① 超滤膜的分类方法
按膜的材料分类
天然膜:生物膜、天然物质改性或再生制成的膜分类
合成膜:无机膜、高分子聚合物膜
按膜的结构分类:
多孔膜:微孔介质、大孔膜
非多孔膜:无机膜、高分子聚合物膜
液膜:无固相支撑型又称乳化液膜;有固相支撑型又称固定膜、液膜
按膜的功能分类
分离功能膜:气体分离膜、液体分离膜、离子交换膜、化学功能膜
能量转化功能膜:浓差能量转化膜、光能转化膜、机械能转化膜、分类转化膜、导电膜
生物功能膜:探感膜、生物反应器、医用膜
按膜的用途分类
气-相系统用膜:伴有表面流动的分子流动、气体扩散、聚合物膜解扩散流动、在溶剂化聚合物膜中扩散流动
气-液系统用膜:大孔结构
(移去气流中的雾沫夹带或将气体引相)、微孔结构制成超细孔过滤器)、聚合物(气体扩散进入液体或从液体中移去某种气体)
液-液系统用膜:气体从一种
液相进入另一液相、溶质或溶剂从液相渗透到另一液相
气-固系统用膜:用膜除去气体中的颗粒
液-固系统用膜:大孔介质过滤淤浆、生物废料处理、破乳
固-固系统用膜:基于颗粒大小的固体筛分
按膜的作用机理分类
吸附性膜:多孔膜(多孔石英玻璃、活性炭、硅胶等)、反应膜(膜有能与渗透过来的物质发生反应的物质)
扩散性膜:
聚合物膜扩散性的溶解流动)、金属膜(原子状态扩散)、玻璃膜(分子状态的扩散)
离子交换膜:阳离子交换树脂膜、阴离子交换树脂膜
选择渗透膜:渗透膜、反渗透膜、电渗析膜
非选择性膜:加热处理的微孔玻璃、过滤型的微孔膜
② 反渗透净水器的是哪几级滤芯结构组成每级滤芯作用是怎样
反渗透净水器是由五级滤芯组成而成:1:高精度棉+2:颗粒型活性炭+3:压缩性活性炭+4:RO反渗透膜+5:口感因子,具体每级滤芯作用如下:
一级滤芯的作用:5um高精度PPF滤芯,孔径紧密、均匀,可截留孔径5um以上的杂质,过滤效高达99%。具有流量大、耐腐蚀、耐高压、低成本等特点。用以阻挡水中的铁锈、泥沙、虫卵等大颗粒物质。使用期限为6个月。
二级滤芯的作用:纳米合金净化技术处理的UDF,能强力吸附水中的有机物、化学农药、余氯、异色异味等;添加载银技术,在改善口感同时抑制细菌的生长。本产品吸附力强,不含对人体有害的可溶性有机物或无机物,广泛应用于集团及电厂,石油化工等水处理工程中,对饮用水污染严重城市的工厂、宾馆,各类清凉饮料等用水处理效果更佳。使用期限12个月。
三级滤芯的作用:CTO活性炭,配合6种天然火山岩矿石,麦饭石、矿化石、远红外活化石,加以食品级的粘合烧结而成,有效避免纯水机的过滤较纯。达到天然矿泉水的标准。使用期限12个月。
四级滤芯的作用:RO反渗透,RO膜孔径为0.0001微米(相当于大肠杆菌大小的1/6000),能截留水中的细菌、病毒、有机物、胶体、农药、重金属及大部分盐类,处理后的水甘甜可口,是目前人类掌握的一切制水技术中技术含量最高的。使用期限为3年。
五级滤芯的作用:口感因子,抑制细菌再生,用于去除异味,调节纯水口感,使水质甘醇甜美。使用期限18个月。更多在欧麦特环保科技咨询!
