导航:首页 > 耗材问题 > 超滤膜堆论文

超滤膜堆论文

发布时间:2024-07-31 16:45:52

❶ 探究水处理陶瓷膜制备与应用技术研究进展论文

探究水处理陶瓷膜制备与应用技术研究进展论文

膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广泛应用。水处理陶瓷膜的过滤、分离性能与膜孔径大小及其分布、孔隙率、表面形貌等有密切关系。陶瓷膜的活性分离层是颗粒以任意堆积方式形成的,孔隙率通常为30 ~ 35%,且曲折因子调控较为困难,陶瓷膜的水处理效能受到局限。研究陶瓷膜制备、修饰、工艺优化新技术以提高其过滤、分离、抗污染效能是水处理陶瓷膜领域的研究重点。

1. 水处理陶瓷膜制备技术

1.1 致孔剂制备技术

致孔剂是提高水处理陶瓷孔隙率简单又经济的方法,致孔剂可分为无机物和有机物两类。无机致孔剂有碳酸铵、碳酸氢铵和氯化铵等高温易分解的盐类或无机碳如石墨、煤粉等;有机致孔剂主要包括天然纤维、高分子聚合物,如锯末、淀粉、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等。Yang 等 以Al2O3 为膜基体,以膨润土为烧结助剂,以玉米淀粉作为造孔剂通过挤出、交联、干燥、烧结等过程制备陶瓷膜。研究发现随着淀粉含量的增加,Al2O3 支撑体的最大孔径和平均孔径均有所增大,陶瓷膜的孔隙率可有24% 提高至38%。

1.2 模板剂制备技术

模板剂可有效控制所合成材料的形貌、结构和大小,并制备出孔结构有序、孔径均一、孔隙率大的微孔、介孔和大孔材料。模板剂法具有丰富的选材和灵活的调节手段,采用模板剂法制备水处理陶瓷膜极具前景。Xia 等 以有机聚苯乙烯微球为模板剂,采用UV 聚合的方法制备出孔径为100nm 的三维有序聚氨酯大孔材料。Sadakane 等 以PMMA 为模板剂制备出具有三维有序大孔的金属氧化物材料,其孔隙率范围为66 ~ 81%。表面活性剂在溶液中可以形成胶束、微乳、液晶、囊泡等自组装体,也常被用作自组装技术中的有机物模板剂。利用表面活性剂十六烷基三甲基溴化铵为模板剂可制备出有序的介孔分子筛MCM41,具有多种对称性能的孔道,孔径在2 ~ 50nm 的.范围内。Choi 等以Tween80 为模板剂制备了具有梯度孔径结构的TiO2-Al2O3 陶瓷膜,陶瓷膜的渗透性能大大提高。

1.3 纤维层积制备技术

陶瓷纤维材料在成膜过程中可以迅速在支撑体表面沉积搭桥,明显减少了膜层的内渗,并且容易得到较高的孔隙率和比表面积,对膜材料渗透性能的提高具有显著作用。Ke 等 以TiO2 纤维为原料,通过旋涂法制备出平均孔径在50nm 的陶瓷纤维膜,对球形粒子截留率超过95%,膜通量在900Lm-2h-1 以上。

1.4 溶胶- 凝胶制备技术

溶胶- 凝胶技术主要是通过调整材料尺寸控制陶瓷膜分离层的分离精度。溶胶- 凝胶法可形成纳米级别的溶胶,得到的陶瓷膜层孔径小、孔径分布窄,适用于高渗透选择性的超滤膜和纳滤膜的制备。Tsuru 等 利用聚合溶胶路线制备出平均孔径0.7 ~ 2.5nm 的TiO2 纳滤膜,对PEG 的截留分子量为500 ~ 000Da,对Mg2+ 的截留率为88%。

2. 水处理陶瓷膜修饰技术

2.1 化学气相沉积修饰技术

采用化学气相沉积法(CVD)在陶瓷膜表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及过滤性能,是一项非常有效的手段。Lin 等 采用CVD 技术对平均孔径为4nm 的Al2O3 陶瓷膜进行修饰,制备出孔径范围为0.4 ~ 0.6nm 的SiO2 陶瓷膜。CVD 的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性。

2.2 原子层沉积修饰技术

原子层沉积技术(ALD)可将物质以单原子膜形式层层沉积在陶瓷膜表面,从而构建陶瓷膜表面微纳结构。Li 等 在平均孔径50nm 的陶瓷膜表面上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,改性后陶瓷膜对BSA的截留率由2.9% 升至97.1%。

2.3 表面接枝修饰技术

表面接枝技术常被用来调控膜材料的表面性质,接枝过程将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成大量羟基,通过接枝有机硅烷的方法在介孔膜表面可以修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性可以实现调控孔径大小的目的,且能获得特殊的表面性质。Singh 等 发现接枝硅烷偶联剂可以使多孔陶瓷膜孔径进一步变小。Cohen 等 将亲水性PVP 接枝在陶瓷超滤膜表面上,改性后的膜孔径减小,截留性能提高,抗污染性能得以改善,可用于油水分离。

3. 水处理陶瓷膜制备与修饰工艺优化

3.1 陶瓷膜材料、添加剂选取

水处理陶瓷膜的制备主要集中于原材料及烧结工艺,通过添加烧结助剂以降低烧结温度、采用低成本易烧结原料以降低原料成本,以及利用先进的烧结工艺以达到低成本控制是陶瓷膜的研究重点。陶瓷膜制备过程中常在基膜材料中加入一些液相型或者固相型烧结助剂。高岭土、钾长石等天然硅酸盐黏土矿物在较低温度下便能熔融形成液相,在颗粒间毛细管力的作用下润湿并包裹膜材料基体颗粒,并将颗粒黏结起来,辅以多孔陶瓷膜良好的机械强度。氧化钛、氧化锆等金属氧化物能与陶瓷膜基体形成多元氧化物固熔物而使烧结温度下降,有利于陶瓷膜制备。

3.2 陶瓷膜烧制过程优化

多孔陶瓷膜必须经过多次烧结,存在烧结工艺周期长、能耗高的问题。除采用烧结助剂或采用易烧结材料以降低烧结温度外,减少烧结时间或缩短制备周期也能达到降低烧结工艺成本的目的。在减少烧结时间方面,微波烧结技术是一种非接触技术,热通过电磁波的形式传递,可直达材料内部,最大限度地减少了烧结的不均匀性,可在缩短烧结时间的同时,降低烧结温度。微波技术大多用于制备几近致密的陶瓷复合物,同时由于其可改善材料组织、提高材料性能,亦可用于多孔陶瓷复合物的制备。在缩短烧结周期方面,一些研究者借鉴低温共烧陶瓷技术在多层结构陶瓷元器件封装领域的成功应用,提出采用共烧结技术来减少烧结次数,从而降低烧结成本。

