导航:首页 > 耗材问题 > 树脂砂型的烘干温度

树脂砂型的烘干温度

发布时间:2024-09-07 17:49:16

① 请问谁知道,“环氧树脂”这种粘合剂使用在什么行业

应用的领域很宽,轻工业、电子、电器工业、建筑工业,以及日常生活方面都会用到“环氧树脂”胶黏剂

② 树脂砂铸造和覆膜砂铸造有什么区别呢

在造型、制芯前砂粒表面上已覆有一层固态树脂膜的型砂、芯砂称为覆膜砂,也称壳型(芯)砂。它最早是一种热固性树脂砂,由德国克罗宁(CRONING)博士于1944年发明。

其工艺过程是将粉状的热固性酚醛树脂与原砂机械混合,加热时固化。现已发展成用热塑性酚醛树脂加潜伏性固化剂(如乌洛托品)与润滑剂(如硬脂酸钙)通过一定的覆膜工艺配制成膜砂,覆膜砂受热时包覆在砂粒表面的树脂熔融,在乌洛托品分解出的亚甲基的作用下,熔融的树脂由线性结构迅速转变成不熔体的体型结构,从而使覆膜砂固化成型。

覆膜砂一般为干态颗粒状,近年来我国已有厂家开发出湿态和粘稠状覆膜砂。树脂砂铸造就是把原砂和树脂、固化剂混合均匀后放入沙箱、模样中造型制芯,合箱后进行浇铸.树脂砂是统称,覆膜砂是树脂砂的一种。

树脂砂铸造就是把原砂和树脂混合后形成树脂砂,把树脂砂打入模具型腔中,通过加热或催化剂方法使其成型,成型后的坭芯再放入浇铸模具中进行浇铸.

覆膜砂就是直接成型,不像树脂砂那样需要通过原砂和树脂混合后再成型

树脂砂铸造是利用呋喃树脂和固化剂进行造型生产的铸造,即用擦洗砂、呋喃树脂和固化剂按比例进行混制,凝固后浇铸的铸造;覆膜砂铸造是利用擦洗砂、酚醛树脂、硬脂酸钙、乌洛托品混制出覆膜砂,再进行加热,凝固后造型的。

③ 树脂砂型芯是怎么制造的

楼上说得很对,这是一种砂模铸造中型芯成型的设备,用型砂和树脂砂制造各种型芯,这种型芯就叫树脂型芯。型芯在芯盒内硬化后再将其取出,能保证型芯的形状和尺寸的公差。根据硬化方法不同,树脂砂芯的制造一般分为热芯盒制芯、壳芯和冷芯盒制芯三种方法。①热芯盒法制芯:50年代末期出现。通常以呋喃树脂为芯砂粘结剂,其中还加入潜硬化剂(如氯化铵)。制芯时,使芯盒保持在200~300℃,芯砂射入芯盒中后,氯化铵在较高的温度下与树脂中的游离甲醛反应生成酸,从而使型芯很快硬化。建立脱模强度约需10~100秒钟。用热芯盒法制芯,型芯的尺寸精度比较高,但工艺装置复杂而昂贵,能耗多,排出有刺激性的气体,工人的劳动条件也很差。②壳芯采用覆模砂热法制芯,砂芯强度高,质量好;③冷芯盒法制芯:60年代末出现。用尿烷树脂作为芯砂粘结剂。用此法制芯时,芯盒不加热,向其中吹入胺蒸汽几秒钟就可使型芯硬化。这种方法在能源、环境、生产效率等方面均优于热芯盒法。70年代中期又出现吹二氧化硫硬化的呋喃树脂冷芯盒法。

④ 覆膜砂与树脂砂的区别是什么

树脂砂原砂分为普通树脂砂、水洗树脂砂、擦洗树脂砂等几类,由于擦洗砂中含泥量已经很少,故可大大减少树脂砂的浪费,应优先选择。其次选水洗树脂砂,但决不能使用未经处理的原砂。选择树型砂时,一要遵循就近选择的原则,这样一方面可减少昂贵的运费,另一方面可保障供应树脂砂,不影响生产。二要尽量选用角形系数低的原砂。同时,由于各擦洗砂生产企业的技术水平和设备装备水平不同,其生产的擦洗砂的质量也不同,因此,如果有条件的话,在确定用树脂砂时,应对擦洗砂生产企业进行考察,考察其技术状况、设备状况及砂源状况等,并从中发现对方的砂质量控制结果。总之,在选择树脂砂原砂的过程中,最好通过试验对比的办法,参照其它方面问题,在保证生产、保证质量的前提下,使树脂砂生产成本降到最低程度。

覆膜砂是专业术语,指砂粒表面在造型前即覆有一层固化树脂膜的型砂或芯砂。有冷法和热法两种覆膜工艺:冷法用乙醇将树脂溶解,并在混砂过程中加入乌洛托品,使二者包覆在砂粒表面,乙醇挥发,得覆膜砂;热法把砂预热到一定温度,加树脂使其熔融,搅拌使树脂包覆在砂粒表面,加乌洛托品水溶液及润滑剂,冷却、破碎、筛分得覆膜砂。用于铸钢件、铸铁件。

树脂砂是由热塑性压克力或聚合热固胺类制成的颗粒,有角的颗粒设计,为大部分干式条状表面镀膜,提供了有效的处理方法。塑料具化学惰性,透过适当的使用与回收,这种干式条状方式可降低有害废物的产生,减少环境污染。

⑤ 树脂砂砂型的烘干温度

120度到50度

⑥ 铸造呋喃树脂初终强度的关系

呋喃自硬树脂砂工艺自20世纪80年代在我国开始应用,由于其良好的溃散性自硬特性和生产的铸件、尺寸精度高等优点,大幅度减轻了工人的劳动强度明显改善了铸造车间的工作环境,并且显著提高了我国铸造企业的生产工艺水平和铸件质量,因而获得了大规模的推广,逐步淘汰了传统的湿型烘模砂,成为中大型铸铁件的唯一的造型工艺和中大型铸钢件铸、铝件的重要的造型工艺经过近20年的发展,无论是树脂砂生产设备还是树脂砂原辅材料,国内的相关产品都达到了国外同类产品的水平近。
最近几年,我国铸造业的发展速度比以往的任何时候都快。特别是树脂粘结剂技术的应用,使铸件生产在保证产品尺寸精度,提高产品的表面质量,减少废品,节省工时,提高劳动生产率,减轻工人的劳动强度以及型砂的再生回用等方面有了很大的进步。我公司技术人员通过十多年的铸造行业走访与观察,从以下几个方面来分析树脂砂造型强度。

