导航:首页 > 耗材问题 > 反渗透膜能过滤聚乙烯醇吗

反渗透膜能过滤聚乙烯醇吗

发布时间:2024-10-24 21:48:45

Ⅰ ro反渗透膜 和 超滤膜的区别

超滤膜rightleder的结构有对称和非对称之分。前者是各向同性的,没有皮层,回所有方向上的孔隙都是一样的答,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。

Ⅱ 润年华壁挂冷热一体直饮机是净水机还是纯水

一般是RO纯水机,也可以接成超滤机,具体要看里面的配置是RO膜还是超滤内膜。

1、超滤膜容技术:超滤膜根据水流方向又分为内压膜和外压膜,膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等孔径为0.1微米甚至更小,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程,超滤膜技术因不需要排废水而曾经风靡一时。寿命一般为24个月。

2、RO反渗透膜技术:是利用渗透压力差为动力的膜分离过滤技术,孔径约0.0001微米,对水压要求更高,因此需要用增压泵增加水压,同时,需要不停的排出过滤不掉的无机盐、重金属离子、有机物、胶体、细菌、病毒等杂质,因此废水量很大。寿命一般为24-36个月。

Ⅲ 超滤膜在净水器中起到了什么功能

起到了净化功能。

超滤膜筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液。

因而实现对原液的净化、分离和浓缩的目的。每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过。

而已知世界最小细菌的体积在0.2微米,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。

(3)反渗透膜能过滤聚乙烯醇吗扩展阅读

超滤膜在使用后必须要定时的清洗,不然就会影响超滤膜的使用性能与寿命,定时的清洗也能保持超滤膜具有良好的通透性,清洗的方法一般会根据超滤膜的性质与处理料液的性质来决定,不过大多数情况下是用清水来清洗,然后依据情况不同采用不同的化学制剂来清洗。

具体的可分为以下几种情况,电涂料材料可以选用含离子的增溶剂来清洗;水溶性的涂料可采用“桥键”型溶剂清洗;食品工业蛋白质沉淀可以采用阮酶溶剂、磷酸盐、硅酸盐为基础的碱性去垢剂清洗;膜表面的无机盐沉淀可利用EDTA之类的螯合剂、酸、碱来清除。

Ⅳ 纳透膜是什么膜,和反渗透膜和超滤膜的区别是什么

纳滤和反渗透都是复合膜,超滤是聚烯烃,聚砜类。纳滤主要去除二价离子。钠版透膜:孔径在权1nm以上,一般1-2nm。是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。 最明显的区别就是,孔径很小,一般用来做离子过滤的。 反渗透膜 实现反渗透的核心元件,是一种模拟生物半透膜制成的具有一定特性的人工半透膜。一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。有的高分子材料对盐的排斥性好,而水的透过速度并不好。有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。因此一种满意的反渗透膜应具有适当的渗透量或脱盐率。

Ⅳ ro渗透膜和中空纤维超滤膜的区别

ro反渗透膜和中空纤维超滤膜具有以下区别:

1.两种膜的标准专不一样

反渗透膜标准更高。超滤属膜合格标准为了每毫升水100个菌落,而RO反渗透膜则为每毫升水20个菌落。可以说RO反渗透膜标准高于超滤膜四倍。

2.两种膜的孔径相差较大

RO反渗透膜的孔径仅为超滤膜孔径的1/100,所以反渗透膜可以去除水中的极小的有机分子污染,比如化学有机物、有机农药污染等。而超滤膜则不能。反渗透膜还有软化水质的作用,将硬水转为软水