4. 结论

水处理陶瓷膜制备技术以提高陶瓷膜整体性能为目的,通过调控陶瓷膜微结构可实现陶瓷膜制备技术的突破。目前,致孔剂制备技术、模板剂制备技术、纤维层积制备技术、溶胶- 凝胶技术、固态粒子烧结技术等陶瓷膜制备技术已日益得到关注。水处理陶瓷膜制备技术研究将引领和推动陶瓷膜技术及产业的发展,缓解水厂升级改造、提升水质品质的瓶颈压力。

;

❷ 化学透析实验的实验设计

透析是生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”。 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜, 商品透析袋制成管状,其扁平宽度为23 mm~50 mm不等。为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。洗净凉干的透析袋弯折时易裂口,用时必须仔细检查,不漏时方可重复使用。 超滤是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质。在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、与浓缩的目的。 超滤膜一般分为板框式(板式)、中空纤维、管式、卷式等多种结构。

❸ 试例举几种啤酒发酵设备,并阐明其特点。

啤酒发酵设备-发酵罐介绍 发酵罐:承担产物的生产任务。它必须能够提供微生物生命活动和代谢所要求的条件,并便于操作和控制,保证工艺条件的实现,从而获得高产。
一个优良的发酵罐装置和组成
(1)应具有严密的结构
(2)良好的液体混合特性
(3)好的传质相传热速率
(4)具有配套而又可靠的检测,控制仪表啤酒发酵设备-发酵罐发展历史 第一阶段:1900年以前,是现代发酵罐的雏形,它带有简单的温度和热交换仪器。
第二阶段:1900-1940年,出现了200m3的钢制发酵罐,在面包酵母发酵罐中开始使用空气分布器,机械搅拌开始用在小型的发酵罐中。
第三阶段:1940-1960年,机械搅拌,通风,无菌操作和纯种培养等一系列技术开始完善,发酵工艺过程的参数检测和控制方面已出现,耐蒸汽灭菌的在线连续测定的pH电极和溶氧电极,计算机开始进行发酵过程的控制。发酵产品的分离和纯化设备逐步实现商品化。
第四阶段:1960-1979年,机械搅拌通风发酵罐的容积增大到80-150m3。由于大规模生产单细胞蛋白的需要,又出现了压力循环和压力喷射型的发酵罐,它可以克服—些气体交换和热交换问题。计算机开始在发酵工业上得到广泛应用。
第五阶段:1979年至今。生物工程和技术的迅猛发展,给发酵工业提出了新的课题。于是,大规模细胞培养发酵罐应运而生,胰岛素,干扰素等基因工程的产品走上商品化。啤酒发酵设备-发酵罐的特点 (1)发酵罐与其他工业设备的突出差别是对纯种培养的要求之高,几乎达到十分苛刻的程度。因此,发酵罐的严密性,运行的高度可靠性是发酵工业的显著特点。
(2)现代发酵工业为了获取更大的经济利益,发酵罐更加趋向大型化和自动化发展。在发酵罐的自动化方面,作为参数检测的眼睛如pH电极,溶解氧电极,溶解CO2电极等的在线检测在国外巳相当成熟。发酵检测参数还只限于温度,压力,空气流量等一些最常规的参数。啤酒发酵设备-发酵罐的种类发酵工业上最常用的是通风搅拌罐。除了通风搅拌发酵罐外,其它型式的发酵罐如:气提式发酵罐,压力循环发酵罐,带超滤膜的发酵罐等。
典型发酵设备:种子制备设备、主发酵设备、辅助设备(无菌空气和培养基的制备)、发酵液预处理设备、粗产品的提取设备、产品精制与干燥设备、流出物回收,利用和处理设备发酵罐工艺操作条件
1。温度:25~40℃。
2。压力:0~1kg/cm3(表压)。
3。灭菌条件;温度100~140℃,压力0~3kg/cm3(表压)。
4。pH:2~11。
5。需氧量:0。05~0。3kmo1/m3·h。
6。通气量:0。3~2VVM。
7。功率消耗:0。5~4kW/m3。
8。发酵热量:5000~20000kcal/m3。h。啤酒发酵设备-发酵罐的类型 1。按微生物生长代谢需要分类
好气:抗生素,酶制剂,酵母,氨基酸,维生素等产品是在好气发酵罐中进行的;需要强烈的通风搅拌,目的是提高氧在发酵液中的传质系数。厌气:丙酮丁醇,酒精,啤酒,乳酸等采用厌气发酵罐。不需要通气。
2。按照发酵罐设备特点分类
机械搅拌通风发酵罐:包括循环式,如伍式发酵罐,文氏管发酵罐,以及非循环式的通风式发酵罐和自吸式发酵罐等。非机械搅拌通风发酵罐:包括循环式的气提式,液提式发酵罐,以及非循环式的排管式和喷射式发酵罐。这两类发酵罐是采用不同的手段使发酵罐内的气,固,液三相充分混合,从而满足微生物生长和产物形成对氧的需求。
3。按容积分类
一般认为500L以下的是实验室发酵罐;500-5000L是中试发酵罐;5000L以上是生产规模的发酵罐。密闭厌氧发酵罐
对这类发酵罐的要求是:能封闭;能承受一定压力;有冷却设备;罐内尽量减少装置,消灭死角,便于清洗灭菌。
酒精和啤酒都属于嫌气发酵产物,其发酵罐因不需要通入昂贵的无菌空气,因此在设备放大,制造和操作时,都比好气发酵设备简单得多。
它的容积常大于50m3,H:Dt=1-2,罐的上,下部都是锥形的。
上部有物料口,冷却水口,CO2和气体出口,人孔和压力表开口等。
温度控制采用罐内蛇管和罐外壁直接水喷淋相结合,排料管在罐的底部。
一,酒精发酵罐
酵母将糖转化为酒精高转化率条件
(1)满足酵母生长和代谢的必要工艺条件
(2)一定的生化反应时间
(3)及时移走在生化反应过程中将释放的生物热
酒精发酵罐的结构要求:满足工艺要求,有利于发酵热的排出,从结构上有利于发酵液的排出,有利于设备清洗,维修以及设备制造安装方便等问题。
啤酒发酵设备-发展趋势 近年来,啤酒发酵设备向大型,室外,联合的方向发展,迄今为止,使用的大型发酵罐容量已达1500吨。大型化的目的是:
(1)由于大型化,使啤酒质量均一化;由于啤酒生产的罐数减少,使生产合理化,降低了主要设备的投资。
发酵容器材料的变化。由陶器向木材---水泥----金属材料演变。现在的啤酒生产,后两种材料都在使用。我国大多数啤酒发酵容器为内有涂料的钢筋水泥槽,新建的大型容器一般使用不锈钢。
(2)开放式发酵容器向密闭式转变。
小规模生产时,一般用开放式,对发酵的管理,泡沫形态的观察和醪液浓度的测定等比较方便。随着啤酒生产规模的扩大,发酵容器大型化,并为密闭式。从开放式转向密闭发酵的最大问题是发酵时被气泡带到表面的泡盖的处理。可用吸取法分离泡盖。