③ 膜材的材料组成
1.醋酸纤维素: 醋酸纤维素(CA)膜是由二醋酸纤维素和三醋酸纤维素的铸膜液及二者混合物浇铸而成。随着乙酰基含量的增加,盐截留率与化学稳定性增加而水通量下降。Loeb-Sourirajan 不对称结构是使用一“医用刮刀”(“doctor blade”)把CA、乙醇或乙醚溶液浇铸在一多孔基片(如帆布)上,表面经空气干燥产生一薄皮层而形成。在较大孔层之上的致密表皮是由约0.2μm厚的薄层组成,膜的总厚度约100μm.该技术也可用于管状的和中空纤维状膜的浇铸。
CA膜的化学稳定性差,在运转期间会发生水解, 其水解速度与温度及pH条件有关。醋酸纤维素膜可在温度0~30℃及pH值4.0~6.5下连续操作。这些东丽膜产品也会被生物侵蚀, 但由于它们具有可连续暴露在低含氯量环境下的能力,故可以消除生物侵蚀。膜稳定性差的结果导致膜截留率随操作时间增长而下降。然而, 这些材料的普及是由于它们具备广泛的来源和低廉的价格。
2.芳香聚酰胺:不对称芳香聚酰胺(Aramid)膜(Richter和Hoehn 1971)以中空纤维形式为所首创。这些纤维是由溶液纺丝而成。由控制纺丝液溶剂的蒸发在纤维外表面形成约0.1~1.0μm的致密表皮层。余下的纤维结构是约26μm厚的一层多孔支撑结构。盐的截流作用发生在致密层。为了进一步提高截留性能,当中空纤维膜用于苦咸水脱盐时,对膜采用聚乙烯基甲基醚(PT-A)进行后处理,用于海水脱盐则用PT-A与鞣酸(PT-A)作后处理。
与纤维素膜相比,芳香聚酰胺膜的特点是具有优良的化学稳定性。它们能在温度0~30℃ pH4~11件连续操作,且不会被生物侵蚀。然而芳香聚酰胺膜若连续暴露在含氯环境中,则易受氯侵蚀,因此,对他们处理的进料液进行脱氯是重要的。
3. 薄膜复合膜:美国内政部盐水局于年代中期基金资助的North Star Research 和Development Institute(位于 Minneapolis)的工作( Francis 1966; Rozelle等 1967)导致了薄膜复合膜的发展。Universal Oil Procts的 Fluid Systems Division( Riley等1967)在70年代中期推出了它的商品(薄膜复合物)膜,而FilmTec公司在80年代初期推出了它的FT30复合膜(Cadotte等1980) 。在这些膜结构中,超薄栅层在一多孔织物支撑体上的微孔聚砜表面上形成(即0.2μm厚)。该聚砜上的栅层是由聚酰胺或聚脲的就地界面聚合技术产生的。
薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是有较大的化学稳定性,在中等压力下操作就具有高水通量和盐截留率及抗生物侵蚀。它们能在温度0~40℃及pH2~12间连续操作。像芳香聚酰胺一样,这些材料的抗氯及其他氧化物的性能差。 反渗透膜 (什么是反渗透膜?) 需要制成一定构型才可用于水处理。如今膜的构型主要有平板式,管式,卷式和中空纤维式,但常用于水处理的是卷式和中空纤维式两种。
对于卷式构型,常用膜有醋酸纤维素膜和复合膜,利用这些膜制成膜元件,把膜元件放在压力容器中构成膜组件。用于制作卷式构型的膜一般先制成平整的膜,醋酸纤维素膜的结构见图1,上部有一层致密的薄层(0.1-1.0μmm),即脱盐层,脱盐层下面有一层稍厚(100~200μm)的多孔支撑层,水很容易通过致密层流向多孔层。致密层是半透膜层,能有效阻止盐分的通过,起脱盐作用。
