导航:首页 > 耗材问题 > 抽乙烯基树脂用什么泵

抽乙烯基树脂用什么泵

发布时间:2024-10-27 06:33:31

1. 乙烯基树脂的技术的发展

1低收缩型乙烯基树脂的发展
乙烯基酯树脂作为不饱和聚酯树脂的范畴,活性较高,固化反应速度较快,造成乙烯基酯树脂固化后有较大的固化收缩率,一般不饱和聚酯树脂(包括常规乙烯基树脂)固化时收缩较大,可达到7-10%左右的体收缩,随着国内外对于高性能树脂技术要求的提高,希望寻找一些固化收缩较低的乙烯基酯树脂,这是一个21世纪初期国内外许多厂家努力寻求的技术突破点。 低收缩树脂的机理较为复杂,而原来一些厂家为了克服树脂的固化收缩,通过加入低收缩添加剂(LPA)的方法来达到目的,但有其应用的局限性,而更多的厂家是努力通过树脂合成方法以及分子设计水平上来解决这个技术问题,
超低收缩环氧乙烯基酯树脂以其具有的足够的机械强度和刚度、足够的尺寸稳定性、耐热循环、耐腐蚀的独特性能更好的满足高品质FRP产品的要求。
2耐冲击型乙烯基酯树脂:
乙烯基酯目前应用最多的场合是耐腐蚀场合,但是由于乙烯基树脂中具有较多的仲羟基,可以改善对玻璃纤维的湿润性与粘结性,提高了层合制品的力学强度;另外在分子两端交联,因此分子链在应力作用下可以伸长,以吸收外力或热冲击,表现出耐微裂或开裂。因此,乙烯基树脂在一些要求高力学性能、耐冲击场合中得到应用,但是常规的乙烯基树脂在耐力学冲击方面还是有待于提高的,尤其是采用富马酸性改性的一些乙烯基树脂,因为该类型树脂的固化交联密度高,交联点间的分子链段较短,所以耐冲击性能较差。在这些树脂的合成设计中,要求树脂分子主链上的醚键较多,这样能够充分的提高树脂的耐冲击性,2013年又出现了另外一种方式,即在通过橡胶改性,即采用端羧基丁腈橡胶(CTBN)和丁腈橡胶(BNR)增韧甲基丙烯酸型环氧乙烯基酯树脂,在此之后国内外也就后种方法作了不少的工作,自然橡胶改性乙烯基树脂的延伸率等得到大幅度的提高,可以达到12%。
一般乙烯基树脂的冲击强度(无缺口)不大于14.00 KJ/M2,而一些21世纪新开发的耐冲击型非橡胶改性乙烯基树脂可以达到22 KJ/M2以上,橡胶改性的乙烯基树脂可达到25KJ/M2,这样这些耐冲击乙烯基树脂就可以很好的应用于一些高耐冲击的FRP制作,如运动雪撬、运动头盔等。
3 增稠用乙烯基酯树脂
作为一种高性能的不饱和树脂,乙烯基树脂的增稠特性一直是各厂家研究的方向,这是因为BMC/SMC的独特应用特性得到广大客户的认可,尤其随着BMC/SMC在汽车零部件上的应用,增稠型乙烯基树脂能够较通用的不饱和树脂承受更高的冲击力,并具有良好的抗蠕变性和抗疲劳性。这些零部件包括车轮、座椅、散热架、栅口板、发动机阀套等。当然,增稠型乙烯基树脂能够广泛应用于电绝缘、工业用泵阀的制作、高尔夫球头等。
作为一种增稠用乙烯基树脂,自然要求树脂具有以下的特点:①与增强材料和填料的良好浸润性;②初始的低粘度和快速增稠特性;③良好的力学特性,包括韧性和耐疲劳特性等;④较长的存放周期;⑤较低的固化放热峰和较低的苯乙烯挥发等。为了达到使用效果,在乙烯基树脂的合成研究中,原来较通用的方法是:在乙烯基酯分子上引入酸性官能团(羧酸),再利用这些羧基与碱土金属氧化物(如氧化镁、氧化钙等),但这种方法增稠时间长,一般需要几天时间,况对含水量敏感。由此也发展了另外一种方法,即用聚异氰酸盐和多元醇反应以产生网状结构,从而达到树脂的快速稠化,该方法可适合于低压成型,具有粘度控制稳定、对温湿度要求低、存放期长的特点,同时制品的层间结合强度高的特点,同时也可以用带过量醇的低酸值树脂作稠剂。
4耐高温型乙烯基树脂
乙烯基树脂的分子骨架是环氧树脂,若采用酚醛环氧树脂作为原料,则合成的NOVOLAC型乙烯基树脂具有良好的耐腐蚀性、耐溶剂性及耐高温型,我们对国内外的知名厂家的酚醛环氧乙烯基酯树脂按中国国家有关标准测试,结果表明,这些树脂的热变形温度(HDT)均在132-137℃之间,而国内一些厂家的酚醛环氧乙烯基树脂的热变形温度则更低,要低于125℃,但在一些工业实践应用中,刚对树脂的耐热性提出了更高的要求,而21世纪初期国内外少数厂家如上海富晨提供的高交联密度型乙烯基树脂898的热变形温度可达到150℃以上,该类型树脂分子结构已作改性,优化了树脂的耐热特性,苯乙烯含量也作了合理调满足实际使用要求。较常规的酚醛环氧乙烯基树脂具有更高的耐温温度,可长期应用于200℃气相的强腐蚀环境,同时我们的使用经验表明,该类型型树脂可在2-3min内承受300℃的温度冲击,该独特应用是绝缘应用中,可完全达到C级绝缘等级以上。
