Ⅰ 树脂字的制作方法
1.在温度环境较低的时候,最好A料需要预热到50-60度后才可配比,这是为了保证容易操作版和达到最佳效果权。
2.混合AB两种料的时候注意是重量比(非体积比),且配比要精确,否则出来的可能就是废物了。这种材料不能重复使用的。
3.搅拌器具,称量器具,混合容器等需干燥洁净。
4.搅拌的时候需要一个方向搅拌(不要正反两个方向都搅),尽量缓慢,不要剧烈动作,这样是为了避免产生过多的气泡。
5.搅拌均匀后静置4-5分钟后进行浇铸。
6.浇铸时候最好沿着一个边角缓慢让树脂混合物流入,不可猛灌,这样也是为了防止气泡的出现。
7,树脂字的LED光源一定要选好。
Ⅱ 加固材料性能检测常用试验标准有哪些
GB50550-2010《建筑结构加固工程施工质量验收规范》附录J,测定胶耐湿热老化性能。
GB/T3354《定向纤维增强塑料拉伸性能性能试验方法》,测定碳纤维、玻璃纤维的抗拉强度、受拉弹性模量及伸长率。
GB/T2568-1995《树脂浇铸体拉伸性能试验方法》,测定胶本体的抗拉强度、受拉弹性模量及伸长率。
GB/T2569-1995《树脂浇铸体压缩性能试验方法》,测定胶本体的压缩强度、受压弹性模量。
GB/T6329-1996《胶粘剂对接接头拉伸强度试验方法》,测定正拉粘接强度。
GB/T7124-1986《胶粘剂拉伸剪切强度试验方法》,测定剪切粘接强度。
GJB94-1986《胶粘剂不均匀扯离强度试验方法》,测定粘接扯离强度。
GB/T6328-1999《胶粘剂剪切冲击强度试验方法》,测定粘接冲击强度。
GB/T2570-1995《树脂浇铸体弯曲性能试验方法》,测定胶本体的抗弯强度。
GB7749-87《胶粘剂劈裂强度试验方法》,测定胶本体劈裂抗拉强度。
GB50367-2006《混凝土结构加固设计规范》附录F,测定胶与混凝土的粘接强度
Ⅲ 请问什么是环氧树脂浇注体
环氧树脂加上环氧树脂固化剂按照一定的比例混合均匀,然后倒入固定的模具中,即可制作成环氧树脂浇注体。在该体系中可加入一些其它的添加剂,填充剂之类的,按需选择。之后就是固化形式的决定了。
固化形式则是两种选择,常温与中高温,根据你所需要的浇注体的固化条件来选择。一般来说,加热都是可以完成固化的,但某些固化剂在中高温时会有变色之类的现象发生,所以选择要慎之,事先了解好浇注体系的性能。
Ⅳ 纤维增强塑料树脂有哪几项检测和检测的标准是什么!
3 树脂 固体含量 0302 GB/T7193.3-1987《不饱和聚酯树脂 固体含量测定方法》
4 树脂 80℃下反应活性 0302 GB/T7193.4-1987《不饱和聚酯树脂 80℃下反应活性测定方法》
5 树脂 80℃热稳定性 0302 GB/T7193.5-1987《不饱和聚酯树脂 80℃热稳定性测定方法》
6 树脂 25℃凝胶时间 0302 GB/T7193.6-1987《不饱和聚酯树脂 25℃凝胶时间测定方法》
7 树脂 浇铸体耐碱性 0302 GB/T7194-1987《不饱和聚酯树脂 浇铸体耐碱性测定方法》
8 树脂 浇铸体拉伸 0302 GB/T2568-1995《树脂浇铸体拉伸性能试验方法》
9 树脂 浇铸体压缩 0302 GB/T2569-1995《树脂浇铸体压缩性能试验方法》
10 树脂 浇铸体弯曲 0302 GB/T2570-1995《树脂浇铸体弯曲性能试验方法》
11 树脂 浇铸体冲击 0302 GB/T2571-1995《树脂浇铸体冲击试验方法》
12 预浸料树脂含量 0302 JC/T780-2004《预浸料树脂含量试验方法》