复合膜由三层组成,它们是:最上面的超薄脱盐层、中间的多孔的聚砜内夹层,最下面的聚酯支撑网层。由于聚酯支撑层不很平坦和多孔,不能用来直接支撑脱盐层,因而在该支撑层上面浇注一层聚砜微孔层,用于直接支撑脱盐层。聚砜层表面孔径可控制在0.015μm。脱盐层厚度为0.2μm,在聚砜层的支撑下,能承受较高的压力,抗机械压力和化学侵蚀能力强。
对于中空纤维构型,利用芳香族聚酰胺膜制成的众多中空纤维直接装配在压力容器内,构成用于水脱盐的基本单元--膜组件。
无论是卷式还是中空纤维式,对其构型的共同要求如下:
1) 对膜能提供适当的机械支撑,以便承受一定的给水压力;
2) 能使给水,浓水和产品水各行其道,不混合;
3) 使有一定压力的给水在通过膜面上时,能均匀分布,并有良好的流动状态,是浓差计划降至最低;
4) 膜本身具有的脱盐率和透水量能在构型中得到充分的利用;
5) 膜面积能得到最大限度的利用
6) 便于贮存,运输,装卸和更换;
7) 易于制造,维护方便,牢固且安全可靠;
8) 价格有竞争力。
1. 螺旋卷式
首先叙述卷式膜元件的概念。叶片有两张平展开的膜和一张聚酯织物组成,聚酯织物在两张膜的中间,叶片一端胶接起来形成一个袋,另一端(伸出来的聚酯织物)与带孔的PVC管粘接。叶片之间有塑料网,它们一起沿PVC中心管卷绕形成卷式构型。塑料端部装置粘接到卷式的叶片两端,一端起反伸缩装置(ATD)的作用,另一端起浓水密封的载体作用。玻璃钢(FRP)材料的外表面保护卷式构型。这样,形成了一个完整的膜元件。
卷式膜元件装入压力容器内试验,性能符合要求即可出售。前面提到的聚酯织物是起产品水收集通道的作用。塑料网一是作为浓水(给水)通道;二是起加强给水通道水流紊动的作用,以便把浓差极化减少到最低程度。因为卷式反渗透装置的给水从膜元件的给水端流向浓水端,并平行于膜表面,这种水流方向就有浓差极化的倾向,因而叶片之间的塑料网是极为重要的。
卷式膜元件广泛用于苦咸水的脱盐,用于要求产水量较大的脱盐时,通常使用直径为101.6mm(4in) 或203.2mm(8in ),长度为1016mm (40in)或1524mm(60in)的膜元件。
把一个或几个膜元件连接起来,装在圆筒形的压力容器内,即构成卷式膜组件。
压力给水进入第一个膜元件,并在该膜元件的螺旋卷绕之间的通道内流动。一部分给水渗透过膜,并通过卷式通道流到膜元件中心的产品水收集管,另一部分给水沿着膜元件长度方向继续流动至第二个膜元件,这一过程依次进行。每个膜元件的产品水通过公共产品水管流成。当给水每通过下一个膜元件时,给水浓度增大,流过最后一个膜元件时,给水成为浓水,并排出压力容器。
2. 中空纤维式:
众多中空纤维膜装配在压力容器内构成中空纤维式膜组件。如今常用的是杜邦公司生产的用于苦咸水脱盐的B-9型中空纤维膜组件,现以此为例说明。中空纤维外径为85μm,内径为42μm,壁厚为21.5μm。该纤维在其表面有一层很薄得致密层(即芳香族聚酯胺膜的脱盐层),该层用以阻止盐的透过,而能使水流稳定通过。在此薄层下面有一较厚的同样材料的多孔层,用来支撑脱盐层。该层能让水通过它流至中空纤维的内孔。
中空纤维比人的头发还细,尽管其壁薄,外径与内径比率差少为2:1,犹如厚壁圆柱,但其有自支撑作用,且强度足够承受较高的压力而不变形,不损坏。