Ⅵ 聚乙烯醇胶棉的生产废液会对水源造成什么危害,他的化学成分能否通过净水器过滤

含聚乙烯醇废水处理技术
乙烯醇(Polyvinyl alcohol,简称PVA),是目前发现的高聚物中唯一具有水活性的有机高分子化合物。因其具有强力的黏结性,气体阻隔性,耐磨性等良好的化学、物理性能,被作为纺织行业的上浆剂,建筑行业的涂料、黏结剂,化工行业的乳化剂、分散剂,医药行业的润滑剂,造纸行业的粘合剂及土壤的改良剂而广泛应用[1-2]。但含有PVA 的工业废水,具有COD 值高,可生化性差等特点,倘若排入水体,因其具有较大的表面活性使得接纳的水体产生大量泡沫,不利于水体复氧,而且还会促进水体沉积物中重金属的迁移释放,破坏水体环境。
国内外学者对含PVA 工业废水的处理,做了大量的研究,并取得了一批重要的科研成果。在这些研究中,对PVA 废水的处理方法大致可划分为三类,即物理法,化学法和生物法。其物理法主要有盐析凝胶法、吸附法、萃取法、膜分离法和泡沫分离法等;化学法主要有高级湿式氧化法、光催化氧化法、Fenton 氧化法、过硫酸盐氧化法、微波辐射法和电化学法;生物法主要通过活性污泥利用微生物的新陈代谢作用来降解PVA。
1 物理法
1.1 盐析凝胶法
在对PVA 废水的处理过程,可采用盐析凝胶法进行。即根据PVA 特性,向废水中投加盐析剂硫酸钠和胶凝剂硼砂,使得硼砂与PVA 分子发生反应,形成PVA-硼砂双二醇型结构,在Na+和SO42-的极性作用下,通过其强大的水和能力将大量的水吸附到周围,使得PVA 脱水从废水中析出。
郭丽[4]采用盐析法退浆废水中的聚乙烯醇进行回收试验,结果表明,当废水中PVA 浓度为12 g/L 时,硫酸钠和硼砂用量分别为14 g/L 和1.4 g/L,控制反应时间20 min,反应温度50 ℃,溶液初始pH 为8.5~9.5,PVA 回收率大于90 %。
徐竟成等[5]采用化学凝结法对纺织印染退浆废水中的聚乙烯醇进行处理回收,成功地进行了生产性规模回收废水中的PVA,PVA 回收率和COD 去除率均达80%左右。
阎德顺等人[6]采用凝结法对退浆废水中的PVA 进行回收研究。结果表明,PVA 间歇反应回收率可达90 %,在此基础上,实现了PVA 连续化回收工艺,回收率达80 %。
1.2 吸附法
吸附法作为一种低能耗的固体萃取技术,在溶解性有机物的处理中有着不可比拟的优势。吸附法依靠吸附剂上密集的孔道、巨大的比表面积或通过表面各种功能基团与被吸附物质分子之间的多重作用力,达到有选择性地富集有机物的目的。吸附法的优势在于对难降解的有机物有较好地去除效果[7]。
Shishir Kumar Behera 等人[8]采用活性碳对PVA 吸附去除进行动力学研究。结果表明,当PVA 初始浓度为50 mg/L 时,投加活性碳浓度5 g/L,温度为20 ℃,pH 为6.5,搅拌转速150 r/min,反应时间30 min,PVA 去除率可达到92 %。
1.3 萃取法
萃取法作为一种高效的富集分离技术,其根据不同物质,在不同的溶剂中分配系数的大小不等的原理,利用与水不相溶的有机溶剂与试液一起振荡,使得目标物质在有机相中得以富集,具有选择性好、回收率高、设备简单、操作简便、快速,以及易于现自动控制等特点,广泛用于分析化学、无机化学、放射化学、湿法冶金以及化工制备等领域。
聚乙烯醇可用水不溶性的烃类(按100 %~120 %聚乙烯醇的质量)进行萃取而去除。含聚乙烯醇0.3 g/L 的废水,在室温下用35 %(质量)的己烷,以1000 r/min 搅拌10 min,静置1 h 后分层,水相中COD 值为86.5 mg/L,COD 去除率为59.8 %,如重复萃取3 次,则COD 降低为41.6 mg/L 相当于80.65 %的去除率[9]。
1.4 泡沫分离法
泡沫分离法是利用泡沫与水界面的物理吸附作用以表聚物形式去污净水的方法。其通过向溶液中鼓泡并形成泡沫层,使得泡沫层与液相主体分离,从而达到浓缩表面活性物质或净化液相体的目的[10]。泡沫分离技术具有设备简单、能耗低、投资少等特点,在化工、医药、污水处理等领域应用广泛。
