱性水解吸,可用于黄连及其制剂尤其是含糖制剂中小檗碱的富集和水溶性杂质的去除。杨桦等采用大孔吸附树脂比较并筛选乌头类生物碱的提取分离最佳工艺条件,将川乌水提取液制备成8ml/g浓缩液,上柱,测定总生物碱的含量,结果该方法可分离出样品中85%以上的乌头类生物碱,同时可除去浸膏中总量为82%的水溶性固体杂质。
复方制剂精制纯化
饶品昌等用大孔树脂D1300,通过正交试验探讨了右归煎液的精制工艺,结果影响精制的主要因素为右归煎液浓度、流速和径高比,树脂最大吸附量为1.10g生药/ml,吸附回收率为83.34%(以5-羟甲基糖醛计)。晏亦林等将四逆汤提取液上大孔树脂,水洗后用70%乙醇洗脱,四逆汤精制样品的TLC测试结果表明,经大孔树脂处理后3味主要成分基本能检出,树脂处理前后样品的HPLC图谱峰位、峰形基本相似,但TLC及HPLC图谱中乌头碱特征峰不明显。
使用方法
在运用大孔吸附树脂进行分离精制工艺时,其大致操作步骤为:大孔吸附树脂预处理——树脂上柱——药液上柱——大孔吸附树脂的解吸——大孔吸附树脂的清洗、再生。由于每一个操作单元都会影响到大孔吸附树脂的分离效果,因此对大孔吸附树脂的精制工艺和分离技术的要求就相对较高。
使用注意事项
该类树脂在通常的储存及使用条件下性质十分稳定,不溶于水、酸、碱及有机溶剂,也不与它们发生化学反应。
搬运、装卸操作应轻缓,堆放稳定、规则,勿猛烈摔打。如洒落会导致地面湿滑,要注意防止滑倒。
储存此种材料的储存温度请勿高于90℃,最高使用温度180℃。
湿态0℃以上保存。储存状态下请保持包装密封完好,以防失水;如发生干燥失水,应以乙醇浸泡干态树脂约2小时,用清水洗干净后再重新包装或使用。
严防冬季将球体冻裂。如发现冻结现象,请于室温下缓慢融化。
运输或储存过程中严防和有异味、有毒物品及强氧化剂混杂堆放。
前景
大孔吸附树脂纯化技术在中药制药工业中是有发展前景的实用新技术之一,尽管它在中药有效成分的精制纯化方面还存在着一些问题。随着研究的深入以及相关标准、法规的进一步完善,一定会开发出高选择性的树脂,以进一步提高中药有效成分的提取、分离、富集效率。