13 预浸料挥发份含量 0302 JC/T776-2004《预浸料挥发分含量试验方法》
14 预浸料凝胶时间 0302 JC/T774-2004《预浸料凝胶时间试验方法》
15 预浸料流动度 0302 JC/T775-2004《预浸料树脂流动度试验方法》
16 纤维增强塑料拉伸 0302 GB/T1447-2005《纤维增强塑料拉伸性能试验方法》
17 纤维增强塑料压缩 0302 GB/T1448-2005《纤维增强塑料压缩性能试验方法》
18 纤维增强塑料弯曲 0302 GB/T1449-2005《纤维增强塑料弯曲性能试验方法》
19 纤维增强塑料层间剪切 0302 GB/T1450.1-2005《纤维增强塑料层间剪切强度试验方法》
20 纤维增强塑料冲压式剪切 0302 GB/T1450.2-2005《纤维增强塑料冲压式剪切强度试验方法》
21 纤维增强塑料冲击韧性 0302 GB/T1451-2005《纤维增强塑料简支梁式冲击韧性试验方法》
22 纤维增强塑料线膨胀系数 0302 GB/T2572-2005《纤维增强塑料平均线膨胀系数试验方法》
23 纤维增强塑料导热系数 0302 GB/T3139-2005《纤维增强塑料导热系数试验方法》
24 纤维增强塑料平均比热容 0302 GB/T3140-2005《纤维增强塑料平均比热容试验方法》
25 纤维增强塑料热变形温度 0302 GB/T1634.2-2004《塑料 负荷变形温度的测定 第2部分塑料、硬橡胶和长纤增强复合材料》
Ⅳ 环氧树脂混凝土配合比的比例
环氧树脂混凝土配合比的比例:
一型:环乳树脂:100二。丁曲:12乙二胶:10。丙酮:9。水泥:250。砂:200(渐洗鲸晒,烘干)。碎石:300(粒径5-16mm洗鲸晒,烘干)。
二型:环氧树脂:100。二了曲:10。乙二龄:8。丙酮:11。水泥:250。砂:150。碎石:280。
注:
1、计受以g为单位。
2、要求计准确。
3、此为夏季气溪30℃左右的配合比,如气溪偏差较大,可调整二丁酯,乙二胺,丙酮的含。配制方法:严格按照质量比,先倒入环氧树脂,再倒入二丁面,分致次倒入搅拌均匀。在教次倒入乙二胺搅拌均匀,依次分别侧入丙酮,水泥,砂,碎石搅均匀,时间越短越好,保证其流动性。
安全注意事项:禁用塑料容器拌合;禁烟,避大;操作过程中必须佩藏手套及防护早。
(5)树脂浇铸体实验扩展阅读:
环氧树脂具有仲羟基和环氧基,仲羟基可以与异氰酸酯反应。环氧树脂作为多元醇直接加入聚氨酯胶黏剂含羟基的组分中,使用此方法只有羟基参加反应,环氧基未能反应。
普通液态环氧树脂外观:用酸性树脂的、羧基,使环氧开环,再与聚氨酯胶黏剂中的异氰酸酯反应。
还可以将环氧树脂溶解于乙酸乙酯中,添加磷酸加温反应,其加成物添加到聚氨酯胶黏剂中;胶的初黏;耐热以及水解稳定性等都能提高还可用醇胺或胺反应生成多元醇,在加成物中有叔氮原子的存在,可加速NCO反应。
用环氧树脂作多羟基组分结合了聚氨酯与环氧树脂的优点,具有较好的粘接强度和耐化学性能,制造聚氨酯胶黏剂使用的环氧树脂一般采用EP-12、EP-13、EP-16和EP-20等品种。
Ⅵ 您好,我最近在实验室想制作环氧树脂的浇铸体,可是我用的是普通玻璃模具,在脱模时相当困难,想向您请教
玻璃上涂点硅油,也不一定用玻璃做模具,我在实验室做小试件用铝薄,用铝薄固化后很容易把铝薄撕掉,撕不掉可以用盐酸泡一下,模具就全没了。
Ⅶ 如何加速使液体树脂快速凝固且不变形无气泡
配方工艺调整下,固化用量很关键
不饱和聚酯树脂中阻聚剂及其他添加剂的影响