含聚乙烯醇的废水可通入空气,使其气泡溢出而去除PVA。1 m3的聚乙烯醇废水中含有COD 843 mg/L,以1.8 L/min 的速度通入空气,去除产生的泡沫,78 min 后,废水的体积减少到原来的70 %,而COD 值降低到193 mg/L[9]。
1.5 膜分离法
膜分离技术是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力,对物质进行分离、富集、提纯的有效液体分离技术[11],具有低能耗,易操作且可实现废水的循环利用和回收有用物质等优点。其在污水处理领域应用广泛,并形成了微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)等新的污水处理方法。
王静荣等[12]采用美国Abcor 公司的卷式膜超滤装置可以从聚乙烯醇退浆废水中回收PVA 试验。结果表明,该方法是可行的。控制料液温度在60~80 ℃,操作压力为0.4~0.6 MPa 条件下,可使浓度0.5 %~1.0 %的聚乙烯醇废水浓缩至10.0 %,聚乙烯醇的去除率在95 %以上,回收的聚乙烯醇浆料经调配后,可回用于生产,满足生产工艺上的要求。郑辉东等[13]针对纺织印染厂排放的含PVA 退浆皮水,利用中空纤维超滤膜实验装置对其进行处理试验。结果表明,处理后的废水达到中水标准,可以循环使用。
马星骅等[14]以陶瓷膜作为载体,高岭土作为涂膜材料制备了动态膜并研究了动态陶瓷膜对PVA 退浆废水的处理效果。结果表明,在高岭土涂膜质量浓度0.6 g/L,跨膜压差0.3 MPa,错流速度3 m/s,温度50 ℃的条件对废水进行过滤,PVA 及COD 的去除率分别可达56 %和71 %。
2 化学氧化法
2.1 高级湿式氧化法
湿式氧化法是处理高浓度难生化有机废水的高级氧化技术,由日本煤气大阪公司开发成功[15]。它是指在高温(125~320 ℃),高压(0.5~20 MPa)条件下,以氧气或空气为氧化剂,将有机污染物氧化为有机小分子物质或将其矿化为二氧化碳和水等无机物的化学过程。它经历了传统湿式空气氧化法、催化湿式氧化法、湿式过氧化物氧化法、超临界水氧化法及催化超临界水氧化法的历程[16]。该方法具有氧化速度快,无二次污染,处理效率高等特点[17]。
采用湿式氧化法对含聚乙烯醇的废水进行处理,控制反应温度220 ℃,反应压力10.0 MPa,在该反应条件下,以300 r/min的速率进行搅拌1 h,可使得废水中的COD 由11800 mg/L 降低到2150 mg/L[9]。
Yan Bo 等人[18]采用催化超临界水氧化法对PVA 溶液进行了氧化实验研究。当废水中PVA浓度为2000 mg/L,投加催化剂KOH600 mg/L,反应压力25 MPa,反应温度873 K,停留时间60 s,PVA 废水被完全转化为H2,CO,CH4 和CO2,TOC 去除率、碳气化率、氢气化率分别为96.00 %,95.92 %,126.40 %。
2.2 光催化氧化法
光催化氧化是在有催化剂的条件下的光学降解,可分为均相和非均相两种类型。均相光催化氧化降解是以Fe2+或Fe3+及H2O2为介质,通过光助Fenton 产生羟基自由基得到降解。非均相催化降解是污染体系中投入一定量的光敏半导体材料,同时结合光辐射,使光敏半导体在光的照射下激发产生电子空穴对,吸附在半导体上的溶解氧、水分子等与电子空穴作用,产生OH·等氧化能力极强的自由基[16]。
吴缨等人[19]采用纳米TiO2 做为光催化剂,对聚乙烯醇(PVA)水溶液进行了超声光催化降解研究。结果表明,在超声波频率40kHz、废水初始pH 为5.5,催化剂TiO2 用量110 g/L、反应温度30 ℃、PVA 初始浓度90 mg/L 的条件下,控制反应80 min,PVA水溶液降解率可达100 %。
Yingxu Chen 等人[20]在紫外灯照射下,采用非均相的TiO2 作为催化剂对PVA 进行降解实验研究。结果表明,当PVA 初始浓度为30 mg/L,TiO2 投加量2 mg/L,H2O2 投加量为5 mmol/L,反应时间60 min,PVA 去除率可达70 %。