对处理水量较大的系统,可使用102×1194或203×1219的膜组件。压力容器内几乎全部充满纤维束,在纤维之间有约25μm的水通路。纤维束间是用无纺布隔开的,然后缠绕,整个纤维束分24层,纤维束最外层包有导流网,以利浓水导流。,空心纤维在压力容器内呈U型平行排列,在纤维中间的进水管道的一端用于进加压后的给水,另一端封堵密封,在其长度方向上有很多孔。纤维束的U型底部一端用环氧树脂固定密封,另一端通过环氧树脂板固定,并敞开中空纤维孔。进水管道内的水径向流往纤维束里的许多纤维。有一部分水渗透进中空纤维孔内,成为产品水,经环氧树脂圆环引出,另一部分在纤维束外边缘(即压力容器内边缘)轴向流往压力容器的端部,成为浓水,不断排走,并依靠O型密封环防止给水,浓水和产品水的混合。 组合 基材 涂层 1 玻璃纤维 聚四氟乙烯 2 玻璃纤维 氟化树脂 3 玻璃纤维 聚氯乙烯 4 聚酯类纤维 聚氯乙烯 5 聚乙烯醇类纤维 聚氯乙烯 6 聚酰胺类纤维 聚氯乙烯 注:表中的氟化树脂是指除了聚四氟乙烯以外的氟化树脂 。
④ 反渗透膜的原理,装置结构,效果,谁能给个具体的解释
反渗透是60年代发展起来的一项新的薄膜分离技术,是依靠反渗
透膜在压力下使溶液中的溶剂与溶质进行分离的过程。
要了解反渗透法除盐原理,先要了解“渗透”的概念。渗透是一
种物理现象,当两种含有不同浓度盐类的水,如用一张半渗透性的薄
膜分开就会发现,含盐量少的一边的水分会透过膜渗到含盐量高的水
中,而所含的盐分并不渗透,这样,逐渐把两边的含盐浓度融和到均
等为止。然而要完成这一过程需要很长时间,这个过程也称为自然渗
透。但如果在含盐量高的水侧,试加一个压力,其结果也可以使上述
渗透停止,这时的压力称为渗透压力。如果压力再加大,可以使水
向相反方向渗透,而盐分剩下。由此,反渗透除盐原理,就是在有盐
分的水中(如原水),施以比自然渗透压力更大的压力,使渗透向相反
方向进行,把原水中的水分子压到膜的另一边,变成洁净的水,从而
达到除去水中盐分的目的,这就是反渗透除盐原理。
目前,反渗透膜如以其膜材料化学组成来分,主要有纤维素膜和
非纤维素膜两大类。如按膜材料的物理结构来分,大致可分为非对称
膜和复合膜等。
在纤维素类膜中最广泛使用的是醋酸纤维素膜(简称CA膜)。该
膜总厚度约为100μm,全表皮层的厚度约为0.25μm,表皮层中布满
微孔,孔径约5一10埃,故可以滤除极细的粒子,而多孔支撑层中的孔
径很大,约有几千埃,故该种不对称结构的膜又称为非对称膜。在反
渗透操作中,醋酸纤维素膜只有表皮层与高压原水接触才能达到预期
的脱盐效果,决不能倒置。
非纤维素类膜以芳香聚酷胺为主要品种,其他还有聚呢喀酰胺膜,
疆苯骈味哩膜,聚砜酰胺膜,聚四氟乙烯接枝膜,聚乙烯亚胺膜等等。
近年来发展起来的聚酰胺复合膜,是由一层聚酯无纺织物作支持层,由
于聚酯无纺织物非常不规则并且太疏松,不适合作为盐屏障层的底层,
因而将微孔工程塑料聚砜浇铸在无纺织物表面上。聚枫层表面的孔控
制在大约150埃。屏障层采用高交联度的芳香聚酰胺,厚度大约在2000
埃。高交联度芳香聚酷胺由苯三酰氯和苯二胺聚合而成。由于这种膜
是由三层不同材料复合而成故称为复合膜。
⑤ 反渗透的氧化剂和还原剂到底是什么求各位大神在线解答~~急用
有一类化学反应叫做氧化还原反应,反应物由氧化剂和还原剂组成,生成物由专氧化产物和还属原产物组成。简单地说吧:氧化剂→还原产物,还原剂→氧化产物。