1、砂形及颗粒大小
树脂造型的原砂一般选用天然石英砂。对于部分高合金钢铸件或特殊要求的铸件,也可选用铬铁矿砂或锆砂等特种砂。这里主要讨论树脂砂对硅砂的要求。
(1)矿物成分与化学成分:硅砂的主要矿物成分是石英、长石和云母,还有一些铁的氧化物和碳化物。石英密度2.55g/cm3,莫氏硬度7级,熔点1737℃,具有耐高温、耐磨损等优点。若原砂中的石英含量高,则原砂的耐火度和复用性好。由于长石和云母是硅酸盐,其熔点和硬度低,会降低树脂砂的复用性和耐火度。所以在选择硅砂时,SiO2含量要尽量高一些,杂质要少,当然还与金属熔点和浇注温度、铸件厚壁等因素有关。一般来说,铸件用硅砂SiO2含量应大于96%,铸铁应大于90%,有色金属要少一些。

(2)粒形:一般用粒形系数表示沙粒圆整度。人造石英砂虽然SiO2含量高,但粒形位多角形甚至尖角形,粒度系数太大,一般不采用。为了改善粒形,对原砂最好进行擦磨处理,因为在砂粒质量相等的条件下,圆形砂的比表面积最小,砂粒形状偏离圆形的程度越高,其比表面积越大,树脂黏结膜越薄,强度也越小。比表面积增大的顺序是:圆形砂——多角形砂——尖角形砂。
由于圆形砂粒的比表面积最小,在相同的树脂和固化剂加入量下,其抗拉强度要比其他两种砂形高出很多。因此,从提高树脂砂抗拉强度、减少树脂加入量的角度看,圆形砂粒食最好的选择。因树脂的黏度很低,砂粒表面上涂覆的树脂膜有很薄,粒形对型砂流动性的影响就比较明显。圆形砂的尖角和棱边都已磨钝,砂粒之间较易于滑动,故很容易舂紧,多角形有尖角和棱边,有镶嵌作用,砂粒的滑动受阻,故难舂紧。
(3)粒度:对树脂砂这种黏结剂量很小的型砂来讲,原砂的粒度对黏结的强度的影响是不可忽视的。这种影响有两个不同的方面:原砂愈粗,则单位质量的砂粒的表面积愈小,树脂加入量一定时,砂粒表面涂覆的树脂膜较厚,砂粒之间的黏结桥的截面积也较大,这将导致树脂砂强度提高;另一方面,原砂愈粗,则单位质量的原砂的颗粒数量愈少,因而一定重量的型砂中砂粒的接触点(黏结桥)愈少,这将导致树脂砂的强度下降。就本厂所用原砂为40~70目,粒度在这个范围时,黏结桥和表面积两方面的影响作用相当,对于砂粒尺寸的改变,树脂砂的强度没有明显的变化。
(4)原砂的粒度分布:型砂的强度主要决定于砂粒表面黏结膜的厚度和砂粒之间的黏结的数量。在黏结剂加入量一定的条件下,如原砂中配有一定量的细砂,细砂又能填入紧密排列的粗砂空隙,则黏结桥的数量将大为增加。虽然细砂的比表面积较大,会使型砂的黏结膜的厚度减小,但综合效果还是会导致型砂的强度提高。
对于树脂砂来讲,黏结剂的量很少,增加黏结桥数量的作用就非常突出。由于树脂成本较高,希望用最少量的树脂是型砂具有一定的强度,因此,应该用一定粒度大小的原砂(四筛砂或五筛砂),粒度分布为40~70目,使其能够较好的排列,不会有较大的缝隙,从而使型砂具有较高的强度。
2、原砂含泥量、含水量、需酸量

(1)含泥量是指原砂中颗粒尺寸比砂粒小得多,并赋予砂粒表面或掺杂于砂粒之间的各种微量颗粒(≤20um)。含泥量直接影响再生砂的成本和铸件质量,在铸造生产中,泥含量过高不但影响工作环境、污染空气,更重要的是影响再生砂的微粉含量,其结果是导致混砂时树脂加人量增加和因透气性差造成铸件废品率增多。可见在树脂、固化剂加入一定的情况下,含泥量愈高,其强度值就愈小。
(2)原砂中的含水量严重影响树脂的固化强度和固透性,很明显含水量高的话,会稀释树脂和固化剂,使其浓度下降,从而延长固化时间及降低型砂强度。为了减少含水量,在用原砂时,应对其进行干燥处理,
(3)采用酸硬化的树脂砂时,树脂是在酸的催化作用下脱水缩合而固化的。如原砂中含有碱性物质时,需消耗额外的酸固化剂,将显著影响树脂砂的硬度,甚至会使其不能硬化。原砂中含有酸性物质时,则其影响与前面的相反,对工艺控制也是不利的。因此对于树脂砂所用的原砂,检测并控制其需酸量是必要的。需酸量是原砂含有的可与酸反应的碱性物质的数量表征,它也表明用酸性硬化剂时原砂本身所需酸的多少,与原砂的PH值不是同一概念。原砂中含有不溶于水的碱性氧化物或能酸作用的碳酸盐时,它们不影响原砂的PH值,但却能与树脂砂中的酸性硬化剂反应,从而影响树脂砂的硬化过程和性能。很显然当较多的酸性硬化剂与碱性物质作用后,树脂砂的强度会明显下降。所以检测原砂的需酸量是必须的,从而通过计算应加入多少酸性固化剂。
3、树脂、固化剂