2.3 Fenton 氧化法
Fenton 试剂具有极强的氧化能力,由Fe2+和双氧水构成,在酸性条件下H2O2 被Fe2+离子催化分解并产生氧化能力很强的OH·自由基,具有较高的氧化能力,可以无选择的氧化废水大多数的有机物。其对废水处理主要通过有机物的氧化和混凝沉淀作用进行,与常规氧化剂处理有机废水相比较,具有反应迅速、温度和压力等反应条件温等优点[21-22]。在普通Fenton 试剂氧化法的基础上,又发展了光-Fenton、电-Fenton 等氧化方法。
曹扬[23]采用Fenton 氧化法对PVA 模拟废水进行处理研究,结果表明当溶液的初始pH=5,H2O2/COD=1.3,H2O2/Fe2+=10∶1,反应温度为40 ℃的条件下,控制反应时间30 min,COD 去除率可达到80 %,BOD/COD 值也由0.082 上升到0.60。
雷乐成[24]在0.75 L环流式光化学氧化反应器中进行了光助Fenton 高级氧化技术处理纺织印染中PVA 退浆废水的试验。研究结果表明,在低浓度亚铁离子、理论双氧水加入量、中压紫外和可见光汞灯的辐射条件下,反应0.5 h,溶解性有机碳去除率高达90 %。
2.4 臭氧氧化法
臭氧是一种氧化性很强且反应产生的物质对环境污染很小的强氧化剂[25],其氧化过程主要通过直接氧化和间接氧化来进行。直接氧化通过与污染物发生环加成、亲电反应以及亲核反应来实现,其对污染物的氧化具有选择性;间接氧化是臭氧在水溶液中容易受到诱导发生自分解,通过链反应生成强氧化剂—羟基自由基,再由羟基自由基氧化污染物[26]。
在臭氧氧化法的基础上,加入其他氧化剂或引入紫外光照或超声波,形成了O3/H2O2,O3/UV 和O3/US 等其他高级氧化技术。荆国华等人[27]进行了臭氧氧化聚乙烯醇废水的试验研究,并采用O3/UV 和O3/US 方法与单独臭氧氧化处理效果进行了对照。试验结果表明,经12 min 处理,O3/UV 和O3/US 协同作用下对PVA 降解率较单独臭氧氧化的63.2 %有显著提高,表现出了良好的协同效应。
2.5 过硫酸盐氧化法
过硫酸盐因其具有较强的氧化性、无选择性反应及室温下性质稳定等优点,成为污染物氧化反应中常规氧化剂的替代品。加之,过硫酸根离子在加热、金属离子及紫外光照射等作用的条件下,其可以形成氧化能力更强的硫酸根自由基SO4-·,并且可以形成羟基自由基OH·,在废水体系中,两种自由基可以共同参与污染物的氧化反应[28]。
S2O82-+heat/UV→2SO42-
S2O82-+Men+→SO42-+Me(n+1)++SO42-
SO42-+H2O←→OH+H++SO42-
SO42-+OH-→SO42-+OH
Seok-Young Oh 等人[28]采用过硫酸钾氧化剂在加热并投加Fe2+或Fe(0)的条件下对PVA 溶液进行氧化实验。结果表明,在PVA 初始浓度为46.5~51.9 mg/L 时,控制温度200 C,投加K2S2O8250 mg/L,并按照S2O82-与Fe2+或Fe(0)的摩尔比为1∶1 投加Fe2+或Fe(0),反应2 h 后,PVA 完全被氧化。用GC-MS 检测并证明PVA 被转化为C4H6O2。
利用硫酸铵盐或钠盐,将聚乙烯醇氧化成水不溶性的树脂加以去除。当COD 为800 mg/L 的含聚乙烯醇废水,与2000 mg/L的过硫酸铵在80~100 ℃下加热1 h 后,除去海绵状棕色树脂,COD 去除率>99 %[9]。
2.6 微波辐射法
自可以工业化生产并使用的微波源出现以后,微波能在工业生产中的应用技术得到广泛的研究,微波化学污水处理技术便应运而生。该技术是一项具有突破性、创新性、广谱性的水处理技术,就是利用微波对化学反应的诱导催化作用,通过物理及化学作用对水中的污染物进行降解、转化,从而实现污水净化的目的[29]。