该类型树脂可以广泛的应用于一些冶炼、电力脱硫(FGD)设备等高温应用,如冷却塔、烟囱和化学管道等,同时该类型树脂也具有耐强溶剂、强氧化性介质的特点。
5光敏乙烯基树脂
由于乙烯基树脂树脂的中的不饱和双键在分子链端,由于活性较高,同时配以分子设计,如采用高环氧值的环氧树脂,采用丙烯酸取代甲基丙烯基酸合成后的乙烯基树脂,加入光引发剂(如苯醌、苯偶姻醚等),用以吸收紫外线能量,并传递给树脂系统,而使乙烯基树脂进行聚合固化。
此类树脂可以用于印刷、光敏油墨等,在油漆工业上用作光敏涂料,在无线电工业中用作PCB上的光致抗蚀膜。另外,在拉挤工艺中,如采用光敏乙烯基树脂,则可极大的提高拉挤速度,如在光缆芯拉挤工艺中,速度可以达到10m/min。
6气干性
乙烯基酯树脂与不饱和聚酯树脂一样,常温固化时,制品表面有发粘现象,给应用带来不便。主要原因是由于空气中氧气参加了乙烯基酯树脂表面的聚合反应。为克服此缺点,科研人员开发出了多种有效方法。其中之一就是采用在乙烯基酯树脂结构中接入烯丙基醚(CH2=CH—CH2—O—)基团的方法来合成气干性乙烯基酯树脂。该种树脂适合于制作高档气干性胶衣、涂层、封面料等。
值得注意的是烯丙基醚在树脂中的含量有一合适的值,太小了树脂不能很好地吸氧,太大则由于“自动阻聚”作用,气干性也会下降。
7 低苯乙烯挥发技术
乙烯基树脂一般含有35%左右的苯乙烯单体,而苯乙烯的蒸汽压较低,因此在手糊成型和喷射成型中,树脂是一层层地铺复于开口模具上的,特别是喷射成型,树脂一部分成雾状,因而在树脂充分固化之前,苯乙烯不断从树脂中挥发出来,这样在造成苯乙烯损失的同时,更是污染了环境,也是造成了对工人的健康损害,因此各国相继提高了对于苯乙烯阈限值(TLV)的要求,因此对于以苯乙烯为稀释单体的不饱和树脂包括乙烯基树脂,要努力寻求一种低苯乙烯挥发技术(LSE)以解决这个问题,原来一些厂家和国家采用添加石蜡等作为挥发抑制剂,但易造成铺层间的分层,但对于21世纪早期的发展的趋势是:一是采用一种附着促进剂的化合物,可为丙烯酸、带2个烃基(含双键的疏水醚或酯)等;二是采用蒸汽压相对较高的单体,如甲基苯乙烯或乙烯基甲苯等;三是分子结构等方式,或是在保持总体性能的同时使主链分子的缩短,以降低苯乙烯用量,或是通过在分子链段上引入其它基团或者是链段,使树脂内部分子间的相互作用进一步降低苯乙烯的挥发等。在多年的研究和试验基础上,世界上许多的生产商相继推出了各具特色的低苯乙烯挥发性技术。这个技术可广泛的应用于树脂胶衣、绝缘应用等方面,尤其是在中高温成型的绝缘应用。
8乙烯基树脂品种衍化
当前,乙烯基树脂由于共较好的耐腐蚀特性和改良的工艺特性,而成功的大量应用于防腐蚀场合,包括耐腐蚀FRP制作、防腐蚀工程等,但是在一些非耐腐蚀场合并有高力学性能要求的复合材料制作时,目前国内外客户只能选择环氧乙烯基树脂,就就实际上造成了树脂应用或设计上的浪费,因此国内外一些厂家在努力寻找一种保持乙烯基树脂的力学性能、合理成本的新型材料,部分公司通过新研发及时的推出了一种新型的高性能不饱和树脂,称乙烯基聚酯树脂,英文名为vinyl polyester resin,国内简称“VPR“,该树脂综合了乙烯基酯树脂和通用不饱和树脂的特点,从而让用户有更多的选择。
VPR乙烯基聚酯树脂是一种溶于苯乙烯液含有不饱和双键的特殊结构的不饱和聚酯树脂,VPR乙烯基聚酯树脂具有较好的耐蚀性能,优于间苯型不饱和树脂,力学性能与标准型环氧乙烯基树脂相当的,尤其是耐疲劳性能和动态载荷性能;另外,较通用树脂,VPR乙烯基聚酯树脂又具有良好的耐候性能,同时VPR乙烯基聚酯树脂又具有良好的玻纤浸润性能和工艺性能,适合于各种FRP成型工艺,包括纤维缠绕、拉挤、手糊、喷射等各种复合材料工艺。
由于VPR乙烯基聚酯树脂的独特性能以及较为合理的成本,使该新型材料具有广泛的应用前景:①混凝土中的玻璃钢加强筋;②船舶制品中的结构材料;③大型FRP产品制作中的结构层材料,尤其是整体现场大罐制作中代替常的规乙烯基树脂结构层;④耐疲劳FRP拉挤型材,如运动FRP单杠等。