国内生产树脂、固化剂的厂家很多, 但具有自主研发能力、具备完善的检测设备和严密可靠的质量保证体系的厂家屈指可数。我厂用的树脂固化剂基本上是苏州兴宜和山西兴安。
对于树脂和固化剂的加入量的控制,树脂加入量一般为原砂的0.9%~1%。固化剂的加入量与固化剂的总酸含量、环境温度和型砂温度有直接关系, 其加入量一般为树脂加入量的30%~65%。在外界温度以及本身放砂砂温都较高的情况下,应把固化剂加入量调到最小量。
当固化剂加入量为0.25%左右时,由于砂中的酸度值过低,硬化过程进行极为缓慢,严重影响砂型脱模强度的形成,终强度也较低;当固化剂加入量为0.75%左右时,酸度过强,硬化反应速度过快,树脂交联结构不完整,树脂膜和粘结剂桥变脆,终强度大幅降低;当硬化剂加入量为0.48%时,酸性比较适中,硬化反应按客观存在的规律进行,在不增加树脂量的条件下,得到了较理想的硬化效果。
4、再生砂
(1)灼减量:灼烧减量过高会增加型砂的发气量,同时影响树脂砂的强度及性能,一般应将再生砂的灼烧减量控制在3%以下。可通过补加新砂、向铸型中填充废砂块、降低砂铁比等手段降低灼烧减量。在正常情况下, 再生砂的灼烧减量每两周检测一次,为保证检测的准确性, 要求在砂温调节器上的筛网上、在不同的时间段分三次取样, 以平均值作为判断依据。
(2)微粉量:微粉含量是指再生砂中140目以下物资的含量。微粉含量越高, 型砂的透气性越差, 强度越低。要控制微粉含量, 必须保证除尘器处于良好的工作状态, 并每天定期反吹布袋, 清理灰尘。再生砂的微粉含量每两周检测2~3次, 微粉含量应≤0.8%。
3)砂温:理想的砂温应控制在15~30 ℃, 如砂温超过35 ℃,将使型砂的固化速度急剧加快, 影响造型操作, 导致型砂强度偏低, 无法满足生产要求。在夏季, 环境温度最高会达到40 ℃, 在此情况下将砂温降到30 ℃以下是十分困难的, 因此必须采用水冷系统对再生砂进行降温。如果循环水的入水温度≤25 ℃, 就能将砂温降到32 ℃以下, 但当循环水的入水温度≥22 ℃时, 降温效率将急剧下降, 如配备冷冻机组, 在炎热的夏季, 就可将循环水的入水温度控制在7~12 ℃, 砂温控制在25~30 ℃。在冬季的正常生产情况下, 砂温不会低于5 ℃,不会出现因砂温偏低而影响生产的情况。
通过以上分析,树脂砂强度受多方面因素的影响。要得到合理的砂型强度,就必须严格控制各项影响因素。本厂砂型强度的影响,主要是在树脂和固化剂加入量方面,特别是固化剂的加入量,就某台混砂机,它的波动范围相当大,总是与设定值相差很多,致使其加入量过多或过少,很难控制在较小的范围内。