↑ ↑
被还原 被氧化
反渗透前还原剂的作用是:消除前处理残余的氧化性物质,反渗透膜不能耐受氧化剂,会被氧化造成失去脱盐功能;反渗透还原剂使用亚硫酸氢钠,主要是用来还原氧化性杀菌剂次氯酸钠,消除余氯的。
⑥ 哪种操作反渗透的不正确清洗会导致膜损坏
1、 膜污染简介
反渗透系统运行时,进水中含有的悬浮物质,溶解物质以及微生物繁殖等原因都会造成膜元件污染。反渗透系统的预处理应尽可能的除去这些污染物质,尽量降低膜元件污染的可能性。污染物的种类、发生原因及处理方法请参见表1。通常,造成膜污染的原因主要有以下几种:
1)新装置管道中含有油类物质和焊接管道时的残留物,以及灰尘且在装膜前未清洗干净;
2)预处理装置设计不合理;
3) 添加化学药品的量发生错误或设备发生故障;
4)人为操作失误;
5)停止运行时未作低压冲洗或冲洗条件控制得不正确;
6)给水水源或水质发生变化。
污染物的累积情况可以通过日常数据记录中的操作压力、压差上升、脱盐率变化等参数得知。膜元件受到污染时,往往通过清洗来恢复膜元件的性能。清洗的方式一般有两种,物理清洗(冲洗)和化学清洗(药品清洗)。物理清洗(冲洗)是不改变污染物的性质,用力量使污染物排除膜元件,恢复膜元件的性能。化学清洗是使用相应的化学药剂,改变污染物的组成或属性,恢复膜元件的性能。吸附性低的粒子状污染物,可以通过冲洗(物理清洗)的方式达到一定的效果,像生物污染这种对膜的吸附性强的污染物使用冲洗的方法很难达到预期效果。用冲洗的方法很难除去的污染应采用化学清洗。为了提高化学清洗的效果,清洗前,有必要通过对污染状况进行分析,确定污染的种类。在了解了污染物种类时,选择合适的清洗药剂就可以适当的恢复膜元件的性能。
2、 物理清洗(冲洗)
2.1 冲洗的作用
冲洗是采用低压大流量的进水冲洗膜元件,冲洗掉附着在膜表面的污染物或堆积物
2.2.1 冲洗的流速
装置运行时,颗粒污染物逐渐堆积在膜的表面。如果冲洗时的流速和制水时的流速相等或略低,则很难把污染物从膜元件中冲出来。因此,冲洗时要使用比正常运行时更高的流速。通常,单支压力容器内的冲洗流速为:
1)8英寸膜元件:7.2 – 12 m3/h;
2)4英寸膜元件:1.8 – 2.5 m3/h。
2.2.2 冲洗的压力
正常高压运行时,污染物被压向膜表面造成污染。所以在冲洗时,如果采用同样的高压,污染物仍会被压在膜表面上,清洗的效果不会理想。因此在冲洗时,应尽可能的通过低压、高流速的方式,增加水平方向的剪切力,把污染物冲出膜元件。压力通常控制在0.3 MPa以下。如果在0.3 MPa以下,很难达到一定的流量时,应尽可能控制进水压力,以不出产水或少出产水为标准。一般进水压力不能大于0.4 MPa。
2.2.3 冲洗的频率
条件允许的情况下,建议经常对系统进行冲洗。增加冲洗的次数比进行一次化学清洗更有效果。一般冲洗的频率推荐以一天一次为好。根据具体的情况,用户可以自行控制冲洗的频率。
2.3 冲洗的步骤
① 停止反渗透系统的运行。缓慢地降低操作压力并停止装置。如果快速停止装置,压力会急速下降,这可能会对管道、压力容器以及膜元件造成损坏。
② 调节阀门:
- 全开浓水阀门;
- 关闭进水阀门;
- 全开产水阀门(如果运行时产水阀门没有全开的情况)。
如果错误地关闭产水阀门,压力容器中的后半部的膜元件可能发生产水背压,造成膜元件破损。