2. 玻璃纤维短切毡工艺流程怎么写

纤维增强环氧树脂复合材料成型工艺
一、前言
相比传统材料,复合材料具有一系列不可替代的特性,自二次大占以来发展很快。尽管产量小(据法国Vetrotex公司统计,2003年全球复合材料达700万吨),但复合材料的水平已是衡量一个国家或地区科技、经济水平的标志之一。美、日、西欧水平较高。北美、欧洲的产量分别占全球产量的33%与32%,以中国(含台湾省)、日本为主的亚洲占30%。中国大陆2003年玻班纤维增强塑料(玻璃纤维与树脂复合的复合材料、俗称“玻璃钢”)逾90万吨,已居世界第二位(美国2003年为169万吨,日本不足70万吨)。
复合材料主要由增强材料与基体材料两大部分组成:
增强材料:在复合材料中不构成连续相赋于复合材料的主要力学性能,如玻璃钢中的玻璃纤维,CFRP(碳纤维增强塑料)中的碳纤维素就是增强材料。
基体:构成复合材料连续相的单一材料如玻璃钢(GRP)中的树脂(本文谈到的环氧树脂)就是基体。 y
按基体材料不同,复合材料可分为三大类:
树脂复合材料
金属基复合材料
无机非金属基复合材料,如陶瓷基复合材料。
本文讨论环氧树脂基复合材料。
1、为什么采用环氧树脂做基体?
固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%-8%;
粘结力强;
有B阶段,有利于生产工艺;
可低压固化,挥发份甚低;
固化后力学性能、耐化学性佳,电绝缘性能良好。
值得指出的是环氧树脂耐有机溶剂、耐碱性能较常用的酚醛与不饱和聚酯权势脂为佳,然耐酸性差;固化后一般较脆,韧性较差。
2、环氧玻璃钢性能(按ASTM)
以FW(纤维缠绕)法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。
表1 GF/EPR与钢的性能比较

玻璃含量 GF/EPR(玻纤含量80wt%) AISI1008 冷轧钢
相对密度 2.08 7.86 V
拉伸强度 551.6Mpa 331.0MPa
拉伸模量 27.58GPa 206.7GPa
伸长率 1.6% 37.0%
弯曲强度 689.5MPa
弯曲模量 34.48GPa
压缩强度 310.3MPa 331.0MPa
悬臂冲击强度 2385J/m
燃烧性(UL-94) V-O
比热容 535J/kg•k 233J/kg•k
膨胀系数 4.0×10-6k-1 6.7×10-6k-1
热变形温度 204ºC(1.82MPa)
热导率 1.85W/m•k 33.7W/m•k
介电强度 11.8×106V/m
吸水率 0.5%(24h)

