① 超滤的基本信息
在超滤过程中,水溶液在压力推动下,流经膜表面,小于膜孔的溶剂(水)及小分子溶质透水膜,成为净化液(滤清液),比膜孔大的溶质及溶质集团被截留,随水流排出,成为浓缩液。超滤过程为动态过滤,分离是在流动状态下完成的。溶质仅在膜表面有限沉积,超滤速率衰减到一定程度而趋于平衡,且通过清洗可以恢复。
超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。超滤是以压力为推动力的膜分离技术之一。以大分子与小分子分离为目的 。
超滤起源于是1748年,Schmidt用棉花胶膜或璐膜分滤溶液,当施加一定压力时,溶液(水)透过膜,而蛋白质、胶体等物质则被截留下来,其过滤精度远远超过滤纸,于是他提出超滤一语,1896年,Martin制出了第一张人工超滤膜,其20世纪60年代,分子量级概念的提出,是现代超滤的开始,70年代和80年代是高速发展期,90年代以后开始趋于成熟。我国对该项技术研究较晚,70年代尚处于研究期限,80年代末,才进入工业化生产和应用阶段。
超滤装置如同反渗透装置,有板式、管式(内压列管式和外压管束式)、卷式、中
空纤维式等形式。浓差极化乃是膜分离过程的自然现象,如何将此现象减轻到最低程度,是超滤技术的重要课题之一。采取的措施有:①提高膜面水流速度,以减小边界层厚度,并使被截留的溶质及时由水带走;②采取物理或化学的洗涤措施。 超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。超滤原理也是一种膜分离过程原理,超滤利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。通过膜表面的微孔筛选可截留分子量为3x10000—1x10000的物质。当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300—500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。
超滤原理并不复杂。在超滤过程中,由于被截留的杂质在膜表面上不断积累,会产生浓差极化现象,当膜面溶质浓度达到某一极限时即生成凝胶层,使膜的透水量急剧下降,这使得超滤的应用受到一定程度的限制。为此,需通过试验进行研究,以确定最佳的工艺和运行条件,最大限度地减轻浓差极化的影响,使超滤成为一种可靠的反渗透预处理方法。
超滤是一种膜分离技术,(UItrafil-tration 简称UF)。能够将溶液净化,分离或者浓缩。超滤是介于微滤与纳滤之间,且三者之间无明显的分界线。一般来说,超滤膜的孔径在0.05 um–1 nm之间,操作压力为0.1–0.5 Mpa。主要用于截留去除水中的悬浮物、胶体、微粒、细菌和病毒等大分子物质。超滤膜根据膜材料,可分为有机膜和无机膜。按膜的外型,又可分为:平板式、管式、毛细管式、中空纤维和多孔式。目前家用超滤净水器,多以中空膜为主。
超滤膜的工作以筛分机理为主,以工作压力和膜的孔径大小来进行水的净化处理。以中空纤维为例,以进水方式可分为外压式:原水从膜丝外进入,净水从膜丝内制取。反之则为内压式。内压式的工作压力较外压式要低。超滤膜在饮用水深度处理,工业用超纯水和溶液浓缩分离等许多领域中,得到了广泛应用。 超滤膜元件采用世界著名膜公司产品,确保了客户得到目前世界上最优质的有机膜元件,从而确保截留性能和膜通量,超滤设备控制系统可根据用户具体使用要求进行个性化设计,结合先进的控制软件,现场在线集中监控重要工艺操作参数,避免人工误操作,多方位确保系统长期稳定运行。
由于每根超滤组件在出厂前加入保护液,使用前要彻底冲洗组件中的保护液,先用低压(0.1MPa)给水冲洗1小时,然后再用高压(0.2MPa)给水冲洗1小时,无论低压还是高压冲洗时,系统的产水排放阀均应全部打开。在使用产水时,应检查并确认产品水中不含有任何杀菌剂。
超滤设备系统回收率高,所得产品品质优良,可实现物料的高效分离、纯化及高倍数浓缩。系统制作材质采用卫生级管阀,现场清洁卫生,满足GMP或FDA生产规范要求。系统工艺设计先进,集成化程度高,结构紧凑,占地面积少,操作与维护简便,工人劳动强度低。