(3)密闭容器的演变。
原来是在开放式长方形容器上面加弓形盖子的密闭发酵槽;随着技术革新过渡到用钢板,不锈钢或铝制的卧式圆筒形发酵罐。后来出现的是立式圆筒体锥底发酵罐。目前使用的大型发酵罐主要是立式罐,如奈坦罐,联合罐,朝日罐等。由于发酵罐容量的增大,要求清洗设备装置也有很大的改进,大都采用CIP自动清洗系统。啤酒前,后发酵设备及计算。啤酒发酵设备-前后发酵设备(一)前发酵设备
传统的前发酵槽均置于发酵室内,发酵槽大部分为开口式。前发酵槽可为钢板制,常见的采用钢筋混凝上制成,也有用砖砌,外面抹水泥的发酵槽。形式以长方形或正方形为主。前发酵槽内要涂布一层特殊涂料作为保护层。采用不饱和聚脂树脂,环氧树脂或其他特殊涂料较为广泛,但还未完全符合啤酒低温发酵的防腐要求。
前发酵槽的底略有倾斜,利于废水排出离槽底10-15cm处,伸出有嫩啤酒放出管为了维持发酵槽内醪液的低温,在槽中装有冷却蛇管或排管。前发酵槽的冷却面积,根据经验,对下面啤酒发酵取每立方米发酵液约为0。2平方米冷却面积,蛇管内通入0-2度的冰水。注意CO2的排放,防止中毒。
后发酵设备
主要完成嫩啤酒的继续发酵,并饱和二氧化碳,促进啤酒的稳定,澄清和成熟。
根据工艺要求,贮酒室内要维持比前发酵室更低的温度,一般要求0-2℃,特殊产品要求达到-2℃左右。后发酵过程残糖较低,发酵温和,故槽内一般无须再装置冷却蛇管。贮酒室的建筑结构和保温要求,均不能低于前发酵,室内低温的维持,是借室内冷却排管或通入冷风循环而得。后发酵槽是金属的圆筒形密闭容器,有卧式和立式两种。工厂大多数采用卧式。发酵过程中需饱和CO2,后发酵槽应制成耐压0。1-0。2MPa表压的容器。后发酵槽槽身装有人孔,取样阀,进出啤酒接管,排出二氧化碳接管,压缩空气接管,温度计,压力表和安全阀等附属装置。后发酵槽的材料,一般用A3钢板制造,内壁涂以防腐层。贮酒槽全部放置在隔热的贮酒室内,维持一定的后酵温度。毗邻贮酒室外建有绝热保暖的操作通道,在通道内进行后发酵过程的调节和操作。贮酒室和通道相隔的墙壁上开有一定直径和数量的玻璃窥察窗,便于观察后发酵室内部情况。通道内保持常温,开启发酵液的管道和阀门都接通到通道里。啤酒发酵设备-新型啤酒发酵设备1。圆筒体锥底发酵耀
圆简体锥底立式发酵罐(简称锥形罐),已广泛用于上面或下面发酵啤酒生产。锥形罐可单独用于前发酵或后发酵,还可以将前,后发酵合并在该罐进行(一罐法)。这种设备的优点:在于能缩短发酵时间,而且具有生产上的灵活性,故能适合于生产各种类型啤酒的要求。
设备特点
这种设备一般置于室外。已灭菌的新鲜麦汁与酵母由底部进入罐内;发酵最旺盛时,使用全部冷却夹套,维持适宜的发酵温度。冷媒多采用乙二醇或酒精溶液,也可使用氨(直接蒸发)作冷媒;CO2气体由罐顶排出。罐身和罐盖上均装有人孔,罐顶装有压力表,安全阀和玻璃视镜。在罐底装有净化的CO2充气管。罐身装有取样管和温度计接管。设备外部包扎良好的保温层,以减少冷量损耗。
优点:
(1)是能耗低,采用的管径小,生产费用可以降低。
(2)最终沉积在锥底的酵母,可打开锥底阀门,把酵母排出罐外,部分酵母留作下次待用。
影响发酵设备造价的因素
发酵设备大小,形式,操作压力及所需的冷却工作负荷。容器的形式主要指其单位容积所需的表面积,以m2/100L表示,这是影响造价的主要因素。2.通用罐
用于多罐法及一罐法生产。因而它适合多方面的需要,故又称该类型罐为通用罐。
结构:主体是一圆柱体,是由7层1。2m宽的钢板组成。总的表面积是378m3,总体积765m3。
联合罐是由带人孔的薄壳垂直圆柱体,拱形顶及有足够斜度以除去酵母的锥底所组成。锥底的形式可与浸麦槽的锥底相似。联合罐的基础是一钢筋混凝土圆柱体,其外壁约3m高,20cm厚。基础圆柱体壁上部的形状是按照罐底的斜度来确定的。有30个铁锚均匀地分埋入圆柱体壁中,并与罐焊接。圆柱体与罐底之间填入坚固结实的水泥沙浆,在填充料与罐底之间留25。4cm厚的空心层以绝缘。
3。朝日罐
前发酵和后发酵合一的室外大型发酵罐朝日罐是用4—6mm的不绣钢板制成的斜底圆柱型发酵罐。其高度与直径比为1:1-2:1外部设有冷却夹套,冷却夹套包围罐身与罐底。外面用泡沫塑料保温内部设有带转轴的可动排油管,用来排出酒液,并有保持酒液中CO2含量均一的作用。
朝日罐特点
朝日罐与锥形罐具有相同的功能,但生产工艺不同。
(1)利用离心机回收酵母
(2)利用薄板换热器控制发酵温度
(3)利用循环泵把发酵液抽出又送回去。
优点:
三种设备互相组合,解决了前,后发酵温度控制和酵母浓度的控制问题,加速了酵母的成熟。使用酵母离心机分离发酵液的酵母,可以解决酵母沉淀慢的缺点利用凝聚性弱的酵母进行发酵,增加酵母与发酵浓接触时间,促进发酵液中乙醛和双乙酰的还原,减少其含量。啤酒发酵设备-啤酒的连续发酵罐种类1。两个搅拌罐和一个酵母分离罐串联起来,加入酒花的麦芽汁流加入第一个搅拌罐,经发酵后,成熟啤酒从分离罐中流出。这种流程已达到日产100m2的规模。
2。由数个高度6~9m的塔式发酵罐串联起来,附加一些酵母分离和啤酒贮藏设备。
还有一个由主发酵塔和一个发酵塔组成,发酵周期40,50小时,连续发酵两个月,各项经济指标均优于间歇法。
丙酮—丁醇发酵罐
生产丙酮,丁醇的发酵罐比酒精发酵罐高,罐身需承受高压,罐壁较厚,用钢板制成。顶盖和底部采用球形封头,罐内表面平整光滑,无内部件,采用表面喷淋冷却。种子罐采用夹套冷却。一,机械搅拌发酵罐
机械搅拌发酵罐是发酵工厂常用类型之一。它是利用机械搅拌器的作用,使空气和醪液充分混合促使氧在醪液中溶解,以保证供给微生物生长繁殖,发酵所需要的氧气。
啤酒发酵设备-发酵罐的结构1,罐体
2,搅拌器和挡板
3,消泡器
4,联轴器及轴承
5,变速装置
6,空气分布装置
7,轴封
8,冷却装置
罐体
由圆柱体及椭圆形或碟形封头焊接而成,材料为碳钢或不锈钢,对于大型发酵罐可用衬不锈钢板或复合不锈钢制成,衬里用的不锈钢板厚为2-3毫米。为了满足工业要求,在一定压力下操作,空消或实消,罐为一个受压容器,通常灭菌的压力为2。5公斤/厘米2(绝对压力)。
搅拌器
搅拌器有平叶式,弯叶式,箭叶式三种其作用是打碎气泡,使氧溶解于醪液中,从搅拌程度来说,以平叶涡轮最为激烈,功率消耗也最大,弯叶次之,箭叶最小。为了拆装方便,大型搅拌器可做成两半型,用螺栓联成整体。
通用发酵罐的搅拌桨类型
(1)通用发酵罐的搅拌桨最广泛使用的是平叶涡轮搅拌桨,国内采用的大多数是六平叶式,其各部分尺寸比例已规范化。这种搅拌桨具有很大的循环液体输送量,功率消耗大。因此特别适用于丝状菌发酵。