表2 几种常用材料与复合材料的比强度和比模量

材料名称 密度g/cm3 拉伸强度×104MPa 弹性模量×106MPa 比强度×106cm 比模量×109cm
钢 7.8 10.10 20.59 0.13 0.27
铝 2.8 4.61 7.35 0.17 0.26
钛 4.5 9.41 11.18 0.21 0.25
玻璃钢 2.0 10.40 3.92 0.53 0.21
碳纤维/环氧树脂 1.45 14.71 13.73
碳纤维/环氧树脂 1.6 1049 23.54
芳纶纤维/环氧树脂 1.4 13.73 7.85
硼纤维/环氧树脂 2.1 13.53 20.59
硼纤维/铝 2.65 9.81 19.61 0.75 c2

二、纤维增强环氧树脂复合材料成型工艺简介
1、手糊成型 (hand lay up)
(1)概要 依次在模具表面上施加
脱模剂
胶衣
一层粘度为0.3-0.4PaS的中等活性液体热固性树脂(须待胶衣凝结后)
一层纤维增强材料(玻纤、芳纶、碳纤维......),纤维增强材料有表面毡、无捻粗纱布(方格布)等几种。以手持辊子或刷子使树脂浸渍纤维增强材料,并驱除气泡,压实基层。铺层操作反复多次,直到达到制品的设计厚度。
树脂因聚合反应,常温固化。可加热加速固化。
(2)原材料 F gb NG ^
树脂 不饱和聚酯树脂、已烯基酯树脂、环氧树脂、酚醛树脂等。
纤维 玻纤、碳纤、芳纶等。虽然厚的芳纶织物难于手工将树脂浸透,亦可用。
芯材 任意。
(3)优点
1)适合少量生产;
2)可室温成型,设备投资少,模具折旧费低;
3)可制造大型制品和型状复杂产品;
4)树脂和增强材料可自由组合,易进行材料设计;
5)可采用加强筋局部增强,可嵌入金属件;
6)可用胶衣层获得具有自由色彩和光泽的表面(如开模成型则一面不平滑);
7)玻纤含量较喷射成型高。
无捻粗纱布 50%左右
织物 35%-45%
短切原丝毡 30%-40%
(4)缺点
1)属于劳动密集型生产,产品质量由工人训练程度决定; ;
2)玻纤含量不可能太高;树脂需要粘度较低才易手工操作,溶剂/苯乙烯量高,力学与热性能受限制;
3)手糊用树脂分子量低;通常可能较分子量高的树脂有害于人的健康和安全。
(5)典型产品
舰艇、风力发电机叶片、游乐设备、冷却塔壳体、建筑模型。
2、树脂传递成型(RTM)
(1)概要
RTM是一种闭模低压成型的方法。
将纤维增强材料置于上下模之间;合模并将模具夹紧;在压力下注射树脂;树脂固化后打开模具,取下产品。
树脂胶凝过程开始前,必须让树脂充满模腔,压力促使树脂快速传递到模个内,浸渍纤维材料。
RTM是一低压系统,树脂注射压力范围0.4-0.5MPa,当制造高纤维含量(体积比超过50%)的制品,如航空航天用零部件时,压力甚至达0.7MPa。
纤维增强材料有时可预先在一个模具内预成型大致形状(带粘结剂),再在第二个模具内注射成型。 为了提高树脂浸透纤维能力,可选择真空辅助注射(VARI-vacuum saaistedrsin injection)。
注意树脂一经将纤维材料浸透,树脂注口要封闭,以便树脂固化。注射与固化可在室温或加热条件下进行。模具可以复合材料与钢材料 制作。若采用加热工艺。宜用钢模。
(2)原材料
树脂:一般多用环氧、不饱和聚酯、乙烯基脂及酚醛;当加温时,高温树脂台双马列来酰亚胺树脂亦可用。
法国 Vetrotex公司开发了热塑性树脂RTM。
纤维:任意。常用玻纤连续毡、缝编材料(其纤维间的缝隙得于树脂传递)、无捻粗纱布;玻纤与热塑性塑料的复合纱及其织物与片材(法国Vetrotex商品名TWINTEX)。
芯材:不用蜂窝,因蜂窝空格全被树脂填满,压力会导致其破坏。可用耐溶剂发泡材料PU、PP、CL、VC等。
(3)优点
1)制品纤维含量可较高,未被树脂浸得部分非常少;
2)闭模成型,生产环境好;
3)劳动强度低,对工人技术熟练程度的要求也比手糊与喷射成型低;
4)制品两面光,可作有表面胶衣的制品,精度也比较高;
5)成型周期较短;
6)产品可大型化;
7)强度可按设计要求具有方向性;
8)可与芯村、嵌件一体成型;
9)相对注射设备与模具成本较低。
(4)缺点
1)不易制作较小产品;
2)因要承压,故模具较手糊与喷射工艺用模具要重和复杂,价位也高一些;
3)能有未被浸渍的材料,导致边角料浪费。
(5)典型产品
小型飞机与汽车零部件、客车座椅、仪表壳
3、纤维缠绕(FW)
(1)概要
通常采用直接无捻粗纱作为增强材料。粗纱排列在纱架上。粗纱自纱架上退绕,通过张力系统、树脂槽、绕丝嘴,由小车带动其往复移动并缠绕在回转的芯轴(模)上。纤维缠绕角度与纤维排列密度根据强度设计,并由芯轴(模)转速与小车往复速度之比,精确地控制。固化后将缠绕的复合材料制品脱模。
对某些两端密闭的产品不用脱模,芯模即包在复合材料产品内,作为内衬。
