A. 在废水处理中,如何低成本的处理金属离子
特种树脂吸附法针对精度去除方面具有很好的效果,而且成本很低。内
这里说的特种树脂包括除容硼、除氟、除氨氮、除硝态氮、除磷、除砷、除重金属等树脂,这样的树脂中通常嫁接了针对性吸附特征物的官能团,能对特征物进行吸附而不受其他离子的影响,而且吸附精度极高,吸附后出水特征物能达到ppb级别。
由于特种树脂的吸附量较大,针对微量超标的水体,树脂的用量一般很小,从而压缩了大量的投资。而这些树脂又可以再生,重复使用,使用寿命长达5-8年,从而将运行成本压缩到最低限。比如除硼树脂,针对废水硼含量从3mg/L降到0.1mg/L,其运行成本不足0.1元/吨水。
B. 铻鍚堟爲鑴傚惛闄勯噸閲戝睘鐨勫師鐞嗗強鍏朵紭鍔挎槸浠涔堬紵
鏈夋満鐗
鐩镐技鐩稿瑰師鐞
閲嶉噾灞
鐢变簬娲绘х偔琛ㄩ潰鐨勫氬瓟缁撴瀯鑰屼骇鐢熺殑鍚搁檮浣滅敤
C. 生物质吸附剂吸附重金属离子后,应该怎么处理
生物质吸附剂吸附重金属离子后,应该怎么处理
含重金属废水处理:为使污水中所含的重金属达到排水某一水体或再次使用的水质要求,对其进行净化的过程。
目前,重金属废水处理的方法大致可以分为三大类:(1)化学法;(2)物理处理法;(3)生物处理法。
化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。
2.1.1化学沉淀法
化学沉淀法的原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除,包括中和沉淀法、硫化物沉淀法、铁氧体共沉淀法。由于受沉淀剂和环境条件的影响,沉淀法往往出水浓度达不到要求,需作进一步处理,产生的沉淀物必须很好地处理与处置,否则会造成二次污染。
2.1.2电解法
电解法是利用金属的电化学性质,金属离子在电解时能够从相对高浓度的溶液中分离出来,然后加以利用。电解法主要用于电镀废水的处理,这种方法的缺点是水中的重金属离子浓度不能降的很低。所以,电解法不适于处理较低浓度的含重金属离子的废水。
2.1.3螯合法[1]
螯合法又称高分子离子捕集剂法,是指在废水处理过程中通过投加适量的重金属捕集剂,利用捕集剂与金属离子铅、镉结合时形成相应的螯合物的原理实现铅、镉的去除分离。该反应能在常温和较大pH范围(3?11)下发生,同时捕集剂不受共存重金属离子的影响。因此该方法去除率高,絮凝效果佳,污泥量少且整合物易脱水。
2.1.4纳米重金属水处理技术
纳米材料因其比表面积远超普通材料,故同一种物质将会显示出不同的物化特型,很多新型的纳米材料都不断地在水处理行业中实验、实践。被环保部、科技部、工信部、财政部四部委联合审批立项为“2011年国家重大科技成果转化项目”———纳米水处理工艺及系列产品,在江西铜业股份有限公司应用取得了历史性的突破,填补了国内空白。
国内通常采用的重金属废水处理方法,包括石灰中和法和硫化法等。这些传统的处理工艺,虽然可以将废水中的重金属去除掉,但是处理效果并不稳定,处理后回收的清水水质仍难以确保稳定达标排放,而且还会产生二次污染。纳米重金属水处理技术不仅能使处理后的出水水质优于国家规定的排放标准且稳定可靠,投资成本和运行成本较低,与水中重金属离子反应快,吸附、处理容量是普通材料的10倍到1000倍,而且使沉淀的污泥量较传统工艺降低50%以上,污泥中杂质也少,有利于后续处理和资源回收。有数据显示,同样是每日处理300立方米重金属污水量,传统工艺每天要产生25吨石灰渣污泥,而采用纳米技术后每月只产生25吨纳米金属泥。尤其值得关注的是,这种污泥中的重金属单位含量提高了30倍。若以铜冶炼厂的废水处理为例,其回收的纳米铜泥品位已达到20%,完全可以作为铜矿资源再生利用。
物理处理法
物理处理法主要包含溶剂萃取分离、离子交换法、膜分离技术及吸附法。
2.2.1溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法。由于液液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。
2.2.2离子交换法
离子交换法是重金属离子与离子交换剂进行交换,达到去除废水中重金属离子的方法。常用的离子交换剂有阳离子交换树脂、阴离子交换树脂、螯合树脂等。几年来,国内外学者就离子交换剂的研制开发展开了大量的研究工作。随着离子交换剂的不断涌现,在电镀废水深度处理、高价金属盐类的回收等方面,离子交换法越来越展现出其优势。离子交换法是一种重要的电镀废水治理方法,处理容量大,出水水质好,可回收重金属资源,对环境无二次污染,但离子交换剂易氧化失效,再生频繁,操作费用高。
2.2.3膜分离技术
膜分离技术是利用一种特殊的半透膜,在外界压力的作用下,不改变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法,包括电渗析和隔膜电解。电渗析是在直流电场作用下,利用阴阳离子交换膜对溶液阴阳离子选择透过性使水溶液中重金属离子与水分离的一种物理化学过程。隔膜电解是以膜隔开电解装置的阳极和阴极而进行电解的方法,实际上是把电渗析与电解组合起来的一种方法。上述方法在运行中都遇到了电极极化、结垢和腐蚀等问题。