⑦ 气缸表面的检测及技术要求

中小型乘用车发动机灰铸铁汽缸体(汽缸盖)常见缺陷与对策浅析概 述
改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。
以中小型 乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)
然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。
1气孔
气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。
汽缸体的气孔多见于上型 面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型 芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。
在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下:
1.1原因
1.1.1 型腔排气不充分,排气系统总载面积偏小。
1.1.2浇注温度较低。
1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。
1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差 。
1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通道而堵死排气道;砂芯砂粒偏细,透气不良;上涂料后未充分干燥;砂芯砂与涂料发气量太大,或发气速度不当,涂料的屏蔽性差……).经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关连。
1.1.6孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。
1.1.7浇注时未及时引火
1.2对策
1.2.1模型上较高部位设置数量足够,截面恰当的出气针或排气片;而芯头部位设置排气空腔.上述排气系统均应将气体引至型外。通常排气截面为应内浇道总截面积1.5~1.8倍左右。
1.2.2浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较平稳,不会充击铸型或产生飞测或卷入气体.而浇注系统的截面大小以8~10kg/S的浇注速度来计算较为适宜。
1.2.3铁液的熔炼温度应不低于1500°C,而手工浇注时末箱的浇注温度应控制在1400°C左右(视铸件大小与壁厚可适当调整).最好能采用自动工浇注,浇注温度误差应在20°C以内。
1.2.4一个好的适于高压造型的砂处理系统,型砂水分应在控制在2.8-3.2%,其实的紧实率应在36~42之间,而湿压强度应达180~220kpa(均指在造型机处取样检测).为达这些指标,需监控型砂的灰份,辅助材料的添加量,合适的原砂粒度,循环砂的温度及混砂效率。
1.2.5注意做好铁液去渣,浇注时挡渣引火以及孕育剂的干燥等工作。
1.2.6对于干式气缸套结构的发动机缸体,至关重要的是要有非常完善到位的水套砂芯工艺:
a 、水套坭芯用砂的平均细度较之其他砂芯要粗一些,以求有良好的透气性。
b、设置充分的互相连通的排气孔网并使之能排出型外,这些孔网尽可能在制芯时生成,亦可在成型后钻加工形成 。对于前者要定期监控检查孔网是否畅通(当心部芯砂固化不良时易将孔网堵塞)。
c、对砂芯砂性能要综合考虑,不能片面追求强度。当强度太高时,势必要增大树脂用量,从面使芯砂发气量太高;而当水套芯的结构比较复杂纤薄砂厚不均匀,且以能开出排气孔网时,就要求砂芯有较高的强度,即使发气量大些也无防。
d、当水套芯有排气孔网时,涂料要有较好的屏蔽性;当水套芯截面不便设置排气孔网时,涂料要有较好的透气性,这时砂的粒度也应更粗些。
e、当水套芯布有排气孔网时,且使用屏蔽性涂料时,在浸涂时要防止涂料液进入排气孔网,更要注意封火措施(可使用封火垫片材料),以免浇注时铁水进入排气孔网,把排气道堵死;
f、涂料的发气量要低,且施涂后一定要充分干燥。
一个成熟的水套芯工艺,可以将缸筒加工后内表面的气孔废品率控制在0.3%,甚至更低。
2.砂眼
砂眼也是气缸体(气缸盖)铸件的常见缺陷,多见于铸件的上型 面,也有在缸筒的内表面经加工后暴露出来的。
2.1 原因
2.1.1浇注系统设计不合理。
2.1.2型砂系列化统管理不善,型砂性能欠佳。
2.1.3型腔不洁净。
2.1.4砂芯表面状况不良或是施涂与干燥不当。
2.2 对策
2.2.1就浇注系统设置方面来说,为避免或减少砂眼缺陷,应注意以下事项;
a、要有合理的浇注速度。截面太小,则浇注速度太慢,铁液上升速度太慢,上型受铁液高温烘烤时间长,容易使型砂爆裂,严重时会造成片状脱落。浇注系统的比例,应使铁液能平稳注入,不得形成紊流或喷射。
b、尽量使铁液流经的整个通道在砂芯内生成,通常坭芯砂(热法覆膜砂或冷芯砂)较之外模粘土砂更耐高温铁液冲刷。而直浇道难以避免设置在外模的粘土砂砂型中通过,这时可在直浇口与横浇口搭接处设置过滤器(最好是泡沫陶瓷质),可以将铁液在直浇道内可能冲刷下来散砂和铁液夹渣加以过滤,从而可减少砂眼和渣眼。
c、浇道是变截面的,因此变截面处应尽可能圆滑光洁,避免形成易被铁液冲垮的尖角砂。
d、浇道的截面比例宜采用半封闭半开放型式,以降低铁液进入型腔时的流速与冲击,而内浇道位置应尽可能避免直接冲击型壁和型芯,且呈扩张形为好。