(2)原材料
树脂:任意。环氧、不饱和聚酯、乙烯基脂及酚醛树脂。
纤维:任意。无捻粗纱、缝编和无纺织物。生产管罐时,常用表面毡、短切原丝作为内衬材料。
芯材:可用。虽然复合材料制品通常是单一壳体,一般不用。
(3)优点
1)因为纤维迳直以合理的线形铺设,承担负荷,故复合材料制品的结构特性可非常高;
2)由于同内衬层组合,可制得耐腐蚀、耐压、耐热的制品;
3)可制造两端封闭的制品;
4)铺放材料快、经济、用无捻粗纱,材料费用低;
5)可采用树脂计量,然浸胶后的纤维通过挤胶或口模,控制树脂含量;
6)可大理生产和自动化;
7)机械成型,复合材料材质及方向性均匀,质量稳定。
(4)缺点
1)制品形状限于圆柱形或其它回转体;
2)纤维不易沿制品长度方向精确排列;
3)对于大型制品,芯模成本高;
4)成品外表不是“模制”的,不尽人意;
5)对于承受压力的制品,如选择树脂不合适或无内衬,就易发生渗漏。
(5)典型产品 '
管道、贮罐、气瓶(消防呼吸气瓶、压缩天然气瓶等)、固体火箭发动机壳体。
4、RIM(Reaction Injection Molding一反应注射成型)
(1)概要
将两种或两种以上的组分在混合区低压(0.5MPa)混合后,即在低压(0.5-1.5MPa)下注射到闭模中反应成型,此即为工艺过程。若组分一为多元醇,一为异氰酸酯,则反应生成聚氨酯 。为增加强度,可直接在一种组分内行加入磨碎玻纤原丝和(或)填料。弈可采用长纤维(如连续纤维毡、织物、复合毡、短切原丝等的预成型物等)增强,在注射前,将长纤维增强材料预先置模具内。用此法可得到高力学性能的制品。这种工艺称为SRIM(Structural Reaction Injection Molding-结构反应注射成型)。
(2)原材料
树脂:常用聚氨酯体系或聚氨酯/脲混合体系;亦可采用环氧、尼龙、聚酯等基本;
纤维:常用长0.2-0.4mm的磨碎玻璃纤维;
芯材:不用。
(3)优点
1)制造成本比热塑性塑料注射工艺低;
2)可制造大尺寸、开头复杂的产品;
3)固化快,适于快速生产。
(4)缺点
采用磨碎玻璃纤维增强原料费用高,荐用矿物复合材料取代之。
(5)主要产品
汽车仪表盘、保险杠、建筑门、窗、桌、沙发、电绝缘件。
5、拉挤成型 (Pultrusion)
(1)概要
主要采用玻璃纤维无捻粗纱(使用前预先放置在纱架上),它提供纵向(沿生产线方向)增强。
其它类型的增强有连续原丝毡、织物等,它们补充横向增强,表面毡则用于提高成品表面质量。树脂中可加入填料,改进型材料性能(如阻燃),并降低成本。
拉挤成型的程序是
1)使玻璃纤维增强材料浸渍树脂;
2)玻璃纤维预成型后进入加热模具内,进一步浸渍(挤胶)、基本树脂固化、复合材料定型;
3)将型材按要求长度切断。 现在已有变截面的、长度方向呈弧型的拉挤制品成型技术。 拉挤成型将增强材料浸渍树脂有两种方式:
胶槽浸渍法:通常采用此法,即将增强材料通过树脂槽浸胶,然后进入模具。此法设备便宜作业性好,适于不饱和聚酯树脂,乙烯基酯树脂。
注入浸渍法(图6):玻纤增强材料进入模具后,被注入模具内的树脂所浸渍。此法适于凝胶时间短、粘度高、生产附产物的树脂基体,如酚醛、环氧、双马来酰亚胺树脂。
(2)原材料
树脂:常用不饱和聚酯树脂、环氧树脂、乙烯基酯树脂、酚醛树脂;
纤维:拉挤用玻璃纤维无捻粗纱、连续毡、缝编毡、缝编复合毡、织物、玻纤表面毡、聚酯纤维表面毡等;
芯材:一般不用,现有以PU发泡材料为芯材,外为连续拉挤框型型材,作为保温墙板的。
(3)优点
1)典型拉挤速度0.5-2m/min,效率较高,适于大批量生产,制造长尺寸制品;
2)树脂含量可精确控制;
3)由于纤维呈纵向,且体种比可较高(40%-80%),因而型材轴向结构特性可非常好;
4)主要用无捻粗纱增强,原材料成本低,多种增强材料组合使用,可调节制品力学性能;
5)制品质量稳定,外观平滑。
(4)缺点
1)模具费用较高;
2)一般限于生产恒定横截面的制品。
(5)典型产品
建筑屋顶横梁、椽子、门窗框架型材、墙板、石油开采抽油杆、帐篷竿、梯子、桥梁、工具把、手机微波站罩壳、汽车板簧、传动轴、电缆管、光纤光缆芯、钓鱼竿、隔栅、汽车空调器罩、扩轨罩。 0}1x p* V
6、真空袋法法成型(Vacuum bag process)
(1)概要 :
此法是手糊法与喷射法的延伸。将手糊或喷射好的积层在树脂的A阶段与模具在一 起,在积层上覆以橡胶袋,周边密封,在后用真空泵抽真空,积层从而受到不大于1个气压的压力,而被压实、成型。
(2)原材料
树脂:主要采用环氧树脂、酚醛树脂。不饱和聚酯树脂与乙烯基酯树脂则因真空泵将树脂中的苯乙烯(交联剂)过度抽出,可能会造成问题,故一般不用;
纤维:同手糊法;
芯材:任意。
(3)优点