2.2.4吸附法
吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择,传统吸附剂是活性炭。还有黏土类吸附剂粉、煤灰吸附剂、生物质基材料和[1] 树脂基吸附材料。活性炭有很强吸附能力,去除率高,但活性炭再生效率低,处理水质很难达到回用要求,价格贵,应用受到限制。近年来,逐渐开发出有吸附能力的多种吸附材料。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+ 有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr 6+的去除率达到99%,出水中Cr 6+含量低于国家排放标准,具有实际应用前景。
生物处理法
生物处理法是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法,包括生物吸附、生物絮凝、植物修复等方法。
2.3.1生物吸附
生物吸附法是指生物体借助化学作用吸附金属离子的方法。藻类和微生物菌体对重金属有很好的吸附作用,并且具有成本低、选择性好、吸附量大、浓度适用范围广等优点,是一种比较经济的吸附剂。用生物吸附法从废水中去除重金属的研究,美国等国家已初见成效。有研究者预处理假单胞菌的菌胶团后,将其固定在细粒磁铁矿上来吸附工业废水中Cu,发现当浓度高至100 mg/L时,除去率可达96%,用酸解吸,可以回收95%铜,预处理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受环境因素的影响,微生物对重金属的吸附具有选择性,而重金属废水常含有多种有害重金属,影响微生物的作用,应用上受限制等,所以还需再进行进一步研究。
2.3.2生物絮凝
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。生物絮凝法的开发虽然不到20年,却已经发现有17种以上的微生物具有较好的絮凝功能,如霉菌、细菌、放线菌和酵母菌等,并且大多数微生物可以用来处理重金属。生物絮凝法具有安全无毒、絮凝效率高、絮凝物易于分离等优点,具有广阔的发展前景。
2.3.3植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量, 以达到治理污染、修复环境的目的。植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸。利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀
或富集有毒金属: (2)利用金属积累植物或超积累植物降
低有毒金属活性,从而可减少重金属被淋滤到地下或通过
空气载体扩散: (3)利用金属积累植物或超积累植物将土
壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分。通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度。在植物修复技术中能利用的植物有藻类植物、草本植物、木本植物等。
藻类净化重金属废水的能力主要表现在对重金属具有很强的吸附力。褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%~90%。浩云涛等分离筛选获得了一株高重金属抗性的椭圆小球藻(Chlorella ellipsoidea),并研究了不同浓度的重金属铜、锌、镍、镉对该藻生长的影响及其对重金属离子的吸收富集作用。结果显示,该藻Zn 和Cd 具有很高的耐受性。对四种重金属的耐受能力依次为锌>镉>镍>铜。该藻对重金属具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+浓度72h处理,去除率分别达到40.93%、98.33%、97.62%、86.88%。由此可见,此藻类可应用于含重金属废水的处理。
草本植物净化重金属废水的应用已有很多报道。风眼
莲(Eichhoria crassipes Somis)是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属。张志杰等的研究结果表明,干重lkg的风眼莲在7~l0d可吸收铅3.797g、镉3.225g。周风帆等的 研究发现风眼莲对钴和锌的吸收率分别高达97%和80%。香蒲(Typhao rientaliS Pres1)也是一种净化重金属的优良草本植物,它具有特殊的结构与功能,如叶片成肉质、栅栏组织发达等。香蒲植物长期生长在高浓度重金属废水中形成特殊结构以抵抗恶劣环境并能自我调节某些生理活动, 以适应污染毒害。招文锐等研究了宽叶香蒲人工湿地系统处理广东韶关凡口铅锌矿选矿废水的稳定性。历时10年的监测结果表明,该系统能有效地净化铅锌矿废水。未处理的废水含有高浓度的有害金属铅、锌、镉经人工湿地后,出水口水质明显改善,其中铅、锌、镉的净化率分别达99.0%,97.%和94.9%,且都在国家工业污水的排放标准之下。此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等。