(2)船用螺旋搅拌器,它具有比涡轮桨更为强烈的轴向流动,但是氧传递效率低。
(3)振动混合器,尽管可以提供较高的氧传递效率,但剪切力较低。
(4)多棒搅拌桨,已用于粘稠的丝状链霉菌发酵的发酵罐中。这种搅拌桨具有较好的剪切分散能力和较低的功率消耗,在整个发酵过程中功率变化相对涡轮桨要小的多。
(5)气体导入式搅拌器,是由一个空心的搅拌桨组成,安装在空心的搅拌轴上。搅拌桨上至少有一个暴露在液体中的开口。由于搅拌桨转动,开口处的压力随之减少,使导入的气体沿着搅拌轴向下流动。它适应于低粘度的发酵液。
消泡装置
消泡方式有两种:一是加入化学消泡剂消除泡沫,但高浓度的化学消泡剂会对发酵产生抑制作用,故不能添加太多;第二种方式,即机械消泡。机械消泡装置主要有四种。
一是锯齿式消泡桨。它安装于罐内顶部,高出液面的位置,固定在搅拌轴上,随搅拌轴转动,不断将泡沫打破。
二是半封闭式涡轮消泡器,它是由前者发展改进而来,泡沫可直接被涡轮打碎或被涡轮抛出撞击到罐壁而破碎。
三是离心式消泡器,它们置于发酵罐的顶部,利用高速旋转产生的离心力将泡沫破碎,液体仍然返回罐内。
第四种是刮板式消泡器,它安装于发酵罐的排气口处,泡沫从气液进口进到高速旋转的刮板中,刮板转速为1000—1450rpm,泡沫迅速被打碎,由于离心力作用,液体披甩向壳体壁上,返回罐内,气体则由汽孔排出。
挡板
挡板的作用是改变液流的方向,由径向流改为轴向流,促使液体激烈翻动,增加溶解氧。通常挡板宽度取(0。1-0。12)D,装设4-6块即可满足全挡板条件。所谓"全挡板条件"是指在一定转速下再增加罐内附件而轴功率仍保持不变。要达到全挡板条件必须满足下式要求:
D—罐的直径(mm)
Z—挡板数
W—挡板宽度(mm)
竖立的列管,排管,也可以起挡板作用,故一般具有冷却列管或排管的发酵罐内不另设挡板。(但冷却管为盘管时,则应设挡板。)挡板的长度自液面起到罐底为止。挡板与罐壁之间的距离为(1/5~1/9)W,避免形成死角,防止物料与菌体堆积。
联轴器及轴承
大型发酵罐搅拌轴较长,常分为二至三段,用联轴器使上下搅拌轴成牢固的刚性联接。常用的联轴器有鼓形及夹壳形两种。小型的发酵罐可采用法兰将搅拌轴连接,轴的连接应垂直,中心线对正。为了减少震动,中型发酵罐一般在罐内装有底轴承,而大型发酵罐装有中间轴承,底轴承和中间轴承的水平位置应能适当调节。罐内轴承不能加润滑油,应采用液体润滑的塑料轴瓦(如石棉酚醛塑料,聚四氟乙烯等)。轴瓦与轴之间的间隙常取轴径的0。4-0。7%,以适应温度差的变化。罐内轴承接触处的轴颈极易磨损,尤其是底轴承处的磨损更为严重,可以在与轴承接触处的轴上增加一个轴套,用紧固螺钉与轴固定,这样仅磨损轴套而轴不会磨损,检修时只要更换轴套就可以了。
变速装置
试验罐采用无级变速装置,发酵罐常用的变速装置有三角皮带伸展动,圆柱或螺旋圆锥齿轮减速装置,其中以三角皮带变速传动效率较高,但加工,安装精度要求高。采用变极电动机作阶段变速,即在需氧高峰时采用高转速,而在不需较高溶解氧的阶段适当降低转速。这样,发酵产率并不降低,而动力消耗则有所节约。自动化程度较高的发酵罐,采用可控硅变频装置,根据溶氧测定仪连续测定发酵液中溶解氧浓度的情况,并按照微生物生长需要的耗氧及发酵情况,随时自动变更转速,这种装置进一步节约了动力消耗,并可相应提高发酵产率,但其装置颇为复杂。
空气分布装置
空气分布装置的作用是吹入无菌空气,并使空气均匀分布。分布装置的形式有单管及环形管等。常用的为单管式,管口对正罐底中央,装于最低一挡搅拌器下面,管口与罐低的距离约40mm,并且空气分散效果较好。若距离过大,空气分散效果较差。该距离可根据溶氧情况适当调整,空气由分布管喷出上升时,被搅拌器打碎成小气泡,并与醪液充分混合,增加了气液传质效果。通常通风管的空气流速取20米/秒。为了防止吹管吹入的空气直接喷击罐底,加速罐底腐蚀,在空气分布器下部罐底上加焊一块不锈钢补强。可延长罐底寿命。通风量在0。02~0。5ml/sec时,气泡的直径与空气喷口直径的1/3次方成正比。也就是说,喷口直径越小,气泡直径也越小。因而氧的传质系数也越大。但是生产实际的通风量均超过上述范围,因此气泡直径仅与通风量有关,而与喷口直径无关。
轴封
轴封的作用:使罐顶或罐底与轴之间的缝隙加以密封,防止泄露和污染杂菌。常用的轴封有填料函轴封和端面轴封两种。填料函轴封是由填料箱体,填料底衬套,填料压盖和压紧螺栓待零件构成,使旋转轴达到密封的效果。安装在旋转轴与设备之间的部件,它的作用是阻止工作介质(液体,气体)沿转动轴伸出设备之处泄漏冷却装置
5M3以下发酵罐一般采用夹套冷却。大型发酵罐采用列管冷却(四至八组)。带夹套的发酵罐罐体壁厚要按外压计算[即3。5Kg/厘米2(绝对压力)]夹套内设置螺旋片导板,来增加换热效果,同时对罐身起加强作用。冷却列管极易腐蚀或磨损穿孔,最好用不锈钢制造。啤酒发酵设备-标准通用式发酵罐编辑本段 通用式发酵罐是最广泛应用的深层好气培养设备。
在工业生产中,尤其是制药工业中,使用得最广泛的就是通用式发酵罐。这种发酵绕既具有机械搅拌装置,又具有压缩空气分布装置。发酵罐的搅拌轴既可置于发酵罐的顶部,也可置于其底部,其高径比为2:1-6:19有关的重要因素是氧传递效率,功率输入,混合质量,搅拌桨形式和发酵罐的几何比例等。
自吸式发酵罐
它与通用发酵罐的主要区别是:①有一个特殊的搅拌器,搅拌器由转子和定子组成;②没有通气管。
具有转子和定子的搅拌器的吸气原理:浸在发酵液中的转子迅速旋转,液体和空气在离心力的作用下,被甩向叶轮外缘。这时,转子中心处形成负压,转子转速愈大,所造成的负压也愈大。由于转子的空膛与大气相通,发酵罐外的空气通过过滤器不断地被吸入,随即甩向叶轮外缘,再通过异向叶轮使气液均匀分布甩出。转子的搅拌,又使气液在叶轮周围形成强烈的混合流,空气泡被粉碎,气液充分混合。
自吸式发酵罐的搅拌器
①回转翼片式自吸搅拌器;
②喷射式自吸搅拌器;
③具有转子和定子的自吸搅拌器。
气泡塔式发酵罐
塔式发酵罐系一直立长圆筒,筒内安装孔板,有的还在罐内安装搅拌器,罐壁四周装挡板。与分批的机械搅拌发酵罐类似,有的塔顶横截面扩大,供以降低流速,截留液体夹带的悬浮物。发酵液和空气可以并流,也可逆流。
_罐的特点是:罐身高,高径比为6;土霉素等生产用的设备,高径比达到7。由于液位高,空气利用率高,节省空气约5%,节省动力约30%,但底部存在沉淀现象;温度高时降温较难。