2.2.2为防止铸件的砂眼缺陷,型砂方面的主要措施是
a、是控制型砂中的微粉含量,型砂在反复使用中,微粉含量会越来越高,这会降低型砂的湿压强度,水份及紧实率则会提高,使型砂发脆。
b、浇注时砂芯溃散后混入旧砂,未燃尽的残留树脂膜,会使型砂的韧性变差,产生砂眼的可能性也增大。为此需要改善型砂的表面稳定性,降低脆性,提高韧性,方法是应在型砂中增加适当的a-淀粉,均可取得良好的效果,也可以在型腔表面施表面安定剂(喷洒)。
2.2.3 在造型、翻箱,特别是下芯、合箱等各环节容易将砂粒掉入型腔,而又未能清理干净,极易造成铸件砂眼缺陷。为此,一是要选取恰当的芯头间隙和斜度并保证下芯和合箱的工装精度,以免破坏砂型或损坏型芯而将砂粒散落在型腔内;二是合箱前清理干净型内可能掉入的砂粒(抽吸法好于吹出法)。
2.2.4 不能忽视的是,砂芯的飞边毛刺要清理干净,上涂烘干后待用的砂芯表面的砂粒灰尘也要吹净,否则容易被铁水冲刷并富集在铸件某处形成砂眼。同时,需要强调的是,砂芯上涂不能太厚,优其是当工艺要求个别砂芯的个别部位或全部两次浸渗涂料时,涂料不能太厚,且须等第一次上涂料干燥到一定程度后才能上涂第二次,否则浇注时过厚的涂料会爆裂而形成夹砂(渣)。
3 脉纹(飞翔)
通常在铸件的内表面或热节部位,如缸体缸盖的水套腔内,或是进排气道内,由于浇注时高温铁液的作用,使砂芯硅砂发生相变膨胀引起砂芯表面产生裂缝,液体金属渗入其中,从而导致铸件形成飞翔状凸起的缺陷,即"脉纹"。脉纹一旦出现,难以清理,当水套腔内有脉纹时,轻者会影响内腔的清洁度,重者会影响冷却水的流量,从而降低对发动机的冷却效果,甚会引起"烧缸","拉缸"严重后果;当气道内出现脉纹时,会影响气道涡流特性,最终影响发动机的整机工作性能。 生产实残证明,冷芯工艺产生脉纹的倾向要稍大于壳芯产生脉纹的倾向。
3.1 原因
3.1.1 如上所述,产生脉纹的根本原因是高温铁液作用于砂芯引起硅砂的膨胀裂纹。
3.1.2 砂芯材料不具备低膨胀的性能,或者其自身不能吸收这种受热产生的膨胀。
3.1.3 砂芯的韧性或高温强度不足以克服膨胀应力导致产生裂纹.
3.1.4 所用材料不能低御砂芯在高温下产生膨胀裂纹。
3.1.5 铁液未能在砂芯产生裂纹前凝固结壳,从而预防脉纹产生。
3.2 对策
针对3.1所列产生脉纹的原因(或者说脉纹形成的机理)。显然应采取以下措施;
3.2.1 在保证能得到健全铸件而不产生气孔等缺陷的铁液充型温度下,尽可能采取较低的浇注温度以减轻砂芯受热膨胀的程度;同时采用较快的浇注速度,以避免砂芯长时间受到高温烘烤可能产生的膨胀裂纹。
3.2.2 用于易产生脉纹砂芯(如水套芯,进排气道芯)的芯砂原砂预先进行消除相变膨胀处理,或者在砂芯材料中添加一些辅助材料,降低砂芯材料的热膨胀率;再就是原砂的颗粒组成以三筛或四筛级配,以求砂芯材料能自身吸收膨胀变型。
3.2.3 必要时,在砂芯材料中使用一定比例的非石英系列砂(如橄槛石砂,锆英砂等),第一它们的膨胀率极小,第二其导热性能好,使铁液结壳时间早于砂芯相变膨胀开裂时间。
3.2.4 提高砂芯材料的韧性和高温强度。
3.2.5 使用强度、韧性优良,且导热性能极好的烧结型涂料,以增强砂芯表面抗膨胀裂纹的能力。
以上这些措施使用于冷芯砂,也使用于热法覆模砂(壳型砂)。由此看出,预防或减少脉纹缺陷的主要措施是改善砂芯膨胀性能。
4 清洁度
现代发动机对清洁度的要求非常苛刻,对气缸体(气缸盖)铸件而言,水腔、油腔、挺杆室等到部位允许残留的砂粒和异物,仅限为数克(g)以内,许多企业尽管采取了二次抛丸、强力抛丸,甚至引进了先进的抛丸设备,如鼠笼或机械手抛丸,要完全达到内腔清洁度要求,仍然较为困难,无论是壳芯或是冷芯,情形均一样。
4.1 原因
清洁度达不到要求,从根本上来说是由于铸件结构方面的原因,上述各腔在抛丸时,因为出砂孔眼少而小,铁丸所能投射进去的量有限,所以内腔的光洁度与清洁程度均不及铸件的外表面,也不及曲轴箱和缸筒面等部位。在不能改变铸件结构的情况下,只能查找影响清洁度其他方面的原因。
4.1.1 砂芯表面状况不良,如充填不紧实;砂芯表面粗糙;粘膜等。
4.1.2 施涂不当,如涂料性能差,玻美度不合适,涂层厚度不够等。
4.1.3 现有强力抛丸装置对铸件大部分内外表层都能清理得很干净,但对狭窄复杂的水腔、油腔仍显不足。
4.2 对策
4.2.1 改善和提高砂芯表面的质量状况,如选用流动性好的制芯材料(安息角<29°);合理设置排气塞并加以维护使其畅通;施用品质好的脱模剂防止粘膜等,这些措施的目的是得到表面紧实致密的砂芯。
4.2.2 通常都要对坭芯施以涂料层。涂料玻美度要合适;涂料要有较强的渗透性;涂料要有一定的厚度(一般要达0.2mm),涂层干燥后不能显见砂粒为宜;选用的涂料防粘砂性能优良,在浇注温度下能在铸件表面形成一低熔点的烧结层,而且在铸件冷却过程中因收缩率的不同能自动剥离下来。
4.2.3 如3.0所述,要努力避免防止脉纹缺陷的产生。一旦出现脉纹,铸件的内腔清洁度情况就更加恶化。有关措施参见3.2。
4.2.4 对铸件内腔清理,国内外的主流工艺方法是采用强力机械抛丸的方式,其形式有鼠笼抛丸,机械手夹持抛丸等。对这类抛丸设备,要维护达到额外电流值,要调整最佳抛射角度,对后一种抛丸方式,还可对难以清理的内腔将程序设置在最佳入射角度时适当延长抛射时间。
此外还有以下几种改善和提高内腔清洁度的手段:
a、电液压清理,其原因是将待清理铸件置于水池中,在高能量放电过程中,所产生的高压冲击波将粘附在铸件上的砂粒振击脱落,理论上说水能浸入的孔腔内,其粘砂均能清理干净,但这种方法占地面积大,耗能高,流程长(尚要倒空内腔积水并烘干水迹)、维护量大,也有一定的安全问题。
b、先将铸件置于炉内焙烧,再进行抛丸。这种方式提高铸件清洁度的效果还是很明显的,但同样是能耗较高、周期长,如以煤炭作加热炉燃料,则作业环境较差。
c、有的厂家除采用强力抛丸以外,还针对水道腔或油道腔进行喷丸清理。这种方式对提高内腔清洁度最有效,所能达到的清洁度水平最高,但目前仅有此类通用单机产品,尚需人工握持喷丸头伸进密封的工作室对准有关砂孔喷射,劳动强度大,环境恶劣,期待着专用的自动喷丸设备在气缸体(气缸盖)清理生产线上应用。
5 渗漏
渗漏是指气缸体(汽缸盖)在压力试验(水压/气压)时的渗漏现象,多发生在汽缸体(或汽缸盖)的水套腔或是油道腔。
引起渗漏的原因有夹杂和疏松两大类(机械损伤或铸件裂纹引起的曲轴箱渗漏的情况极少,在此不加论述)。
5.1 夹杂引起的渗漏
5.1.1 原因
(1) 砂芯在修芯时未清除飞边、毛刺,或砂芯上有松散粘附的大小不一的砂粒、砂团未清除干净,致使浇注时被铁液冲刷下来并飘浮富集在水套壁或油道壁,形成夹砂(砂眼)。使腔壁贯通渗漏。
(2) 组合好的砂芯被粉尘砂粒污染或型腔内不慎掉入散砂,没有清理干净,也会形成砂眼使腔壁贯通而渗漏。
(3) 铁液不纯净,而浇道内又无过滤措施或拦渣效果差,使铁液中的夹渣进入型腔,使水腔或油腔的腔壁形成贯通性的渣孔而渗漏。
5.1.2 对策
(1) 认真清除砂芯的飞边毛刺,并清除坭芯上附着的砂粒砂团,避免在水腔/油腔壁上可能形成的砂眼。
(2) 吹净砂粒与粉尘污染的组合好的砂芯组,清理掉入型腔的砂粒。
(3) 直浇道设置高效的过滤器,横浇道应有良好的拦渣功能,并做好铁液净化工作(造渣,除渣),以防腔壁上产生渣眼。
5.2 缩松引起的渗漏
这种渗漏常发生在水腔(油腔)或喷油嘴等热节部位。
5.2.1 原因
(1)铁液成分不恰当。Si/C过高,石墨片粗大,组织疏松。
(2)孕育过量,致使共晶团数量过多,微晶间隙难以补缩致密。
5.2.2 对策
(1) 在规定的碳当量保持不变的前提下,限制Si/C在0.5~0.6之间。
(2) 不得孕育过量,较有效的措施是采用SISr(含锶)孕育剂,其石墨化能力级强,用量仅FeSi孕育剂的50%,即可充分孕育消除截面敏感性,以可避免产生过多数量的共晶团.
(3)在易产生缩松的热节部位,局部刷除碲粉醇基涂料,增加该部位的冷却能力,防止产生缩松.有报道称,含pb量达0.0008%,即可造成缩松渗漏,须注意使用的炉料中有否镀pb材料,或须先行除去镀层.此外影响缩松渗漏的微量元素还有Ti,AL等,它们都会增加铁液的收缩倾向,严格控制.
6材质性能方面的缺陷
纵观国内外发动机技术发展趋势,都在追求减薄铸件壁厚,从而减轻铸件乃至整机重量,达到降低油耗的目的,目前发动机单位功率的缸体缸盖重量达到1.8gk/kw左右,相应的铸件主要壁 厚仅3.5mm左右,这就对铸件的材质性能提出了很高的要求.概括起来说,主要为:
a干型单铸试棒的抗拉强度qb≥250Mpa,指定本体部位的抗拉强度Qb≥250Mpa;
b,铸件指定部位的硬度在180HB以上;铸件厚薄断面的硬度差在30HB以下;
c铸件本体的主要部位珠光体含量在90%以上,石墨型态应在大部分为A型,充充表面有少量B,D型,石墨最大长度液压在250um以下。
尽管我国大多数专业发动机铸 件生产厂家,通过技术改造和技术引进,达到了现代生产条件,但也常出现达不到上述材质要求方面的缺陷。
6.1原因
6.1.1铁液熔炼温度偏低,过冷度小,使得后续的孕育强化效果差.
6.1.2炉料(金属炉料与非金属炉料)质量差,微量元素及非金属夹杂物含量高.
6.1.3合金化措施不当或(或合金元素选择不当,或合金加入量不当,或合金化方法不当).
6.1.4孕育措施不当(孕育剂成分,孕育剂形态,孕育量,孕育方法等).
6.1.5在保温炉内处置不当(如频繁且大幅度调整化学成分,使铁液在炉内保温时间过长,元素变化大),成份控制精度差.
6.2对策
6.2.1提高熔炼温度提高铁液的稳定性,增加其过冷倾向,消除原材料的"遗传性);并保证出铁温度大于1480°C,以确初始浇注温度达到1450°C,而终了浇注温度达1400°C.
6.2.2加强冲天炉控制,使之炉况稳定,从而保证进入保温电炉的铁液成分稳定(减少成分烧损的波动)这样可减少电炉内成分调整所需的时间, 以免增加铁液的收缩倾向和白口倾向.
6.2.3保温电炉内不得已需要增C操作时,一定要选择吸收率高的增碳剂,二要保证有充分电磁搅拌和充分吸收的时间,否则所取铁水样不能反应整个熔体真实含C量,导致实际碳当量发生偏差.
6.2.4减少碳当量的波动,提高成分控制精度,要求△CE≤0.05%,△Si≤0.1%。
6.2.5对于形状复杂,薄壁高强度的缸体,缸盖类铸件的铁液,即要有高强度,也要有良好的铸造性能,为此通常其成分设计为高强当量(3.9-4.1%).使其具有良好的铸造性能,而为了达到较高力学性能则采用低合金化措施.
a根据我国资源情况以及多数企业的经验与习惯,多采用Cr,Cu等合金元素.有利于增加并细化和稳定珠光体,改善石墨状态,从而得到较高的力学性能.
b合金的加入量必须加以控制.Cr是一种促进形成并稳定珠光体的元素,且能细化珠光体,因而能显著提高灰铸铁的强度,然而Cr与C又有较强的亲和力,是一种强碳化物元素,这就会增加铁液的白口倾向;同时Cr元素还会降低铸铁的共晶凝固温度,使铁液的凝固温度范围扩大,因此加大了灰铸铁的缩松,缩孔倾向,降低铸件的致密性,这就可能影响Cr对灰铁的强化作用.当Cr是在0.2-0.3%范围时,则能避害趣利.