③ 冲洗作业:
- 启动低压冲洗泵;
- 在缓慢打开进水泵的同时,查看浓缩水流量计的流量;
- 调节进水阀门,调节流量和压力达到标准值;
- 10 – 15分钟后慢慢地关闭进水阀门,停止进水泵。
④ 恢复正常运行。按日常启动程序启动系统。
2.4 注意事项
① 进水水泵需要满足正常运行时的进水流量(进水流量 = 产水流量 + 浓缩水流量),同时必须考虑满足冲洗流量的要求。
② 浓缩水管路和阀门的选择也要考虑冲洗时的大流量。制水时,因为回收率高,浓缩水流量相对很小。冲洗作业时,要求低压高流量,几乎所有的进水都从浓水管路排除,所以设计浓水管路和阀门时不仅要考虑制水时的流量也要考虑符合冲洗时的流量需要。如果仅仅考虑制水时的流量来设计管路和阀门,则在冲洗时浓水管路以及浓水阀门处的压降升高,有可能达不到要求的流量或超过冲洗要求压力。当然,也可以考虑另外设置冲洗专用管路。
③ 选定流量计时要考虑到可以读取冲洗时的最大流量。
④ 对于多段反渗透系统,为了能够更有效的冲洗膜元件,系统的设计有必要按可以分段冲洗进行设计。
- 如果进行全段冲洗,前段的冲洗水和污染物会一起流入后一段中,容易造成后段的堵塞。
- 段数的增加同时也意味着冲洗水流经的膜元件数量增加。为了能够达到流量要求,需要加大进水压力。由可能会超过冲洗压力的允许值,导致膜表面的压力升高,降低冲洗的效果。
- 进行第一段冲洗时,全开第一段冲洗浓水排水管路的阀门,关闭第一段浓水和第二段进水间阀门、第二段和第三段的进水冲洗阀门。- 进行第二段冲洗时,全开第二段冲洗浓水排水管路的阀门,关闭第一段,第三段的进水冲洗阀门,关闭第一段浓水和第二段进水间阀门,关闭第二段浓水和第三段进水间阀门。
- 进行第三段冲洗时,全开第三段冲洗浓水排水管路的阀门,关闭第一段,第三段的进水冲洗阀门,关闭第二段浓水和第三段进水间阀门。
3 化学清洗
3.1 化学清洗的标准
发生以下情况时,物理冲洗已经不能使反渗透膜的性能恢复,这时就需要进行化学清洗。
① 标准化条件下的产水量下降10 – 15 %;
② 进水和浓水之间的系统压差升高到初始值的1.5倍;
③ 产水水质下降10-15%。
3.2 化学清洗的频率
当膜元件发生了轻度污染时,就应及时清洗膜元件。重度污染会因化学药剂不易深入渗透至污染层,且污染物也不易被冲出膜外等因素而影响清洗效果。如果膜元件的性能降低至正常值的30-50%,很难清洗恢复到膜系统初始性能。
膜的清洗周期根据现场实际污染情况而定。正常的清洗周期是每3-12个月一次。如果在1个月内清洗一次以上,需要改善预处理例如追加投资或重新设计膜系统;如果清洗周期在1-3个月一次,应侧重于调整和优化现有系统的运行参数。即使系统长期没有发生污染,为了能够更好的保证系统正常运行,一般可考虑每6个月进行1次化学清洗。
当预处理工艺中采用了无机絮凝剂,经常会有反应不完全的无机盐没有形成可过滤掉的絮凝体。用户应确保没有过量的絮凝剂进入到膜系统中。过量的絮凝剂能通过SDI测试装置测定出来,例如SDI膜片上的铁为3μg/片,任何时候不应超过5μg/片。
除了采用浊度和SDI测定之外,颗粒计数器也可以精确衡量RO/NF进水是否合格。粒径大于2μm的颗粒物应<100个/ml。
3.3 清洗药剂的选择