现代发酵罐的大型化给STF带来—系列难以克服的困难。要大于1000kW的机械搅拌;大量的冷却水和排除热量;能量的均匀分布;溶解氧,碳源和其它营养与pH控制等。
带升式发酵罐
带升式发酵罐也称为气流搅拌发酵罐,不用机械搅拌,借通风起到搅拌作用并供给氧气。
特点:结构简单,冷却面积小,无搅拌传动设备,料液充满系数大,无须加消泡剂,维修,操作及清洗简便,节省动力,减少染菌等。
工作原理:外循环气流搅拌罐是将空气上升管装在罐外,下端与罐底连通,管底装空气喷嘴,压缩空气以250~300m/s高速喷出,与上升管内醪液接触,由于气液混合体密度小于罐内醪液,所以在管内上升,管上端与罐身切线相连,液体由切线进入在罐内回旋下降,形成激烈循环。
液提式发酵罐
液提发酵罐是液体借助于一个液体泵进行输送,同时气体在液体的喷嘴处被吸入发酵罐。
喷嘴是这类发酵罐的一个特殊部件,制造要求精密。
气提式发酵罐
空气压缩机是气提式发酵罐的重要组成部分,它的效率决定于它的形式。
压缩气体通过空气分布器进入液体后,最初形成的气泡是由液体剧烈翻动来分散的,所以气泡的分散程度决定于功率消耗速率。
(一)喷嘴塔式
这是由一个两相喷嘴和鼓泡柱组成的发醉罐,它的通气效率比多孔管式或多孔板式好得多。
这种形式的反应器常用于废水处理,如在一个15000m'的活性污泥池中,安装56个喷嘴,每天可转化30000kg的氧。
(二)喷嘴塔循环式
它以两相喷嘴作为通气装置,具有高的液体循环速度。
(三)喷璃循环式
它利用喷嘴的喷射力,吸入气体,使气体在罐体内部循环,达到较好的传氧效果。
的传氧效果。
(四)喷射通道式
在这种反应器里,液体在细长形的喷嘴里被加速,使循环液体的位能更有效地转变成动能。喷嘴最窄处液体的速度最大,而静压最低,空气通过小孔或狭窄处被吸入和分散,在喷嘴处形成的气泡被向下流动的液体带到罐的底部。在窄管的终端,气体向上运动并离开液体排出。
(五)滴流床式
液体在罐顶部被分散,然后向下滴流通过已被固定化的微生物细胞。空气是在罐底导入并与液体逆向流动。它在好氧废水处理中有着广泛的应用。
(六)多级塔循环式
这种罐以多孔盘管或筛孔发作为一级分离器。液休平面由溢流管控制。(七)管道循环式
空气以3-4m/s的速度导入液体流中,然后通过—个多孔过滤器在
旋风分离器中分离,最后排出系统。这种液流以单向通过泵和流量计。采用这种可以有很高的细胞浓度〔可达t659(干重细胞)/L和高的氧传递速率。然而功率输入也是相当高的。(八)液体流化床式
近年来,沉化床生化反应器的研究报道很多,它主要应用在3个方面
①酶固定在固体基质上;
②完整细胞固定在固体基质上进行纯培养;
③生化流化床广泛应用于废水处理过程。