采用木本植物来处理污染水体,具有净化效果好,处理量大,受气候影响小,不易造成二次污染等优点,越来越受到人们的重视。胡焕斌等试验结果表明,芦苇和池杉两种植物对重金属铅和镉都有较强富集能力,而木本植物池杉比草本植物芦苇具有更好的净化效果。周青等研究了5种常绿树木对镉污染胁迫的反应,实验结果表明,在高浓度镉胁迫下,5种树木叶片的叶绿素含量、细胞质膜透性、过氧化氢酶活性及镉富集量等生理生化特性均产生明显变化,其中,黄杨、海桐,杉木抗镉污染能力优于香樟和冬青。以木本植物为主体的重金属废水处理技术,能切断有毒有害物质进入人体和家畜的食物链,避免了二次污染,可以定向栽培,在治污的同时,还可以美化环境,获得一定的经济效益,是一种理想的环境修复方法。
D. 重金属离子废水的处理方法
化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。 吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择,传统吸附剂是活性炭。活性炭有很强吸附能力,去除率高,但活性炭再生效率低,处理水质很难达到回用要求,价格贵,应用受到限制。近年来,逐渐开发出有吸附能力的多种吸附材料。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+ 有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr 6+的去除率达到99%,出水中Cr 6+含量低于国家排放标准,具有实际应用前景。
E. 用离子交换树脂法如何处理重金属废水
离子交换树脂法是一种应用广泛的方法,树脂中含有的氨基、羟基等活性基团可以与重金属离子进行螯合、交换反应,从而去除废水中重金属离子的方法,同时还可以用于浓缩和回收溶液中痕量的重金属,其优点是树脂具有可逆性,可通过再生重复使用,且交换选择性好,缺点是价格昂贵。因此研究和选择成本低、选择性高、交换容量大、吸附-解吸过程可逆性好的离子交换树脂,对于处理重金属废水有着重要意义
F. 工业重金属离子废水处理技术
下面是中达咨询给大家带来关于工业重金属离子废水处理技术,以供参考。
工业重金属离子废水处理技术
含重金属废水处理新技术主要包括两方面,一方面是对传统技术的改进,另一方面是处理重金属废水的新方法。
1.1化学沉淀法
化学沉淀法有中和沉淀法、硫化物沉淀法、钡盐沉淀法和铁氧体法,其中较为新型的技术是铁氧体法。铁氧体法是日本电气公司(NEC)研究出的一种从废水中去除重金属离子的新方法。做法是:在含重金属离子的废水中加入铁盐,利用共沉法从废水中制取铁氧体粉末。铁氧体法可一次去除废水中多种重金属离子,铁氧体沉淀不再溶解。铁氧体法处理重金属废水效果好,投资省,设备简单,沉渣量少,且化学性质比较稳定键迅。在自然条件下,一般不易造成二次污染。铁氧体法捕集金属离子的机理是通过晶格取代的方式而非一般磨亮旅的化学反应,因此有可能突破溶度积常数的限制而同时对多种重金属离子产生作用,特别适用于处理工业生产中所产生的含多种重金属离子的废水。
1.2吸附法
吸附法是利用多孔性固态物质吸附水中污染物的一种方法。海泡石是一种天然纤维状含镁水合硅酸盐粘土,对废水中重金属的吸附有很好的效果,理想分子式为[Si12Mg8(OH)4](H2O)48H2O.海泡石对水中的Ni2+,Co2+,Pb2+,Cu2+和Cd2+有较好的吸附效果,尤其对高浓度重金属有较好的吸附性能。有机硅吸附剂对重金属也有较好的吸附效果。有机硅吸附剂是一类由碳官能有机硅单体制备的聚合物或经这些单体处理过的无机材料或合成材料。化工及金属冶炼企业所排出的废水中常含有有色金属及有毒金属元素,采用含NHC(S)CH3和NHC(S)NH官能团的有机硅可有效地吸附这些元素,它们具有很高的吸附容量及分配系数。此类有机硅吸附剂对Hg,Cu,As,Sb的吸附容量最大,对Cu,Hg,Te,Th,Bi的分配系数大。利用这些吸附剂可以同时分离多种金属,并且可以在很宽的pH范围内吸附重金属,一般不需要特定的pH值,但净化污水的最佳pH值为5~9.未改解的水解木质素本身可以作为吸附剂,主要用于吸附去除各种重金属离子。Karsheva等人研究发现,水溶性木质素是一种有效的吸附剂,可用于去除水中的铅离子。Lalvani发现一种可以吸附溶液中的Cr3+和Cr6+的木质素,该木质素可以去除63%的Cr6+、100%的Cr3+.