处理过程无相变,对物料中组成成分无任何不良影响,且分离、纯化、浓缩过程中始终处于常温状态,特别适用于热敏性物质的处理,完全避免了高温对生物活性物质破坏这一弊端,有效保留原物料体系中的生物活性物质及营养成分。
超滤组件要轻拿轻放,并注意保护,由于超滤组件是精密器材,所以在使用安装时要小心,要轻拿轻放,更不能甩坏。组件若停用,要先用清水冲洗干净后,加0.5%甲醛水溶液进行消毒灭菌,并密封好。如冬天组件还要进行防冻处理,否则组件可能报废。
超滤设备系统能耗低,生产周期短,与传统工艺设备相比,设备运行费用低,能有效降低生产成本,提高企业经济效益。
超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冷冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶。在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。 过滤膜根据所加的操作压力和所用膜的平均孔径的不同,可分为微孔过滤、超滤和反渗透三种。微孔过滤所用的操作压通常小于2×10^5 Pa,膜的平均孔径为500埃~14微米,用于分离较大的微粒、细菌和污染物等。超滤所用操作压为1×10^5 Pa~6×10^5 Pa,膜的平均孔径为10-100埃,用于分离大分子溶质。反渗透所用的操作压比超滤更大,常达到20×10^5 Pa~70×10^5 Pa,膜的平均孔径最小,一般为10埃以下,用于分离小分子溶质,如海水脱盐,制高纯水等。
② 求实验室纯水机保养方法,谢谢
影响实验室纯水机工作的主要就是结垢和细菌、藻类
可以定期使用除垢剂进行除垢
如果使用频繁或者对水质要求较高
可以适当添加杀菌灭藻剂和阻垢剂
③ 超详细净水装置扫盲攻略,还不快来GET。
说在前面
之前码了一篇关于新房验房的回答,介绍了关于验房的8招小技巧,文章里提到了水质测试的问题,所以想引申一篇关于净水装置的文章,在这里Leon深扒下普通住宅的净水装置有哪些,我们如何去选择。
大家都知道这几十年里我们国家经济飞速发展为生活带来很多便捷、也让生活更多姿多彩,但这样快速的发展也带来了环境污染。当下水质问题、空气质量、PM2.5指数、装修甲醛以及食品安全等问题,一直是热火不下的敏感词,也不断刺激着我们关注健康投资。
言归正传现在家庭使用的比较多水处理装置主要有前置过滤、直饮水净水器(包括纯水机和超滤机两大阵营)以及软水机,下面详细说下这三大主力装置。
一、前置过滤
1.小白扫盲
前置过滤属于市政水源进入家中的第一道坎、属于总管道水质净化产品,安装在水表之后到家里第一个出水龙头之前的任何一处外露水管,前置过滤确保城市及小区供水管网中产生的大量沉淀杂质不会对人体造成伤害,并且对水管和安装在水管上的涉水设备(如洗衣机、洗碗机、软水机、净水机和热水器等)等起到积极的预保护作用。前置过滤器是供水管网二次污染的克星,使入户水质恢复到自来水出厂标准,是一种可靠的杂质过滤装置,前置过滤使用寿命为30-50年,无需更换滤芯。
现在用的比较多的就是虹吸反冲洗前置过滤,好处是不要用电,而且相比以前需拆开清洗并且几年换次滤网的老产品更方便、主要原理是结构上带有一个排污阀,打开时水流从外侧流过过滤网,内侧的水流由于负压也流入外侧,从而达到自清洗的作用,这样不用去停水拆卸清洗,或者更换滤网,还是比较方便的。价格在300-700左右。新房装修Leon肯定推荐安装一个。
安装示意1
安装示意2
2.功能参数
前置过滤一般过滤精度在90微米,主要作为市政进水到家里的第一道粗滤,过滤掉水中的铁锈、大杂质颗粒、虫卵和浮游生物等,但是这样过滤过的水还是不能直接喝的,因为里面还有更细小的余氯、重金属以及病菌等。
安装后的好处主要是对用水电器有一个预保护作用,防止大颗粒杂质伤害电器,也使得第二道净水器滤芯通过粗滤以后延长使用寿命。
如图前置过滤的结构,可以看到还是比较简单的,一个三通加过滤网、透明外壳以及反冲洗口和阀门。
虹吸式反冲洗原理,首次使用先冲洗一次,毕竟是工业产品,本身也会有工业“痕迹”。
某知名前置过滤器产品参数
二、直饮水
1.小白扫盲