不同污染物应采用不同的清洗药剂。污染发生时通常不是只有一种污染物,因此常规化学清洗需要包括高pH值清洗和低pH值清洗两大步骤。可以使用的常规化学清洗药剂请参见表4。选用哪个清洗剂进行化学清洗,可以按以下方法判断:
- 按反渗透进水水质判断;
- 进行全系统膜元件清洗之前,可以从系统中取出一、两支膜元件,通过进行清洗试验,选择最佳的清洗药品。
一般来说,应先采用高pH清洗液清洗油类和微生物污染,然后采用低pH清洗液清洗无机垢类或金属氧化物污染。有时也先酸洗后碱洗,或者只采用一种药剂清洗,例如地下水源的铁污染,采用简单的低pH清洗即可。有时清洗液中加入洗涤剂以便去除微生物和有机污染物;有些加入螯合剂如EDTA,以便更好地去除胶体、有机物、微生物和硫酸盐垢。如果选择清洗剂不当,或清洗顺序不当,可能会使污染恶化。
⑦ 反渗透膜有哪些
反渗透膜的种类
一、按照材质分类
1. 复合反渗透膜:是目前应用最广泛的一种反渗透膜,由多层不同功能的膜片组成,具有较强的脱盐能力和良好的化学稳定性。
2. 聚酰胺反渗透膜:具有良好的亲水性和抗污染性,适用于处理高浊度和高硬度水质。
3. 陶瓷反渗透膜:主要适用于高温、高压和特殊化学处理的场合,其化学稳定性非常高。
二、按照功能特点分类
1. 高效反渗透膜:脱盐率高,适用于高盐度废水的处理。
2. 耐污染反渗透膜:具有更强的抗污染能力,可处理含有高悬浮物、微生物等复杂水质。
3. 低压反渗透膜:可以在较低的压力下工作,节约能源。
三、解释反渗透膜的原理和用途
反渗透膜是一种半透膜,通过施加压力使水分子从高浓度一侧向低浓度一侧移动,从而达到分离和提纯的目的。反渗透膜广泛应用于水处理领域,如海水淡化、锅炉补给水、食品饮料工业纯净水制备等。不同类型的反渗透膜具有不同的特性和用途,可以根据实际需求和处理的原水水质选择合适的反渗透膜。
四、各类反渗透膜的应用场景
1. 复合反渗透膜:由于其良好的脱盐能力和化学稳定性,广泛应用于工业级和饮用水处理领域。
2. 聚酰胺反渗透膜:适用于处理含高浊度和高硬度水质的场合,如地表水处理。
3. 陶瓷反渗透膜:因其极高的化学稳定性,主要应用在高温、高压及特殊化学处理的场合,如化工和制药行业。
以上是反渗透膜的主要种类、特点和应用场景的解释。
⑧ 废反渗透膜主要成分
废弃的反渗透膜主要由以下几种成分组成。
1、聚醚砜(PES)。是反渗透膜材料最常用的高分子材料,具有良好的热稳定性、化学稳定性和力学性能,是确保反渗透膜稳定及选择性的关键。PES可以占到废弃反渗透膜的50至90%。
2、聚偏氟乙烯(PVDF)。也是常用的反渗盯灶透膜高分子材料,具有优异的热稳定性和化学稳定性,可以提高反渗旁则带透膜的强度,占10至30%。
3、聚丙烯(PP)。使用少,主要用以增强反渗透膜的柔韧性和打孔强度,含量不超过10%。
4、支撑网格。提供反渗透膜机械支撑的网格或不织物,材料主要为玻璃纤维、聚酯纤维等,占1至10%。
5、其它添加剂。例如增塑剂、稳定剂、抗氧剂等,用于改善高分子材料的加工性能和使用性能运芦,总含量不超过5%。
⑨ 水处理用的反渗透膜的形式主要有哪些
反渗透膜主要有纤维素和非纤维素两类。其中纤维素膜有醋酸纤维素膜、三醋酸纤维回素膜等;非纤维素膜主要是芳香答族聚酰胺膜。反渗透使用的都为半透膜,只对水具有选择性的高度渗透性,而对水中大部分溶质的渗透很低。反渗透膜在使用时要制成组件式式装置,其型式有涡卷式、管式、板框式、中空纤维式和条束式等。膜厚为几个微米至0.1mm左右。