1.3离子交换法
由于重金属废水中的重金属大多以离子状态存在,所以用离子交换法处理能有效地除去和回收废水中的重金属。采用微波辐射促进化学反应技术,引用氧化还原引发体系,可在纤维素上接枝丙烯酸/丙烯酰胺来合成具有特定功能的吸附树脂。研究表明:在最佳的合成工艺条件下,树脂对Cu2+的吸附率为99.2%,吸附容量为49.6mg/g,用8%NH3H2O作为淋洗液对树脂洗脱再生,洗脱率在85%以上。大昂吸附树脂重复使用7次时,对重金属离子的吸附率仍可保持在90%以上,具有良好的再生使用寿命。超级吸水树脂SAPC也可以脱除废水中的重金属离子,SAPC对Cr3+,Co2+离子的富集能力强,对Hg2+,Pb2+,Ni2+富集能力次之。
1.4改性滤料法
同济大学高乃云教授分别用氧化铝涂层砂和氧化铁涂层砂去处水中的金属锌,发现pH>9时,涂瞎凳层砂除锌率达100%.印度工业学院Jiban K.Satpathy用平均尺寸为0.71mm的过滤石英砂涂以硝酸铁,将涂层滤料(15cm高度)置于直径1.1cm的玻璃柱中,实现了分别在不同的pH值条件下从镀镉、镀铬废水中有效去除镉、铬。Edwards等人用铁氧化物覆盖的砂粒柱进行了Pb2+,Cd2+,Ni3+和Cr3+吸附实验,结果表明:水中溶解态的重金属离子Pb2+,Cd2+,Ni3+,Cr3+在pH为8.5时几乎可以全部除去。高乃云等在用氧化铁涂层改性滤料除砷,实验中发现除砷效果显著,去除率可以达到95%以上,且遵循pH值、高去除率的规律[8].
1.5萃取法
萃取法属于物化处理法,是水处理技术中的一个重要方法,大多数重金属废水可以用萃取法处理。传统重金属的溶剂萃取,前处理费时费力,还必须使用大量有机溶剂,如果后期处理不当,会对环境造成二次污染。而超临界CO2流体(CO2SFE),选择性好,流程简便,萃取速度快,能耗低,后处理简单,具有溶剂萃取所没有的优势。超临界流体是指处于临界温度和临界压力以上的流体。SFE化学性质稳定,萃取条件温和,萃取后可回收,无溶剂残留,被称为“绿色溶剂”,是目前应用最为广泛的超临界流体萃取剂。尽管利用CO2SFE萃取技术大规模治理环境重金属污染的经济性尚无定论,但随着工业级CO2SFE流体萃取技术的日益完善,其节能、节时、省力的优势会逐渐显现出来。
1.6新工艺法
1.6.1无害化诱导结晶新工艺
无害化诱导结晶新工艺利用诱导结晶原理,以碳酸钠为沉淀剂,使重金属离子形成难溶盐在流态化的硅砂表面结晶沉积从而达到去除重金属的目的。这种工艺操作方便,处理量大,占地面积小,而且在硅砂表面产生的金属沉积物,结构密实,含水率低。对反应饱和后的硅砂可采取加酸溶解回收重金属或采用水泥固化硅砂的措施,从而达到对重金属废水的最终无害化处理。重金属废水经流态化结晶沉积法及过滤处理后,重金属离子去除率可达99%,无需沉淀池,反应速度快,且无污泥产生。
1.6.2微电解生物法组合工艺
采用微电解生物法组合工艺处理含铬废水时,在实验过程中,电镀废水中的重金属离子通过微电解法预处理可去除90%以上,剩余部分被后续工艺的微生物功能菌去除。实验结果表明:对Cr6+含量为50mg/L,Cu2+含量为15mg/L,Ni2+含量为10mg/L的废水,经处理后,重金属离子的净化率达99.9%,且无二次污染。微电解法利用机械加工过程中的废铁屑处理电镀废水,不仅处理效果较好,而且成本低廉,操作简便。生物法净化含铬电镀废水的优点是污泥量少,净化效果好。实际工程运用中,对电镀废水选用廉价的铁碳法进行预处理,再用SR功能菌进行深度处理,也不失为一种降低处理费用提高处理效率的好方法。利用微电解生物法组合工艺处理含铬电镀废水,完全能够达到国家规定的排放标准。
1.6.3铁屑固定床工艺
铁屑固定床处理重金属废水工艺是指:电镀生产工艺过程中产生的含Cr6+废水,经过铁屑固定床的综合作用,出水在进入沉淀池沉淀后,上清液可作为处理水排放或回用。其基本原理是铁屑对絮体的电附集和对反应的催化作用,以及电池反应产物的混凝、新生絮体的吸附和床层的过滤等作用的综合效应的结果,其中主要作用是氧化还原和电附集。该工艺具有省水、节电、运行费用低、无二次污染等特点,可以解决重金属废水治理难题,对于其他重金属的处理,只需调整工艺参数即可。