夏立新等人[30]采用微波辐射技术对PVA 降解反应进行了实验研究。在试验中考察了微波功率、pH、H2O2 用量和反应时间对聚乙烯醇降解反应的影响。结果表明,在微波辐射条件下,废水初始pH 为3,微波功率为800 W,辐射时间为l min,H2O2 用量为22 g H2O2/100 g PVA 时,5 mL 聚乙烯醇(7 %)的平均聚合度能够在1 min 内由1750±50 降至67。与常规油浴加热相比,反应速度提高10~20 倍。
Shu-Juan Zhang 等人[31]采用γ射线对PVA 废水进行辐射降解实验。实验结果表明,PVA 的降解率受PVA 初始浓度、辐射剂量、pH、H2O2 投加量的影响。当PVA 初始浓度为200 mg/L,辐射剂量12.1 Gy/min,辐射时间90 min,废水pH 介于1~5 或在10~12 范围内变化时,PVA 降解率均在85 %以上,甚至有时可以达到完全矿化。
2.7 电化学法
电化学水处理技术是高级氧化技术的一种,通过外加电场作用,使废水中的污染物在特定的电化学反应器内发生电化学反应或物理反应,使废水中的污染物得到有效去除或回收,该反应过程主要包括电沉积、电吸附、电凝聚、电化学还原和电化学氧化等。其具有适应性广、操作简便、无需添加氧化还原剂、对环境友好等优点[32]。
根据污染物氧化还原产物,可将电化学水处理技术分为电化学燃烧和电化学转换两类。电化学燃烧即直接将有机物深度氧化为CO2 和H2O 等;电化学转换即把有毒物质转变为无毒物质,或把大分子有机物转化为小分子有机物。根据有机物氧化还原过程中电子转移方式不同,电化学水处理技术又可以分为直接电解和间接电解。直接电解是指污染物在电极上发生直接的电子转移过程而被氧化(阳极过程)或被还原(阴极过程)而从废水中去除。间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。
Wei-Lung Chou 等人[33]采用铁电凝法对PVA 溶液进行氧化处理实验。结果表明,Fe/Al 电极组和比Fe/Fe、Al/Fe、Al/Al 电极组和处理效果好。当溶液pH 为6.5,PVA 初始浓度为100 mg/L,槽电压为10 V,板间距离为2 cm,反应温度20 ℃,搅拌转速300r/min,控制反应120 min,PVA 去除率可以达到77.1 %。
徐金兰等人[34]以含PVA 的印染废水为处理对象,采用管式电凝聚器对其先进行预处理。试验结果表明,管式电凝聚器在pH=5,I=0.748 A/dm2,t=5 min。的操作条件下,COD 的去除率大约为50 %左右,电解后出水可生化性明显改善;并将电解出水经生物曝气、生物接触氧化处理,结果最终出水COD 达到100 mg/L 左右。
Sang yong Kim 等人[35]采用RuO2/Ti 作为阳极对PVA 溶液进行电化学氧化实验研究。结果表明,初始PVA 浓度为410 mg/L,板间距离为20 mm,电流密度为1.34 mA/cm2,Cl-浓度为17.1 mM,控制反应时间300 min,PVA 及COD 去除率分别为70.18 %,27.47%。
3 生化法
生化法是利用微生物的新陈代谢作用,使废水中呈溶解、胶体状态的有机污染物转化为稳定地无害物质,其分为好氧法和厌氧法。由于PVA 构成的有机污染物浓度高且难被生物降解,在采用生化法之前,对废水进行预处理,以提高废水的可生化性。
福建纺织化纤集团有限公司[36]在对PVA 废水的处理时,采用了采用水解酸化+活性污泥法+接触氧化法工艺进行处理,可以将废水中的COD 值由500~600 mg/L 降到20~60 mg/L,COD、BOD的去除率在85 %以上,出水优于《污水综合排放标准》中的其他排污单位一级标准。
裴义山等采用一体式好氧膜生物反应器(MBR)对难降解聚乙烯醇有机废水进行实验研究。结果表明,当进水COD为100~600mg/L 时,控制pH 为7~8,温度为15~29 ℃,HRT 为10~20 h,SRT 为100 d,可使系统出水COD 在40 mg/L 以下,平均为15.5mg/L,COD 的平均去除率为90.7 %。