为了不饱和聚酯树脂的稳定,常在其中加入阻聚剂或缓聚剂。这是一种能与链自由基反应形成非自由基或不能再引发的低活性自由基,使交联固化速率降低为零的物质。因此,低反应活性的树脂有可能因为其中加入的阻聚剂量很少而显得反应活性很高,而高反应活性的树脂也可能因其中加入了过量的阻聚剂而变得不甚活泼。另外其他添加剂例如:阻燃剂、色浆、低收缩剂、各种填料的加入,引入了磷、卤、金属离子或其他因素,都会影响树脂交链反应活性。
(6)固化剂、阻聚剂用量的影响
用JX-196树脂作固化实验,不同固化剂、阻聚剂用量的影响如下:
组号 BPO TBC HQ N-Cu 凝胶时间min 放热峰温度℃ 固化时间min
1 0.3 0 0 0 3.7 178 1.7
2 0.3 0.02 0.07 0.07 12.9 143 3.05
3 0.3 0.02 0.07 0.02 12.3 167 2.7
4 0.3 0.04 0.04 0.04 11.3 164 2.6
5 0.6 0.02 0.07 0.07 8.3 181 1.7
6 0.6 0.02 0.07 0.02 6.4 184 1.5
7 0.6 0.04 0.04 0.04 7.6 185 1.3
8 0.9 0.04 0.04 0.04 4.2 191 1.2
从上述实验可以看出:三组不同固化剂用量固化结果形成三个阶梯,用量越大,固化越快,放热峰越高。不同的阻聚剂和不同的用量固化效果也为不相同。因此在树脂制造和使用过程中,掌握好阻聚剂、固化剂的合理匹配十分重要。
2 不饱和聚酯树脂固化网络结构分析
2.1不饱和聚酯树脂交联网络结构
不饱和聚酯中的双键与交联剂中的双键聚合形成不溶不熔的交联网络结构,网络中含有两种聚合物分子链结构。网络主体由不饱和聚酯分子链的无规线团组成,苯乙烯共聚分子链穿插其中,将不饱和聚酯分子链连接和固定起来,形成一个巨大的网。在网中不饱和聚酯分子链平均分子量为1000-3000。连接在不饱和聚酯分子链间苯乙烯分子链的长度为1-3个,而从某个引发点开始,聚酯分子 → 苯乙烯 链 → 聚酯分子 → 苯乙烯链 → 这样的连续重复,最多也只有7-8个交替,这样苯乙烯共聚物分子链平均分子量可达8000-14000。整个网络结构平均分子量为10000-30000。如果网络分子量小于10000会直接影响制品的力学性能 ,如强度、弹性和韧性等。
2.2 不饱和聚酯树脂交联网络的长寿命自由基
不饱和聚酯树脂交联网络在固化过程中,不饱和聚酯和苯乙烯各自双键的聚合进程及残留率的变化具有一定的特色。实验表明不管聚酯树脂交联网络完善与否,都会产生一些自由基无法终止的空间位阻的死点,形成长寿命自由基。这些长寿命自由基又只会存在于不饱和聚酯链上,而不会出现在只有两个官能度的小分子的交联剂上。由于长寿命自由基的存在,不饱和聚酯树脂固化后交联反应仍能进行。温度的升高,特别是接近树脂玻璃化温度时,分子的可动性大大增加,长寿命自由基得以活动,可以和残余的交联剂单体继续进行交联反应,这就是树脂后固化可以提高固化度的原因。
2.3 聚酯树脂网络结构中的微相分离现象
实验分析表明,在交联良好的不饱和聚酯树脂中也存在着一种微相分离结构。这种微相分离很可能是在聚合过程中,由于不同分子链的相互排斥作用,聚酯链和交联剂以某种方式分别敛集在一起而产生了分相。固化初期的放热峰使两相相互溶合在一起,这是不饱和聚酯树脂形成均匀网络的重要条件。但放热峰后相分离的过程又在随着时间的延续不断进行和发展。低温的处理可加速该微相分离的发展,相反,热处理可以消除这种微相分离。当温度升高时首先可以使敛集较松的分相区破坏,温度再升高又可使敛集较紧的分相区破坏,最后,玻璃化温度以上的高温就可使所有分相区消除。相区一经破坏,再重新聚集分相就不象聚合时单体运动、排列自如,而要受到网络的限制。而在两相玻璃化温度以上的高温处理导致在网络均匀状态下进一步的聚合和交联,可从根本上消除这种微相分离。