直饮水这种设备在很早就在国外普及,家家户户必备,甚至整个社区直供,但在中国人观念相对落后,尤其是因为直饮水这种理性消费品,它带来的益处不像空调这类电器,冷了热了马上能感觉到,人在购买这种产品时,往往会思想斗争,研究它到底有没有用,那答案是肯定有用的,这里不是安利,而是空气和水已经是两大人体健康杀手,的确需要更多的重视。
可能很多中老年观念里还不明白干嘛花这几千块,觉得没必要,小时候喝自来水长大的也没什么,显然这种观念在物质发达的今天已经不适用了,因为前面说过自来水厂出来的水只是粗滤而已,其实里面有很多肉眼看不到的对人体有害的杂质,以前自来水用明矾消毒,现在用氯气、所以自来水里会有余氯,还有重金属、病原菌、泥沙、铁锈以及有机物等杂质。即使烧开也只能杀灭大部分细菌、余氯、重金属和部分微生物等不受高温影响的杂志还是会残留,所以自来水烧的开水口感比较差,长期饮用也会对健康产生影响。
那说下净水器按过滤等级分为微滤、超滤、纳滤和RO反渗透(纯水机)这四种,主要直观反映在能过滤的最小物质的滤芯参数(单位:微米),微滤和纳滤就不说了用的不多,想了解的自己度娘下,主要说说纯水机和超滤机。
2.纯水机
纯水机是一种采用多级滤芯进行水质净化处理的净水设备,处理多使用不添加化学物质的过滤、吸附、反渗透等物理方法。根据纯水机净水精度可以分为生活饮用型纯水机,也叫家用纯水机和可达到实验室纯净水质要求的实验室用纯水机两类。那用一句话总结,纯水机就是一个可以把自来水过滤成接近理论纯水H2O的设备。一般组成是由多级滤芯包括:PP棉(过滤大颗粒杂质)、活性炭(去味、吸收余氯等)、RO反渗透膜(去除抗生素、有机物、细菌等)以及最后道活性炭(改善口感)这4级组成,有的品牌只有三级,也有五级的,却别就是多了1-2道压缩活性炭,比普通活性炭吸附能力更强,不过功能结构大致不影响,当然级数多肯定更好,过滤的更干净,综合寿命也更长。
纯水机安装方式分为台上式和台下式,顾名思义一个装台面上,一个装橱柜里;结构上分有桶和无桶(内置桶),无桶的流量更大。压缩比例更高,所以储水更少,废水也更少。那纯水机和超滤机最大的区别就是3个地方,一个是用电,一个是RO反渗透膜以及有储水桶。其实原理也比较简单就是通过水泵将水加压,使其通过RO反渗透膜滤芯的高精密膜,从而过滤水中极其微小的有害物质。所以一般纯水机的过滤级别可以达到0.0001微米。
带储水桶纯水机图
台下式无水桶式纯水机(内置水桶)
过滤概念
过滤原理流程图
RO反渗透原理图。值得一提的是纯水机因为运行机制缺点是用电、有储水桶占地方、储水桶用来储存过滤出来的水,时间长了可能二次污染,而且纯水机过滤由于RO反渗透膜的作用原理,过滤1杯水会产生3-4杯污水(就是过滤出来的杂质,当然现在有些产品大流量无水桶式,其实就是内置水桶,可以达到1:1废水率,但实际效果不得而知。)
一级滤芯及功能示意图
二级滤芯功能及示意图
三级滤芯功能及示意图
四级滤芯及功能示意图
某牌参数
3.超滤机
概念
超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。一句话总结就是通过自来水自然水压,用多级滤芯通过物理方式过滤自来水中的杂质,产出保留矿物质以及微量元素的净水的装置。
超滤机一般组成是PP棉粗(过滤大颗粒杂质)、活性炭(去味、吸附余氯等)、PP棉细(吸收小颗粒杂质)、磁化器(杀菌、灭藻等)以及超滤膜(去除重金属、抗生素、有机物、细菌等),有的品牌也有三级或者四级,当然最主要的PP棉、活性炭和超滤膜这三级是肯定有的。
超滤机图
水中有害物质
一级示意图
二级示意图
五级过滤0.01微米,能保留微量元素和矿物质。
三级超滤机,PP5微米的使用周期参考
三级超滤机,超滤膜使用周期参考
三级超滤机,活性炭使用周期参考
某牌参数
滤芯更换说明
PP棉滤芯更换说明
三、软水机
概念
软水机主要是通过离子交换树脂去除水中的钙、镁离子,降低水质硬度。另一种技术是区别于化学离子交换法的物理软水方法,是通过高能聚合球将水中的钙镁离子打包成结晶体存在于水中,使其在水中不结垢。主要技术有纳米晶技术。软水与自来水相比,有极明显的口感和手感。
一句话概括,就是通过化学反应方法,将水中的金属离子置换或沉淀,去除水中金属阳离子。功能来说一个是避免金属离子损伤衣物表面,保护衣物;第二个是美容护肤,软水洗完之后,避免金属离子沉积皮肤表面,并可以清洁毛孔,祛除毛孔中的角质,防止皮肤老化。第三,利于健康。软水与自来水相比,有极明显的口感和手感,软水含氧量高,硬度低,可有效防止结石病,减轻心、肾负担,有益健康。