来之中国污水处理工程网 >> 污水处理技术 >> 正文
如果使用家用净水器建议:益之源净水器

可 知道行家 密我 专解

Ⅶ 什么是超滤膜技术

超滤膜的技术:

超滤膜技术是以压力差动力的一种半透膜,在过滤膜的技术上可以分为超滤膜过滤、微孔膜过滤和逆渗透膜过滤三类。这个是根据超滤膜所能截留的杂质或分子量的大小区分的,如果是椐据膜的孔径大小区分的话,微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;反渗透膜为0.0001~0.001μm。由此可知,超滤膜适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。


1.超滤膜化学稳定性高,可耐高温、耐酸、耐碱,因此对进水水质要求不高,通用性强;

2.超滤膜技术原理简单,容易实现自动化运转,节约劳动力,且操作简便、易于维护,运行安全稳定;

3.超滤膜技术属于物理方法,在水处理过程中并不需加任何化学药剂,因此可有效的防止水体出现二次污染的情况;

4.超滤膜技术效率高,处理水量大,尤其是对污染较小的城市饮用水处理方面,展现出高的应用效率。

超滤膜技术是一种新型水处理技术,与传统水处理技术相比,超滤膜技术的效率高、能耗低、处理水量大等优势在水处理过程中很有成效,随着技术发展日益成熟,超滤膜技术不仅在工业污水处理中得到了较为广泛的应用,而且在城市饮用水净化领域也体现出较为广阔的应用前景。

Ⅷ 反渗透膜、超滤膜、纳滤膜

微滤膜:能截留0.1-1 微米之间的颗粒。微滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留住悬浮物、细菌及大分子量胶体等物质。微滤膜的运行压力一般为0.7-7bar。
超滤膜:能截留0.002-0.1 微米之间的大分子物质和蛋白质。超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,用于表示超滤膜孔径大小的切割分子量范围一般在1000-500000之间。超滤膜的运行压力一般1-7bar。
纳滤膜:能截留纳米级(0.001微米)的物质。纳滤膜的操作区间介于超滤和反
渗透之间,其截留有机物的分子量约为200-800MW左右,截留溶解盐类的能力为
20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。纳滤膜的运行压力一般3.5-30bar。
反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大
于100的有机物,同时允许水分子通过。反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。反渗透膜的运行压力一般介于苦咸水的12bar 到海水的70bar。

Ⅸ 制作纯净水的反渗透膜与超滤膜的区别

反渗透膜和超滤膜主要有以下区别:

而反渗透膜主要用于处理纯净水,超回滤膜主要用于处理矿答泉水。

反渗透RO膜

是一种模拟生物半透膜制成的具有一定特性的人工半透膜。RO是英文Reverse Osmosis
membrane的缩写,中文意思是逆渗透。一般水的流动方式是由低浓度流向高浓度,水一旦加压之后,将由高浓度流向低浓度,亦即所谓逆渗透原理:由于德兰梅尔RO膜的孔径是头发丝的一百万分之五(0.0001微米),一般肉眼无法看到,细菌、病毒是它的5000倍,因此,只有水分子及部分有益人体的矿物离子能够通过,其它杂质及重金属均由废水管排出。

超滤膜

是一种膜分离技术,其膜为多孔性不对称结构。过滤过程是以膜两侧的压差为驱
动力,以机械筛分原理为基础的一种溶液分离过程,使用压力通常为0.01-0.〇3Mpa,德兰梅尔超滤膜的微孔孔径大致在0.005-1 |um之间,截留分子
量为1000-500000道尔顿之间,因此超滤膜分离 过程曾被看作是一种单纯的物理分离过程。

阅读全文

与反渗透膜能过滤聚乙烯醇吗相关的资料

热点内容
半透膜动图 浏览:284
污水流量计怎么调 浏览:564
成都污水污泥处理厂 浏览:614
饮水机水箱结冰怎么办 浏览:592
史密斯净水器用的是哪里的滤芯 浏览:922
厨房排烟净化器设备多少钱 浏览:354
洗衣机洗衣服时有水垢 浏览:231
新买的净水器需要干什么 浏览:694
收购工业污水项目公司 浏览:994
流放之路过滤调整 浏览:327
蒸馏水厂投资 浏览:140
云浮污水泵怎么选 浏览:823
净水器出水反应慢怎么回事 浏览:866
净水机充水什么意思 浏览:284
污水cod怎么测的视频 浏览:907
卡利循环过滤 浏览:22
滤芯几微米用于什么净水器 浏览:65
无锡地埋一体化污水处理怎么样 浏览:791
空气净化器需要怎么安装 浏览:846
纯水属于什么物质 浏览:6