反渗透膜的市场规模

国内市场格局方面抄,国外品牌反渗透膜仍然占据领先地位,尤其是工业和海水淡化领域,陶氏、海德能等高端品牌依旧是工程项目甲方的指定选择,国产反渗透膜短时间内很难切入,部分国产反渗透膜在中小型工业项目上得到应用。

家用净水市场的情况与工业类似,高端由国外品牌占据。 国产反渗透膜主要集中在家用净水中低端市场。此外,国产反渗透膜企业有很大一部分销量来自出口。

在充分调查的基础上,高工产研膜材料研究所(GGII)编制了《2018-2020年中国反渗透膜行业调研报告》。

本报告对2018年及未来几年中国反渗透膜行业的市场发展特点、反渗透膜市场规模、反渗透膜市场竞争情况、市场发展趋势、行业投资机会等进行了详细的研究和分析。

高工膜材料希望通过切切实实地调查,深入研究分析,为企业、投资者、证券公司以及想了解膜材料产业的人士,提供最准确最优参考价值的膜材料行业数据及调查报告。

❺ 工业污水的处理办法

现代社会发展对水质要求不断提高,对水量需求越来越大。由于水体过渡污染和水资源过渡采用,全球不少地区面临严重水危机。控制水质环境成为各工业用水单位的当务之急,工业废水为水域的重要污染源,具有量大、面广、成分复杂、毒性大、不易净化、难处理等特点。本论文根据工业水污染的特点,简要介绍几种适合处理工业用水污染的方法。
进入新世纪以来,随着经济社会的持续高速发展,人们所从事的生产活动比以往任何时候都要活跃,经济高速发展的同时带来许多不确定性的负面影响,在环境问题上显得日益突出,当今城市工业企业在商品经济的市场调节作用下,为适应或缓解商品社会供需矛盾而自我发展起来的。因此,工业企业门类繁多、产品多样,污水成分也十分复杂。针对工业水污染现状分析,主要应该采取以下几种方法来治理工业水污染:
1.膜分离法
膜分离过程组分一般不发生相的变化,能耗较小,操作温度在室温左右。它是一种节能技术。膜分离范围广,无论工业废水中的无机物还是有机物,细菌还是矿物微粒均可使用。膜分离适用体系也较多,大多可用膜分离。膜分离的装置比较简单,容易控制,可以连续操作。但也存在一些问题:热稳定性和化学稳定性不高,膜的通量和选择性待进一步提高,膜污染的防治和浓差极化等。工业污染水处理是膜分离的重要应用领域,微孔膜、超滤膜具有较大的孔径,在深度处理前后常用作预处或后处理。由于膜分离过程基本为物理过程,不需投加其他药剂,不产生副产物,用于饮用水处理,可以大大提高水的质量。
2.电场处理法
电场处理法是将电场施加于待处理工业污染水中,观察水体系物理、化学性质的变化。这些性质包括水体系密度、吸光度、电导率的变化及对结垢物的影响。电场处理可根据不同水污染工作条件分为高压静电场法、高频电场法和电子处理法。
2.1高压静电法
高压静电场的电场强度为3 000-5000V/cm。美国学者将10000V的高压加于工业原污染水时,产生极好的阻垢效果,他们认为这种阻垢作用是由于电场作用下流动的水产生微弱电流所致。形成水垢的化合物大多为离子化合物,由正、负离子组成,当水中施加电场时,离子会受到电场的吸引,使其难以结合成固体物。1970年代末,日本将静电除垢器与给水槽和脱气装置组合,用于工业给水处理,取消化合加药,亦可达到防垢、缓蚀的目的。1970年代后期,国内亦陆续研制了静电水处理器并在一些工业用水处理工厂中应用。高压静电场法除了可以阻垢、除垢外,还可以缓蚀、消灭工业废水中的细菌。
2.2高磁电场法
高频电场法的电场强度并不大,一般在1 000 V/cm以下,而电场频率要高,通常在10Mnz以上。试验表明,工业污染水流速一定时,随着电场频率增大,阻垢率随之增大;当频率在10MHZ以上时,流速对阻垢率影响很小。可见频率足够高时在短时间内就能阻止工业废水垢形成。阻垢作用可能是在高频电场作用下,极小晶粒表面带电,阻碍晶粒正常成长,从处理前后电镜照片明显看出工业污染水中固体形态的差别。
2.3电子处理法
电子处理法与前两种电场法的区别在于该法直接向工业污染水中通入微小电流,所以装置由直流稳压电源和处理器两部分组成。管状处理器的中心有一金属正极,处理器壳体为负极。该类处理器1970年代首先由美国研制成功,1980年代末国内亦有产品问世。陈家森等研究表明,电场还会对工业污染水的结构发生影响,引起水中部分氢氧键断裂,水中出现过量超氧阴离子自由基、过氧化氢及自由质子。其中氢氧键的断裂是通过电场对水分子的附加能进行估算:用核磁共振波谱仪测试质子核磁纵向弛豫时问用以证实电场处理后水中过量超氧阴离子自由基存在,这种自由基和氧分子一样,具有顺磁性;用光子计数器通过鲁米诺化学发光现象,可以确定电场处理前后过氧化氢浓度在体系中的变化。
3.磁场处理法
磁化法用于工业废水防垢效果明显。此外,有试验表明磁化水可提高树脂的离子交换容量,可作为离子交换前的预处理。磁化水用于混凝土可缩短固化时间、提高强度和增加防冻性及化学稳定性。经过处理后的饮用磁化水还有排除人体胆结石的作用。磁法水处理技术还可用于含油工业污水处理中。与其他方法相比,磁法分离净化技术更彻底、无二次污染。将磁性材料(如Ni-Cu-Zn铁氧体等)制成粉状,放入含油工业废水中搅拌,油被磁粉吸附。再通过磁分离装置,吸附了油的磁粉留在磁场中,而水被分离。而改性磁粉法可将磁粉表面用适当材料处理使其亲油。若用石腊、高级脂肪酸等处理,表面覆盖一层亲油疏水薄膜。这种改性磁粉加入含油污水中时增加了对油的亲合力,油和磁粉凝聚成泥状物下沉。最后用磁场将油泥物分离。
4.生物法处理工业水污染
4.1传统生物法
传统生物处理工业污染水的方法包括活性污泥法、氧化塘生物滤池、生物转盘等。活性污泥法是最主要的传统生物法,利用曝气池进行废水处理微生物作刚下废水得到净化。活性油腻物通常要经过接种、培养、驯化,由细菌、原生动物和其他杂质组成。氧化塘足最原始的生物水处理方法,可以利用池塘、洼地,不需要另外的设施,因其处理效果差,1960年代末增加人工强化条件,发展为新的氧化沟技术。生物滤池、生物转盘都是利用滤料上附着的生物膜。这种方法在某些方面优于活性污泥法。传统生物法的系统由水、污染物、微生物、氧组成。一般有工业污水的地方就会出现这种天然处理系统。活性污泥既是微生物载体,又是微生物代谢的产物。系统运行过程不断从界鼓入空气,其中的氧溶解于工业污水中,通过生物体酶的催化与污染物相作用。污染物一般为含碳有机物,如果条件适宜,会发生阶段性降解,或彻底降解,最终变为二氧化碳和水。活性污泥中常有多种微生物,在常温附近都能正常生存,处理系统结构简单,所以它的优点是处理污染物种类多、对许多有机物处理效率高、受气候条件影响小、管理不复杂。这种技术的应用始于1914年,长期以来,是城市污水及某些工业废水的主要处理方法。由于一般工业废水中污染物和氧的浓度都较低,微生物的专属性不会很高,氧化有机物的速率较慢,导致这种系统主要缺点是处理周期长、占地面积大、同时运行费用也较高。
4.2酶处理法
微生物与工业污水中有机物接触时发生多种化学反应,如氧化还原、脱羧、脱氮、脱水、水解。这些作用不是微生物与有机物的直接反应,而是通过微生物细胞产生的酶,经过一系列催化阶段,使有机物得到降解。微生物体内的酶体系由于遗传变异和高速繁殖对环境有很强的适应性,可用来处理不同的工业污水质。根据微生物的特性可分为需氧法和厌氧法。需氧法应用较多,厌氧法亦受到重视。生物法氧化有机物通常分阶段进行,初期生物降解只引起化合物母体结构变化,即有中间产物生成。最终生物降解可以完全无机化。
5.总结
综上所述,本研究通过工业污染水的几种处理方法分析了工业用水污染控制情况,这些工业废水如直接排放或处理不当 ,将影响水体的自净 ,因而使水质恶化。由于工业废水的组成复杂 ,往往需要由几种方法组成一个处理系统 ,才能完成所要求的处理功能, 因此应用于工业废水处理的化学法、物理化学法和生物法取得了极大进展,因此研究开发高效、经济的应用于工业废水处理新技术将成为未来几年内新的环保研究热点。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