1)采用普通的湿法铺层技术,通常可获得高纤维含量的制品;
2)可制造大尺寸产品;
3)产品两面光;
4)较湿法铺层浸胶孔隙率低;
5)由于压力,树脂流经结构纤维,纤维得以较好地浸渍树脂;
6)有利于操作人员健康和安全;真空袋减少了固化时逸出的挥发性物质。
(4)缺点
1)额外的工艺过程增加了劳动力和袋材成本;
2)要求操作人员有较高的技术熟练水平;
3)树脂混合和含量控制基本上仍然取决于操作人员的技术;
4)生产效率不高。
(5)典型产品
艇、赛车、芯材粘结、飞机鼻锥雷达罩、机翼、方向舵。
7、树脂膜熔浸成型(RFI-Resin Film Infusion)
(1)概 要
将干强物与树脂片(树脂片系放在一层脱模纸上提供)交替铺放在模具内。铺层被真空袋包覆,藉真空泵抽真空,将干织物内空气抽出。然后加热,令树脂熔化并流浸已抽出空气的织物,然后经过一事实上时间即固化。
(2)原材料
树脂:一般仅用环氧树脂; ¬
纤维:任意;
芯材:许多种芯材都可以使用,由于工艺过程中温度高,对PVC泡沫需要专门处理,以免泡沫损坏。
(3)优点
1)空隙率低,可精确获得高的纤维含量;
2)铺层清洁,有利于健康和安全(似预浸);
3)可较预浸法成本低,此为主要的优点;
4)由于树脂仅能过织物厚度方向传递,故树脂未浸到白斑区可较SCRIMP(西曼复合材料公司树脂参入成型法—Seeman Composite Resin Infusion Molding Process)少。
(4)缺点
1)目前仅用于宇航工业,还未推广;
2)虽然宇航工业用高压釜系统产非总是需要,但加热室和真空袋系统对于复合材料固化,总是不可少的;
3)模具要求能经受树脂膜片的工艺温度(低温固化即需60-100ºC);
4)要求所用芯材能经受工艺温度和压力;
(5)典型产品
飞机雷达罩、舰艇声纳整流罩。
8、预浸料(高压釜)成型
(1)概要
预先在加热、加压或使用溶剂的条件下,将织物和(或)纤维预先用预催化树脂预浸渍。固化剂大多能在环境温度下,让预浸材料贮存几周或几个月,仍能保质使用。当要延长保持期,材料须在冷冻条件下贮存。树脂通常在环境温度下呈临界固态。故触摸预浸材料时有轻微的黏附感,象胶带似的。制作单向预浸渍材料的纤维直接由纱架下来,与树脂结合。预浸渍材料用手或机械铺于模具表面,通过真空袋抽真空,并通常加热到120-180ºC。使树脂重新流动,并最终固化。盛开附加压力通常藉助高压釜(实际上是一座压力加热罐)提供,它能对铺层施加达5个大气压的压力。
(2)原材料
树脂:通常用环氧树脂,不饱和聚酯树脂、酚醛树脂及高温树脂,如聚酰亚胺、氰酸酯、双马来酰亚胺树脂等;
纤维:任意。虽然由于在工艺过程中,高温分对芯材有些影响,需要采用某些专门的泡沫芯材。
(3)优点
1)预浸材料制造人员可精确地调整树脂/固化剂水平和树脂在纤维中的含量;可以可靠地得到高纤维含量。
2)材料于操作人员十分安全,无碍健康,操作清洁;
3)单向带纤维成本最低,因为毋须将纤维预先转为织物的二次加工过程;
4)由于制造过程采用可渗透的高粘度树脂,树脂化学性能力学和热性能可以是最适宜的;
5)材料有效时间长(室温下可保质数月),这意味着可优化结构、复合材料易铺层;
6)可能实现自动化和节省劳动力。
(4)缺点
1)对于预浸织物,材料成本高;
2)通常要对高压釜固化复合材料制品,耗费大、作业慢、制品尺寸受限制;
3)模具需能承受作业温度;
4)芯材需要承受作业温度和压力。
(5)典型产品
飞机结构复合材料(如机翼和尾翼)、卫星与运载火箭结构件(太阳能电池基板、夹层结构板、卫星接口支架、火箭整流罩等)、赛车、运动器材(如网球拍、滑雪板等)。
9、低温 固化预浸料成型
(1)概要
低温固化预浸料完全按通常的预浸料方法制备,但树脂的化学性质使其得以在60-100ºC温度下固化。在60ºC时,材料可操作保持期可小到限于1个星期,但亦可延长到几个月。树脂系统的流动截面适于采用真空袋压力,避免采用高压釜。
(2)材料 |
树脂:一般仅采用环氧树脂;
纤维:任意,同通常的预浸料;
芯材:任意,虽然一般 的PVC泡沫需要特别注意。
(3)优点
1)具有传统预浸料法所具备的(1)-(6)条优点;
2)模具材料较便宜,如木材亦可用,因其固化温度较低故;
3)可容易地制造大型结构。因为仅需真空袋压力;固化温度低,可采用简单的热空气循环加热室(经常就地建造大于制品的加热室 )
4)可采用普通的PVC泡沫芯材,略作处理即可;
5)能耗低。
(4)缺点
1)材料成本仍高于预浸织物;
2)需加热室和真空袋系统,以固化制品;
3)模具需能经受高于环境温度的温度(常用60-100ºC);
4)仍有能耗,因需高于环境温度固化。
(5)典型产品
高性能风力发电机叶片、赛艇、救生艇、火车用零部件。
10、SCRIMP,RIFT,VARTM