中央软水机,内置树脂罐,美观高点,缺点体积大。
外置树脂罐软水机内部构造
厨下式软水机
厨下式软水机内部构造
悬浮式逆流浮床再生技术,省水,省盐
正反冲洗清洗技术示意图
某品牌实物图
内部结构示意图
小型软水机拆装示意图。
某牌参数
四、总结
1.前置过滤:
作为第一道粗滤,性价比高,使用便捷,耐用性长等优点,基本没有缺点,肯定是强烈推荐装的。
2.纯水机和超滤机
健康对比:
最大的争议在于过滤直径不同,导致产生的纯水和净水哪个对人体更好,当中支持者分为两大派,支持纯水的认为纯水更干净没有杂质,更健康,如果需要矿物质可以食物补充;支持净水的则认为净水有矿物质更健康,纯水长期饮用反而会对人体免疫造成危害。
事实上这个问题就好像转基因、进化论以及人类和宇宙起源等问题一样是存在争议,始终没有定论,另外一方面从科学辩证法的角度来说其实我们也没有办法证明任何一个东西对人体是无害的,即使水是动物必须的元素,如果大量的饮用也会产生水中毒。我们大多时候也会接触到外面的饮食和饮料肯定没办法保证制作过程全部用纯水,或者一点无害物质都没有,所以只保证家中的饮水是纯水也对我们来说几乎没有意义。所以我认为从健康角度来说孰优孰劣只能算平手。
构造对比:
超滤机优点:因为没有储水桶所以体积更小,不占地方,由于用自然水压,所以不产生废水,自己购买滤芯替换也很方便,缺点:因为是自然水压,不过滤水中的矿物质,所以水的TDS会高点,烧水时间长了会有水垢。
纯水机优点:无桶纯水机体积也不大,如果说认为纯水更健康,无水垢,那纯水算最大优点吧。缺点:用电增加了能耗、储水桶占地方,当然不带储水桶的例外,过滤时产生废水,而且储水桶的水可能因为储存二次污染,加大滤芯损耗。
所以从使用角度来说如果不考虑净水、纯水哪个更健康,超滤机应该更优一点。
费用对比:
超滤机如果直接购买滤芯,不要马甲,自己组装其实成本很低,一般1000多就能搞定,每天使用成本在1.2-1.8元左右性价比更优秀。
软水机的价格区间比较大,从某米的1999,到某些大牌的上万,性价比来说比超滤低,而且使用还要用到电,也是额外的成本。
所以使用成本对比超滤机更优。
关于品牌:
那肯定有住友会问,品牌如何挑选?在你没有办法作理化测试的前提下,滤芯生产商可能是水处理质量最重要的保证。这个生产商不是某M,某米或者XXX这样的品牌,而是向某M这类商家提供滤芯原始配件的厂家,例如米国的陶氏化学、通用GE和海德能这三巨头之类的供应商。(至于Leon用的什么牌子净水器,有兴趣可以关注我,私聊获取性价比产品。)
关于进口和国产,高价不一定能买到更好的产品,但是高价买到优质产品的概率总是高得多;排世界前几位的化学制品公司诓你的可能性相对小,因为互联网时代信誉的成本真的是有点高。在资源不对称的前提下,我们更理性的选择似乎只能是信誉捆绑。
3.软水机
其实如果所生活地域水质不是太硬,也就是水中金属阳离子含量不高的话,还是不建议用,中央软水机一般体积也比较大,占地方。
使用成本,一台设备在大几千,抛开本身设备损耗不说,软水机专用盐在30元左右/10KG一袋,根据水质情况,一个月用盐大概在2袋,成本60元左右。
一般水质下,树脂可以1-3年;在一些更好的水质,可使用3年以上;比较差的水质,树脂使用1年以内就要更换了,某宝漂莱特一升要10块多左右,25升一包,也要280元,陶氏的贵点要60元一升,还不包含安装费用,如果按照50L的量来算,更换一次在500-3000多不等的成本。
举个例子50L树脂罐周期产水量10-15吨,再生树脂所需盐液量0.16kg/L,三口之家一个月用水量在13-15吨左右,1L树脂理论产生6吨软水,50L树脂相当于2年多用量。
附上计算公式:一般行业内标准为再生升树脂需要的盐液量为0.16kg,首先得知道你的原水硬度,要计算能用几天得知道每天用水量。
树脂量(L)×0.16=再生每次耗盐量
树脂量(L)÷原水硬度(mmol/L)×0.8(安全系数)=设备周期产水量10公斤
盐能用几天=(10KG÷每次再生耗盐量)×(周期产水量÷每天用水量)
这应该是最近写的最长的一篇文章了,看到这里的朋友是大写的真爱,由于知识有限,若有专业纰漏,不吝赐教谢谢!