❻ 我国给排水科学与工程专业领域的领军人物有哪些

1. 李圭白

刘鸿亮 (1932.6.20 -) 环境工程专家。出生于辽宁省大连市。1954年毕业于清华大学。曾任国际湖泊环境委员会常务理事、中国环境科学研究院院长。现任中国环境科学研究院研究员、国家环境保护总局科技顾问委员会副主任。在水环境研究领域是我国学术带头人。1994年当选为中国工程院院士。

❼ 净水器过滤后的水属于什么水

净水器过滤后的水属于净水,家用净水器出来的水是经超滤膜过滤出来的净化水,在去除水中泥沙、铁锈、细菌、有机物等有害物质的同时,保留了水中对人体有益的矿物质微量元素。

它具备精度高的过滤技术,家庭使用的净水器五级过滤技术第一级为滤芯又称PP棉滤芯(PPF),第二级颗粒活性碳(UDF)滤芯,第三级为精密压缩活性炭(CTO)滤芯,第四级为反渗透膜或超滤膜,第五级为后置活性炭(小T33)。

净水器不仅对自来水污染比较严重的地区适用,也能过滤到常规自来水中的余氯,同时可以改善用水口感。

(7)超滤膜堆论文扩展阅读

净水器按管路设计等级划分可分为渐紧式净水器和自洁式净水器两大类。传统净水器是渐紧式净水器,它的内部管路设计滤芯前松后紧,由PP熔喷滤芯、颗粒碳、压缩碳、RO反渗透膜或超滤膜、后置活性炭,一般是此5级依次首尾相连组成。

截留物沉积于滤芯内部,需要定期人工拆洗,以确保机器正常运作。另一类是更为先进的自洁式净水器,机内设计两条通道,增加了一条洗涤水通路,作为平常普通生活用水的洗涤水经过通路时对机内滤芯特别是膜滤芯的原水侧起到冲刷以达到自行清洁的作用。

利用开闭洗涤水龙头的瞬间即头尾两段本来就流掉的水将截留的污物及时并快速地排出,此结构设计得合理,省去人工拆洗的麻烦,免除机构本身的再次污染,同时,又降低了能耗费用。

但请消费者注意识别,自洁式净水器不同于市面上所见到的自动排污净水器、电脑自动冲洗净水器和自动反冲洗净水器,前者是整机自洁,也就是说对机器内部的所有滤芯都有一定的自行清洁功能;后者仅对其中一个滤芯进行冲洗而非整机。

通俗的讲,自洁式净水器相当于在管路上安了垃圾处理器,污物随时清理出去,不在机内停留。而传统非自洁式净水器等于在房间内搁置了多个垃圾桶,污物平常暂存于机内,故需要定期排污、拆洗和频繁更换滤芯。

❽ 膜分离技术在环境工程中的应用探讨论文

膜分离技术在环境工程中的应用探讨论文

摘要:随着科学技术水平的提升,膜分离技术发展的越来越成熟,且应用范围也不断的拓宽,这其中,以环境工程中的应用最为广泛,环境工程中通过应用膜分离技术,可有效地提升环境污染治理及预防的效果,在本文中,论述了各种膜分离技术在环境工程中的具体应用。