同样,CU也是促进稳定和细化珠光体的元素,Cu又是促进石墨化的元素,这就可以抵消Cr增大白口倾向的不利影响.CU的适宜加入量为0.4-0.5%.
由此,推荐Cr与Cu组合使用,会取得更好的效果,即保证了良好的铸造性能,又提高了铸件的力学性能.
这里需要指出的是由于Cr,CU元素的作用,增加珠光体并稳定和细化珠光体成片间距很小的层片状组织,改善石墨状态(呈A型),分布于大小,因此缸体,缸盖在热交变应力作用下抵抗热疲劳产生裂 纹的能力也得到提出高(即具有好的热稳定性)[3]
6.2.6采用恰当的孕育处理,可以提高缸体,缸盖铸件的材质强度,特别是提出高其硬度和显微组织的均匀性,改善厚薄截面的敏感性,使得硬度差在30HB以内,并具有良好的切削加工性,这里恰当的孕育处理包括:
a选用合适的孕育剂,在众多孕育剂中,含Ba.Ca.Sr(锶)等元素的孕育剂 ,不仅有很好的抗孕育衰退作用,且具有强烈的石墨化作用,可显著改善铸件截面敏感性,避免铸件在最小壁厚处的白口倾向,且显微组织也更加均匀。
b合适的孕育 方法。在包内孕育,喂丝孕育,型 内孕育,随流孕育等方法中,以随流孕育为简便,最适宜于大批量流水生产,效果也最好。推荐粒度为0.5-1.0mm,加入量为0.1-0.2%.
c,需要指出的是,BaSi孕育剂会使铸 件硬度偏低,可加入微量Sn(0.04-0.06%)或Sb(锑)(0.02%),可称补硬度偏低的不足.
6.2.7严格控制炉料,标准是(1)微量元素低;(2)洁净;(3)严禁混入合金元素.
7收缩
汽缸体(汽缸盖)铸件结构复杂,壁厚差别较大.园弧曲面凸起的厚大部位,大批量水生产时,工艺上又不便采取冒口补缩之类的措施,当其它工艺处置不当时,这些厚大热节处往往会产生集中收缩,严重时会产生较深的缩裂缺陷.
7.1原因
7.1.1上述部位的根部,时有造型 充填不紧实,该部位铸型 硬度/钢度不足的情形.当铁液凝固石墨化膨胀时,发生型 壁位移.
7.1.2浇注温度偏高
7.1.3铸液收缩倾向较大
7.2对策
7.2.1提高型砂的流动性,控制合适的型砂紧实率,对气冲造型 或气流预紧实的造型方法,模型相应部位增加排气塞,采取这些措施后,可提高缺陷发生部位的铸型硬度∕刚度,使高碳当量铁液凝固时不会因为石墨化膨胀产生型 壁位移,从而能实现无冒口自补缩.
7.2.2在满足充型要求,不得产生气孔等缺陷的情况下,切勿盲目提高浇注温度,(浇注温度太高,还会引起跑火漏箱和粒砂 等到缺陷).
7.2.3保证铁液有良好的铸造成性能,尤其要防止铁液的白口倾向收缩倾向.
a)要精确控制碳当量(3.9-4.1%),低于下限时,则铁液的收缩倾向加大,在前述部位出现缩孔缺陷的可能性就越大.
b)对高碳当量铁液低合金化处理时,要控制可能由此引起收缩增大的倾向,一些增大灰铁白口倾向,收缩倾向的合金元素,要严格用量.如前述Cr,会降低共晶温度扩大凝固温度区间,其用量不得超过0.035%等.
c)电炉内采用增碳剂调整碳当量(碳量)时,一定要有充分吸收增c的时间,否则会出现增碳假象.这样的铁水浇注的产品.往往会出现收缩.
d)要控制原铁水中非合金化带来的一些有害元素的含量,如P,Ti,V等到也会增加铁液的收缩倾向.
8加工性能
切削加工性能差是我国发动机铸件普遍存在一个问题,也是与国外铸件质量最在的差距所在.即使国产铸件与进口KD件的化学成份,基体金相组织乃至硬度值相近,但国产铸件的切削加工性能仍远不及进口KD件,有时刀具消耗相差一倍以上.
8.1原因
8.1.1来自原材料的微量元素的影响
a,铁中微量元素超标,如Ti,V,pb,Be,B等,这些微元素含量较高时,有的呈游离碳化物,氮化物等硬质点形式存在(碳化钛,氮化钛等),有的使硬质相索氏体数量明显增加(如V等).
b,废铁中混入合金钢(如Ti,V等),或使用了带有镀层的废铁。如镀Pb废钢板。
C,有的元素(如pb,Be)增加铸件的白口倾向。
8.1.2熔炼工艺不当,如在电炉中熔炼时间过长,铁液白口化倾向加大.
8.1.3孕育等工艺不当,即所选用的孕育剂或孕育工艺未能消除铸件断面的敏感性,尤其未能消除5mm薄壁处的显微组织硬质相.
8.2对策
8.2.1选用恰当的生铁,控制生铁中微量元素的含量,Ti<.05%,V≤0.01%,采用低碳钢废钢,严禁废钢中混入合金钢.
8.2.2避免合金化过程中产生过多的且分布不均匀的硬质相显微组织.通常为保证良好的铸造性能和达成 到较高的力学性能,一般都采用高碳当量辅以合金化措施.合金化的目的是增加珠光体量,并细化和稳定珠光体,但要避免产生白口化倾向,避免产生偏析,避免硬质相显微组织出现,这就合理选择并组合合金化元素.并最好采用孕育方式加入.
8.2.3改善切削加工性能十分重要的一环是;采取有效的孕育工艺.一般选用含Ca,Ba的孕育剂要优于传统的75SiFe孕育剂,二是采用随流孕育处理,这样的孕育工艺可获得均匀的组织以及均匀的显微硬度,尤其是对壁厚差较大的汽缸体(汽缸盖)铸件,其最小壁厚5mm处的显微组织与性能更趋均匀.
以上是根据我国铸造企业近年来取得较大技术进步,铸造材料供应也有较大改观,总体水平有了较大提出升的情况,对中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的,较为普遍遇到的铸造缺陷及其对策所作的一个肤浅的分析,由于技术进步,一些不常见到,不常发生或是所占比例很小的铸造缺陷,如机械损伤,尺寸偏差,粒砂等,这里不再涉及.