微相分离现象的存在对材料的性能有相当大的影响。实验表明,同一条件下聚酯浇铸体样品,25℃室温固化30天,固化度达到90.2%,其巴柯硬度为38.5。而经高温处理后,虽然固化度提高不大为92.6%,但由于消除了相分离的影响,巴柯硬度竟达到44.4。可见微相分离对树脂的硬度影响很大。同时也可以理解高温后处理试样刚度大大超过室温固化试样的原因所在。因此,我们要十分强调不饱和树脂玻璃钢制品,尤其是防腐蚀、食品用等玻璃钢设备,一定要经过高温后处理,消除微相分离现象再投入使用。
2.4交联剂对网络结构的影响
上面已经说到,两种单体交联固化时,竞聚率在影响不饱和聚酯树交联网络的均匀性方面起着关键性的作用。因此在选择交联剂时必须注意竞聚率,使交联剂与不饱和聚酯能很好的交替共聚,形成均匀的网络结构。此外交联剂分子量要小一点,官能度要低,与聚酯要有优良的相容*联剂用量的选择上,一般说来交联剂用量过少,不饱和聚酯的双键不能完全反应,用量过多又必然形成大量的塑性链,这两种情况都不能使树脂形成均匀紧密地网络。实验表明,交联剂苯乙烯的用量通常为35%左右,即与聚酯双键之比在1:1.6-2.4之间。
2.5不饱和聚酯分子量对交联网络的影响
聚酯分子量越大,分子链越长,分子量越小,分子链越短。实验表明,随着聚酯分子量的增加,形成完整网络的概率也越大,分子量小,形成完整网络就较困难。随着分子量增加,网络中端基减少,节点增加,耐热性越好。因此分子量大的树脂耐热性能较高。
2.6 不饱和聚酯分子结构对网络性能的影响
不饱和聚酯交联点间分子结构对网络热性能有直接的影响。不饱和聚酯分子结构单元由双键、酯键、醚键、亚甲撑、芳环类等集团组成。一般情况下,双键之间的链节越短,树脂的热变性温度就越高。双键间链节延长会使热变性温度降低。
弯曲强度是材料拉伸强度和抗压强度的综合体现,是材料性能重要的指标。树脂的交联密度越高,承受负荷的分子链越多,弯曲强度也应越高。但有时实际上却非如此。这是因为树脂网络是极不均匀的,而且均匀*联密度的增加而下降。因此在外力的作用下,各分子链的受力也不均匀。再有,高交联密度树脂其分子张紧而难以运动,变性量很小,在外力作用下宁折不弯。可见高交联树脂由于均匀性差,分子链难以松弛双重原因会造成他们弯曲强度不高。一个有高温使用价值的树脂,其理想的分子结构应该是在双键间主链中引入一连串非对称的芳杂环结构,最好能带有少量的极性键。
2.7 引发剂及固化条件对树脂网络结构的影响
(1)引发剂种类不同 ,树脂交联固化性能也不同。以过氧化环己酮(HCH)/环烷酸钴(CoN)和过氧化苯甲酰(BPO)/二甲基苯胺(DMA)两种氧化-还原体系为例进行固化实验可以看到:以BPO/DMA体系引发以苯乙烯为交联剂的树脂,固化达80h的过程中用丙酮萃取的百分率缓慢下降至24.9%,而以HCH/CoN体系引发同样以苯乙烯为交联剂的树脂固化至4.5h后即下降至24.5%,可见以HCH/CoN体系引发固化不饱和聚酯树脂要比BPO/DMA体系引发更为有效。同时发现,以HCH/CoN引发体系固化的树脂网络中长寿命自由基的数量10个月后仍然不低于固化80天后的数量。相比之下,以BPO/DMA引发体系固化的树脂网络中长寿命自由基的数量却很快消失殆尽了,充分说明该体系对树脂网络的形成有很大影响。尤其固化后期要达到较高的固化程度比较困难。