图11 SCRIMP,RIFT,VARTM示意图
(1)概要
SCRIMP(Seeman Composite Infusion Molding Process—西曼复合材料公司树脂渗透成型法),RIFT(Resin Infusion umder Flexibe Tooling—柔性模具树脂渗透法) ,VARTM(Vscuum Assisted Transfer Molding—真空辅助树脂传递成型)这三种工艺原理相似。
将织物作为干铺层材料入模内,如同RTM。然后覆以剥离保护层和缝编非结构织物。整个铺层用真空袋覆罩好。袋无渗漏后,让树脂流到积层。树脂很容易流经非结构织物而在整个铺层分布。SCRIMP法在真空袋与铺层之间可置加压模块,利于提高制作表观与结构密实度。
(2)材料
树脂:常和环氧树脂、不饱和聚酯和乙烯基酯树脂;
纤维:任意种类普通织物。这些工艺方法缝编材料很好用,因其间隙使得树脂快速流动;
芯材:除蜂窝外,各种芯材均可用。
(3)优点
1)同RTM,但制品仅一面光,不似RTM两面光;
2)由于模具一半是真空袋,主模具仅需较低强度,故模具成本甚低;
3)可制造大尺寸产品;
4)通常的湿法铺层工具可改进以用于这些成型法;
5)一次作业即可生产芯材结构。
(4)缺点
1)要完成好相对复杂的操作过程;
2)树脂粘度必须非常低,限制了制品的力学性能;
3)铺层未浸到树脂而造成的废品浪费甚大;
4) SCRIMP的一些工艺要素已被专利所限。
(5)典型产品
小艇半成品、列车和卡车车身面板。