⑧ 有色金属手工砂型铸造操作工艺有谁知道啊,求帮助

一、配砂
1、湿型砂,选用红砂或石英砂加3-5%的水过筛既可循环使用。
2、型面砂,选用70-140目水洗砂加入膨润土(或白泥),加水用混砂机混制碾压而成。
碾压工艺:原砂+膨润土混合碾压2-3分钟+水再碾压3-5分钟即可。
质量要求:含水量4%~5%湿压强度60~100kpa透气率>50
3、干型背砂。选用40-70目过筛砂,粘土选用白泥
碾压工艺:原砂+膨润土混合碾压2-3分钟+水再碾压3-5分钟即可。(碾压工艺同上)
制芯砂。黏土砂芯用干型背砂既可。油砂芯选用70-140目水洗砂,黏结剂用桐油或合脂油。碾压工艺:原砂+黏结剂混合碾压5~8分钟。质量要求:干拉强度6~9Mpa透气率>100。
4、制芯砂。黏土砂芯用干型背砂既可。油砂芯选用70-140目水洗砂,黏结剂用桐油或合脂油。碾压工艺:原砂+黏结剂混合碾压5~8分钟。质量要求:干拉强度6~9Mpa透气率>100。
5、自硬树脂砂型、芯。大型、芯原砂选用40-70目水洗砂,中小型芯选用70-140目水洗砂,树脂选用中氮树脂或有色铸件专用树脂,固化剂选用磺酸,其配方:树脂加入量为砂子重量的0.8%-1.5%,固化剂加入量为树脂加入量的40%-50%。混砂工艺:原砂+固化剂用混砂机混拌均匀,然后加入树脂混碾1~2分钟出砂,混好的砂必须在可使用时间内用完。
6、用热芯盒机器射芯选用低发气量的覆膜砂。
7、涂料。自制涂料用石墨粉(铅粉)或小鳞片铅粉加入白泥,用机械搅拌而成,或用成品涂料。
二、造型
1、造型前的准备工作
1)熟悉零件图纸和工艺文件,研究操作顺序和操作要点,检查模样(含浇注系统)是否完整合格,并腊样。
2)检查造型底板是否符合要求。
3)检查砂箱不破损、断裂和少吊把。核对砂箱尺寸及吃砂量是否符合工艺要求。
4)砂箱的吃砂量参考资料:
砂箱分类砂箱平均尺寸
≤500模样四周吃砂量
≥40浇冒口吃砂量
≥30模样顶部吃砂量
15~20
黏土干型500~1000≥60≥60>20-25
1000~2000≥100≥100>25-30
2000~3000≥150≥120>30-40
>3000≥250≥150>40
湿型<300≥30≥40≥30
300~800≥60≥100≥50
>800≥100≥100≥70
5)检查造型砂是否符合要求,造型工具是否齐备。
2、舂型、舂型时,两箱先舂下箱,后舂上箱。三箱的先舂中箱,再舂下箱,后舂上箱。
1)将洁净的模样放在平整干静的模底板上。
2)放砂箱,大型砂箱需在四周垫高≈20mm。并事先在砂箱内壁刷白泥水。
3)按工艺要求放冷铁。
4)为防止重模样翻箱时掉落,可用铁丝或螺栓将其紧固在箱带上,待翻箱竖立时或翻箱后垫在垫架上,然后松开铁丝或螺栓切记安全。
5)按工艺要求放好浇冒口,先填入少量面砂。用手工适当捣实,固定在正确位置上,然后填入面砂,面砂厚度为20~40mm。
6)加入背砂揰砂,每次填入背砂层厚度手工揰实为80~120mm,捣固机揰实为120~200mm。舂砂时应避免揰击模样(含浇冒口模)和冷铁,防止位置移动。由外向内逐层揰实,硬度均匀。型腔表面硬度值湿型为30~50,干型为50~80。
7)砂型200mm2,好后应刮平扎气眼,气眼与模样距离10~20mm,气眼针直径为5~8mm,气眼数量,干型为1~2个/200mm2,湿型为3~6个/200mm2,箱与箱间要撒界砂(较细的干砂),注意不要撒在模样上。
8)翻箱舂上箱。放好模样撒界砂(注意不要撒在模样上)。然后按要求舂箱,使用无定位销的砂箱,揰好后要三面打合箱泥号,线条要细直、清楚。
9)敞箱。敞开箱后的砂箱应放平,湿型应放在平而松软且挖有通气沟的砂层上,去掉界砂,用水笔在模样(含浇冒口模)周围适当刷水,修整分型面。
10)起模。起模时用铁锤敲打,需垫木块,敲动应均匀。起模要找正,垂直平稳。对起模困难的模样可边敲边晃动起模。
11)修型。起模后检查型腔各部位紧实度,局部松软或损坏,用同种砂填实修补;修补大块损坏处,要先松动该处,少刷白泥水(干型)或清水(湿型)再用同类砂修补,保证原尺寸合形状;按要求修出铸造圆角;对砂型的凸台、棱角、大平面等部位要插钉加固,铁钉的长度和钉距根据铸件大小适当掌握;按要求扎出气孔或出气冒口,芯头座打通起眼;无浇道模样的,要按工艺要求开横浇道和内浇道.
12)刷涂料。按工艺要求上涂料,注意均匀、光滑、棱角清晰,不应有涂料堆积现象。
三、手工制芯
1、制芯前的准备工作:
1)检查芯盒是否完好,符合工艺要求。
2)按工艺要求备好芯骨、通气管。
3)需下冷铁的,需备好冷铁。
4)按工艺要求检查芯砂质量是否符合工艺要求。
2、制芯
1)固定芯骨。先填部分芯砂固定芯骨、通气管和冷铁,较大芯,芯骨要刷白泥水,还要留有吊装位置。
2)舂实。逐层添砂舂实,每次添砂厚度为80~150mm,紧实度要均匀合适;要避免舂坏芯盒、舂偏活块和冷铁;中大型芯中间放通气填料,小型油砂、树脂砂芯下通气管或顺蜡线。
3)出芯子。芯子舂好后,轻轻敲打芯盒,敞开芯盒,取出活块,将芯子放在芯板上,若非平面,需用型砂填平压实。
4)修整芯子。出芯后检查砂芯紧实度,对松软个损坏处用相同芯砂修补;在修补处、凸台、筋条、棱角和大砂芯工作面应插钉加固;不要大修芯头,挖出芯骨吊攀。
5)刷涂料。修芯好后,按工艺要求均匀上涂料,芯头部位不要刷涂料。对于水玻璃砂芯、树脂砂芯和油砂芯待硬化或烘干后刷涂料。注意刷涂料时应防止堵塞气眼。
四、型、芯烘干
1、黏土砂型、砂芯的烘干
干模砂型芯必需用干燥窑(煤窑或煤气窑)烘干,它的烘干规范主要规定烘干温度和烘干时间,烘干温度取决于黏土剂类别,烘干时间取决于铸型的尺寸大小。
2、操作规程
1)装窑。尺寸较大的和砂层较厚的砂型和砂芯防在炉温较高处;砂型砂芯与台车、砂型与砂芯和砂型与砂芯之间要用耐火砖垫稳、隔开;砂型与砂芯与炉顶、四壁和炉门之间要留有适当距离(一般在150~300mm);摆好后将台车拉进窑内;关门。
2)点火升温。用煤作燃料点火要均匀,待燃料燃烧后再逐步加大风量升温;用煤作燃料点火要先点燃引火管,再逐步开放煤气阀门,煤气燃烧后再送风,逐步加大风量。
3)控制烘干时间。经常观察炉温情况,确保按工艺要求规范执行,无炉温自动记录仪应该每隔半小时记录一次。
4)出炉。炉温降至出炉温度后方可出炉,出炉后检查烘干质量,允许残余水份<0.4%。未达到烘干要求,不得扣箱浇注,否则影响铸件质量,应重新烘干。烘干过度会降低强度,甚至于扣不上箱,应报废。
3、油砂芯的烘干规范
类别装炉温度/℃升温时间/h保温温度/℃保温时间/h出炉温度/℃
桐油砂芯150-1801-1.5180-2201.5-2.5<150
合脂砂芯150-2001-2200-2402-3<150
五、合箱浇注
1、放置底箱。在合箱的地面上,铺一层约30-50mm厚型砂,并弄平,弄松,必要时挖出“井”“十”形沟槽,方便通气。
2、检查型、芯。扫除浮灰尘,检查砂型和砂芯质量,破损严重、返潮和表面粉化的砂型和砂芯不得使用,轻度破损可修补烘干后使用。
3、下芯。熟悉铸造工艺图纸和工艺技术要求,顺序下芯详细检查尺寸,较复杂铸件,要用泥团演箱检查员铸件壁厚尺寸。需要下芯掌的,下好芯掌,各部位尺寸确定无误后将芯固定。
4、卡箱(合箱)。首先进一步检查水平芯头排气道是否畅通,吸处型腔里的浮砂和杂物,然后在型腔四周、直浇道周围和水平芯头上半部放封箱泥条或石棉线,防止跑火或合金液钻入排气道。在直浇道和横浇道之间安放过滤网。无箱锥的,对准箱号扣箱。
5、卡箱或压箱。较大的砂型在卡箱之前,分型面砂箱的四个角垫有尺寸合适的垫铁,防止卡箱时压坏砂型。卡紧砂箱后,用湿型砂抹箱,防止分型面跑火。不能卡箱卡箱的要用压箱铁压箱,压箱铁的重量要适度。
6、浇注。合箱后,稳好浇口箱或浇口杯,等待浇注。用合格的干净合金液实施浇注,浇注时控制浇温,掌握浇速,并有专人挡渣。待合金液已进入冒口立刻停止浇注,并用湿型砂堵住浇道,立既从冒口补浇满冒口,待收缩后多次补浇。

阅读全文

与树脂砂型的烘干温度相关的资料

热点内容
台安县污水处理厂属于什么单位 浏览:136
家附近污水处理场 浏览:51
美国纯净水器哪里买 浏览:4
F0F水垢处理 浏览:375
污水厂细格栅池 浏览:117
污水处理cod数值 浏览:951
江苏宜兴污水处理公司 浏览:777
污水标准值 浏览:263
石材废水处理视频 浏览:270
净化器怎么放水视频 浏览:308
水处理反硝化菌有哪些 浏览:378
营口市化学化工区污水处理厂 浏览:206
纯水开水器发热圈怎么接线 浏览:814
焦化厂废水处理该怎么工作 浏览:498
原油蒸馏的三种曲线 浏览:162
机油滤芯需要拧到什么程度 浏览:359
一千毫升的纯净水大概多少 浏览:549
污水管道施工挖深多少规范 浏览:501
半透膜透析高分子需要多长时间 浏览:556
美国rgf净化器怎么样 浏览:420