(2)固化条件不同树脂固化网络的性能也将有很大差异。以天津巨星公司JX-196树脂为例:取JX-196树脂,加入HCH/CoN引发体系后分成两份,分别置于25℃恒温水浴和25℃空气浴中,记录下每一试样在固化过程中温度的变化情况。可以看到,在固化前期树脂的温度情况水浴与
空气浴基本一致,但是在凝胶以后,在空气浴中固化样品放热峰较高,而在水浴中固化样品放热峰温度比前者要低20-30℃。再将两种样品进行后固化处理以后测定,在空气浴中固化的试样各种性能参数都明显优于在水浴中固化的试样。这说明同一树脂在经历不同固化条件时,起始的固化度有明显差别。虽然只要有足够的引发剂存在并经高温后处理,最终固化度将趋于一致,可是固化性能却有显著差别。这就是说,初始的固化条件奠定了交联网络结构基础,因而也就在相当大的程度上确定了材料的物性。所以在固化工艺中有一种所谓成夹生饭无法再煮熟之说。树脂固化以后分子就难以穿插运动了,因此影响网络结构的关键时刻是凝胶时刻的一段时间,在这段时间,为了保证树脂网络结构的均匀性和连续性,要求交联剂继续渗透和溶胀,而此时出现的放热峰起到了这种作用,虽然交联产物最终固化度未见得更高,但性能却要比无放热峰者为好。
JX-196树脂在空气浴与水浴中固化性能比较
凝胶时间min 放热峰温度℃ 巴柯硬度 弯曲强度KPa
空气浴℃ 9.7 184 43 211
水浴℃ 11.6 163 30 188
Ⅷ 实验室制备酚醛树脂的方法是:将适量反应物放入一只试管中,振荡,摇匀后,塞紧橡胶塞,水浴加热数分钟
酚醛树脂的实验室制法
在大试管中加入2.5克苯酚和2.5毫升40%甲醛溶液,再加入1毫升浓盐版酸(作为催化剂),此时看权不到明显现象。把试管口塞上插有长玻璃管
(>30厘米)的单孔塞,再把试管放进沸水浴中加热(沸水浴应为100℃恒温加热装置),如图。混合液开始沸腾时,表示反应正在进行(反应放热),
沸腾熄止时,表示反应已完成。继续加热约10分钟,以利酚醛树脂和水溶液充分分层,上层为水,下层为酚醛树脂,冷却后显粉红色(原因:苯酚被氧化生成醌类
物质)。反应装置中的长玻璃管对挥发的反应物起冷凝回流作用。在这个实验中,所用苯酚过量,并用酸作催化剂,产物是线型高分子树脂;如甲醛溶液过量时(如
2.5克苯酚配3—4毫升40%甲醛溶液)且用氨水作催化剂时,产物则是体型高分子树脂(参看缩聚反应)。实验后的反应容器,需用酒精浸泡一些时间后,才
易用水洗净。制得的酚醛树脂有体型和线型。
所以应该是把试管口塞上插有长玻璃管(>30厘米)的单孔塞,而不是塞紧橡胶塞,这样加热会爆炸的
Ⅸ 树脂砂铸造的原理分析
铸件粘砂是因为涂料没有有效起到阻挡隔离作用,或涂料与高温金属液体发生化学反应内。
1.涂料附着力差容:填砂震动时造成涂料剥落,引起铸件粘砂,
2.涂料膨胀系数大:与高温金属液体接触时涂料受热体积膨胀脱离铸型导致铸件粘砂。
3.高温液体金属被氧化与涂料和铸型发生化学反应生成金属氧化物,对涂料和型砂都有极强的粘结性,能够将型砂牢固粘附在铸件表面上形成一系列的低熔点化合物〔在铸件厚壁及转角处等,低熔点物更多,粘砂层更后),造成铸件粘砂,有时虽未产生粘砂,但在铸件表面粘附上一层难以清除的涂料,及产生粘灰。
铸件砂眼:
1.铸型内有掉入的砂子。
2,.涂料强度低,耐火差,经不住高温金属液体的冲刷,型砂被卷入铸件。
铸件气孔:产生的原因很多,最常见的就是因为铸型中存在较多发气量大的物质,发气速度快,涂料或被砂透气性差,气体未及时排除所致。