3. 等离子清洗机有什么用

等离子清洗是等离子表面改性的其中较为常见的一种方式。达因特等离子清洗的作用主要是:

(1)对材料表面的刻蚀作用--物理作用

等离子体中的大量离子、激发态分子、自由基等多种活性粒子,作用到固体样品表面,不但清除了表面原有的污染物和杂质,而且会产生刻蚀作用,将样品表面变粗糙,形成许多微细坑洼,增大了样品的比表面。提高固体表面的润湿性能。

(2)激活键能,交联作用

等离子体中的粒子能量在0~20eV,而聚合物中大部分的键能在0~10eV,因此等离子体作用到固体表面后,可以将固体表面的原有的化学键产生断裂,等离子体中的自由基与这些键形成网状的交联结构,大大地激活了表面活性。

(3)形成新的官能团--化学作用

如果放电气体中引入反应性气体,那么在活化的材料表面会发生复杂的化学反应,引入新的官能团,如烃基、氨基、羧基等,这些官能团都是活性基团,能明显提高材料表面活性。

4. pvc是什么材料有毒吗

有,PVC是聚氯乙烯的简称。聚氯乙烯也是经常使用的一种塑料,它是由聚氯乙烯树脂、增塑剂和防老剂组成的树脂,本身并无毒性。但所添加的增塑剂、防老剂等主要辅料有毒性。

日用聚氯乙烯塑料中的增塑剂,主要使用对苯二甲酸二丁酯、邻苯二甲酸二辛酯等,这些化学品都有毒性,聚氯乙烯的防老剂硬脂酸铅盐也是有毒的。含铅盐防老剂的聚氯乙烯(PVC)制品和乙醇、乙醚及其他溶剂接触会析出铅。

含铅盐的聚氯乙烯用作食品包装与油条、炸糕、炸鱼、熟肉类制品、蛋糕点心类食品相遇,就会使铅分子扩散到油脂中去,所以不能使用聚氯乙烯塑料袋盛装食品,尤其不能盛装含油类的食品。另外,聚氯乙烯塑料制品在较高温度下,如50℃左右就会慢慢地分解出氯化氢气体,这种气体对人体有害,因此聚氯乙烯制品不宜作为食品的包装物。

(4)抽乙烯基树脂用什么泵扩展阅读

PVC的用途:

当增塑剂加入量达30%~40%时,便制得软质聚氯乙烯,其延伸率高,制品柔软,并具有良好的耐蚀性和电绝缘性,常制成薄膜,用于工业包装、农业育秧和日用雨衣、台布等,还可用于制作耐酸碱软管、电缆包皮、绝缘层等由于化学稳定性高,所以可用于制作防腐管道、管件、输油管、离心泵和鼓风机等。

聚氯乙烯的硬板广泛应用于化学工业上制作各种贮槽的衬里,建筑物的瓦楞板,门窗结构,墙壁装饰物等建筑用材。由于电气绝缘性能优良,可在电气、电子工业中,用于制造插头、插座、开关和电缆。

在日常生活中,聚氯乙烯用于制造凉鞋、雨衣、玩具和人造革等!现在聚氯乙烯还用到太阳能热水袋中 通过它吸光的特性 做成洗澡用的热水袋。

阅读全文

与抽乙烯基树脂用什么泵相关的资料

热点内容
登海树脂包衣掺混肥 浏览:290
抽水机饮水机荣事达怎么样 浏览:819
E44树脂与EP树脂 浏览:582
绿藻对污水处理的影响 浏览:408
夏普净化器看条码怎么看生产日期 浏览:482
污水管道人工暗挖 浏览:901
纯水机储水桶满水废水一直流 浏览:793
05分子蒸馏设备生产厂家 浏览:89
安吉尔ro膜滤芯 浏览:838
干蒜片切片废水cod 浏览:396
过滤器里黑色的碳 浏览:613
超滤广泛使用在什么方面 浏览:363
罐头怎么做纯净水 浏览:881
小车更换机油滤芯需要多少钱 浏览:979
超滤膜的精密度 浏览:179
地下式污水处理厂图片 浏览:61
鱼糕废水 浏览:522
瓜尔胶能增调树脂液吗 浏览:747
踏板空气滤芯全套怎么换 浏览:262
只有饮水机没桶怎么用 浏览:649