1.7生化处理法
生化处理法是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法,包括生物吸附、生物絮凝、微生物代谢等方法。
1.7.1生物吸附法
生物吸附法是指生物体借助化学作用吸附金属离子的方法。藻类和微生物菌体对重金属有很好的吸附作用,并且具有成本低、选择性好、吸附量大、浓度适用范围广等优点,是一种比较经济的吸附剂。用生物吸附法从废水中去除重金属的研究,美国等国家已初见成效.有研究者预处理假单胞菌的菌胶团后,将其固定在细粒磁铁矿上来吸附工业废水中Cu2+,发现当浓度高至100mg/L时,除去率可达96%,用酸解吸,可以回收95%铜,预处理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受环境因素的影响,微生物对重金属的吸附具有选择性,而重金属废水常含有多种有害重金属,影响微生物的作用,应用上受限制等,所以还需再进行进一步研究。
1.7.2生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。生物絮凝法的开发虽然不到20年,却已经发现有17种以上的微生物具有较好的絮凝功能,如霉菌、细菌、放线菌和酵母菌等,并且大多数微生物可以用来处理重金属。生物絮凝法具有安全无毒、絮凝效率高、絮凝物易于分离等优点,具有广阔的发展前景。邵颖和叶玉汉研究了聚合铝与天然阳离子有机高分子壳聚糖复合后的絮凝特征及复合絮凝剂对重金属废水的处理应用。结果表明,聚合铝与壳聚糖复合能相互促进其絮凝效能,对重金属废水的去除率可达97%以上。
2、结语
由于重金属废水处理比较复杂,且水体中含有多种重金属离子,所以在处理过程中应该考虑采用多种方法和工艺的综合运用,以达到最好的处理效果。在选择方法上也应该遵循经济、方便、不产生二次污染的原则。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
G. 螯合树脂吸附重金属的原理及其优势是什么
螯合树脂的功能基团上的原子和金属离子发生配位反应,产生配位共价键,形成结构稳内定的螯合物,和离子容交换树脂的原理不同,离子交换树脂是用静电作用和金属离子结合。因此螯合树脂与金属离子的结合更稳定,特异性选择更好,应用也更加广泛。
一般来讲,螯合树脂的优势体现在处理精度更高,吸附量大,可以低浓度废水进行深度处理且浓缩比高。
H. 树脂对 重金属的去除作用是离子交换和吸附作用两者的区别是什么
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导应用
1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。
2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。
3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。
4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。
5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。
6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。
其他补充:
离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。
在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。
离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。
离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。
离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。
广泛的应用于水处理领域。