关键词:膜分离技术;环境工程;应用

以分离过程为划分依据,膜分离技术中包含多种类型,比如微滤、超滤、纳滤等。通过膜分离技术,可有效地处理环境中的固体、气体污染物,避免这些污染物污染环境,提升环境中的清洁度。环境工程开展的目的在于缓解环境污染的现状,防止环境污染加重,提升环境质量,应用膜分离技术后,可有效地提升工程开展的效果,实现环境质量提升的目的。

一、微滤技术在环境工程中的应用

颗粒、细菌等物质的大小位于0.1~ lOLm时,过滤时适合采用微滤技术,此项技术属于筛网过滤,操作过程中,具备比较低的压力,而且能够较好的适应液体,在饮水处理工程中有着比较广泛的应用。传统的过滤技术中,过滤池中需要设置澄清过滤和二沉池,占地面积比较大,但在应用微滤技术后,澄清过滤及二沉池可以直接取消,使得过滤池的占地面积有效缩小,而且如果水质出现比较大的波动时,过滤处理的效果依然比较好。此外,通过膜分离技术,可以良好的处理废水,循环实现闭路,经过处理的'污染水可以再次回收利用,实现废水再利用的同时,节约水资源,并提升资源的利用效率,同时,还可以将环保意识有效地提升。

二、超滤技术在环境工程中的应用

超滤膜的过滤孔直径非常小,最小0.05nm,最大Inm。环境工程中,应用超滤技术后,物质中含有的固体颗粒、悬浮物可以被有效的过滤清除,同时,大分子物质、胶体的过滤中也可以应用超滤技术,具备比较好的过滤效果。在电泳涂漆废水的处理工程中,广泛的采用超滤技术,通过此种膜分离技术,有效地清除废水中的金属离子杂质,实现废水的回收再利用,提升了废水的再利用效率,并且其再生的可生化性显著增强。需要注意的是,在环境工程在应用超滤技术时,使用的超滤膜及相应的组件通量要比较大,而且所具备的耐高温、抗氧化性能要非常好,当前的超滤技术水平还无法有效地满足这一要求,需要进一步加大研发的力度,实现这一目标。

三、反渗透技术在环境工程中的应用

无论是何种类型的溶质,反渗透膜虽具备的脱除率都非常高,且具备非常高的出水水质,通常,除盐处理工程中经常采用反渗透技术。现阶段,环保领域已经大规模的应用了反渗透技术,主要体现在四个方面,一是改善城市饮用水的水质,二是处理城市污水,三是处理工业废水,四是处理垃圾渗滤液。在垃圾渗滤液中,含有的氨氮、碱度及重金属的浓度非常高,而当氨氮的浓度非常高时,会产生比较大的毒副作用,利用活性污泥法处理垃圾渗滤液时,处理的效果非常差,而应用反渗透技术进行处理时,可以显著的提升处理的效果。现阶段,环境工程应用反渗透技术时,还存在的一定的问题,主要表现在两个方面,一个是膜污染,一个是浓差极化,在今后的研究中,重点在于研究出耐污染、价格低的膜材料,并使新研制的膜材料具备耐高温、抗氧化、超低压的性能。

四、纳滤技术在环境工程中的应用

上世纪八十年代,典型反渗透复合膜出现,随后,经过进一步的研究与开发之后,研制出新型的膜分离技术——纳滤技术,该项技术为分子级技术,位于超滤技术与反渗透技术之间。纳滤技术的过滤过程属于压力驱动型,操作过程中,设置压力时,通常最小设置为0.5MPa,最大时设置为l.OMPa。离子选择性是纳滤膜的一个突出特点,去除二价离子时,去除率可超过95%,但去除一价离子时没去除率仅在40%~ 800/0之间,基于纳滤技术的特点及去除率,在河水有害物质去除、地下水有害物质去除、废水脱色等工程有着比较广泛的应用。在低压状态下,纳滤膜的通量比较高,与反渗透膜相比,仅需比较少的投资成本及操作成本,但利用纳滤技术过滤过程中,纳滤膜较易受到污染,预处理时,需要进水水质比较高,且处理过程比较复杂,使得纳滤技术的应用受到一定的限制。

五、液膜技术在环境工程中的应用

所谓液膜,就是乳液颗粒悬浮在液体中,乳液颗粒层非常薄,膜分离过程中,渗透具有一定的选择性,通过化学反应,萃取和吸附其中的污染物,实现净化。与固膜相比,液膜具有更为快速的传质速度,且具备非常高的选择性和分离效率。在溶液中,如果定分离离子和有机物,适合采用此种技术进行膜分离。当前,医药化工、湿法冶金、废水处理中已经良好的应用液膜分离技术,通过资源化处理的方式,促使废水实现再利用。

六、结论

环境工程中,通过膜分离技术的应用,可有效的减少废水、废气、固体颗粒等对环境的污染,并实现废水的再生利用,有效的增强了环境保护的效果。

参考文献:

[1]陈思贤,曹娟,膜分离技术在水处理环境工程中的应用[Jl.河南科技.2014(16)

[2]杨毅,尹红,安代志等.膜分离技术在液相色谱样品前处理中的应用【J】.榆林学院学报.2014( 06)

[3]黄万抚,严思明,丁声强,膜分离技术在印染废水中的应用及发展趋势[J].有色金属科学与工程.2012(02)

;
阅读全文

与超滤膜堆论文相关的资料

热点内容
不饱和聚酯树脂延时加固化 浏览:91
日本核污水对中国哪些城市有影响 浏览:964
渗透汽化膜技术处理废水 浏览:867
农村每人每天用水量和污水量 浏览:935
柠檬酸除垢剂清除管道 浏览:385
反渗透入口铁含量 浏览:501
上海水质超滤膜 浏览:626
柠檬酸除垢剂可以洗银壶 浏览:644
银川第五污水处理厂规模 浏览:571
污水排放需监测项目 浏览:578
氢氧化钙在电镀废水中有什么作用 浏览:547
为什么日本每天会产生核废水 浏览:881
火锅大型餐厅每日排污量污水 浏览:476
废水排放量是用水的多少 浏览:831
过滤器中注入service 浏览:260
有机废水不能生化怎么处理 浏览:349
格兰富空气净化器怎么样 浏览:693
屈臣氏蒸馏水是什么味道 浏览:281
繁体回怎么用 浏览:794
河北除垢药剂价格 浏览:89