注:本文为本人原创,部分专有名词解析以及图片来源网络,不得转载或商用。
编辑 │ 德超 Leon
点击头像关注
本回答来自好好住用户Leon设计施工上海,更多装修攻略,居家经验,欢迎登陆好好住APP查看
④ 膜分离实验设备的种类
膜是具有选择性分离功能的材料.利用膜的选择性分离实现料液的不同组分的分离、纯化、内浓缩的过程称作膜容分离.它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂.膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜.有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等.
⑤ 与化学产品的分离制备相比较,生物大分子的制备有什么特点
2.1 概述 ? 在自然科学,尤其是生命科学高度发展的今天,蛋白质、酶和核酸等生物大分子的结构与功能的研究是探求生命奥秘的中心课题,而生物大分子结构与功能的研究,必须首先解决生物大分子的制备问题,有能够达到足够纯度的生物大分子的制备工作为前题,结构与功能的研究就无从谈起.然而生物大分子的分离纯化与制备是一件十分细致而困难的工作. ? 与化学产品的分离制备相比较,生物大分子的制备有以下主要特点: ? ⑴生物材料的组成极其复杂,常常包含有数百种乃至几千种化合物. ? ⑵许多生物大分子在生物材料中的含量极微,分离纯化的步骤繁多,流程长. ? ⑶许多生物大分子一旦离开了生物体内的环境时就极易失活,因此分离过程中如何防止其失活,就是生物大分子提取制备最困难之处. ? ⑷生物大分子的制备几乎都是在溶液中进行的,温度、pH值、离子强度等各种参数对溶液中各种组成的综合影响,很难准确估计和判断. ? 生物大分子的制备通常可按以下步骤进行: ? ①确定要制备的生物大分子的目的和要求,是进行科研、开发还是要发现新的物质. ? ②建立相应的可靠的分析测定方法,这是制备生物大分子的关键. ? ③通过文献调研和预备性实验,掌握生物大分子目的产物的物理化学性质. ? ④生物材料的破碎和预处理. ? ⑤分离纯化方案的选择和探索,这是最困难的过程. ? ⑥生物大分子制备物的均一性(即纯度)的鉴定,要求达到一维电泳一条带,二维电泳一个点,或HPLC和毛细管电泳都是一个峰. ? ⑦产物的浓缩,干燥和保存. ? ? 分析测定的方法主要有两类: ? 即生物学和物理、化学的测定方法. ? 生物学的测定法主要有:酶的各种测活方法、蛋白质含量的各种测定法、免疫化学方法、放射性同位素示踪法等; ? 物理、化学方法主要有:比色法、气相色谱和液相色谱法、光谱法(紫外/可见、红外和荧光等分光光度法)、电泳法、以及核磁共振等. ? 实际操作中尽可能多用仪器分析方法,以使分析测定更加快速、简便. 要了解的生物大分子的物理、化学性质主要有: ? ①在水和各种有机溶剂中的溶解性. ? ②在不同温度、pH 值和各种缓冲液中生物大分子的稳定性. ? ③固态时对温度、含水量和冻干时的稳定性. ? ④各种物理性质:如分子的大小、穿膜的能力、带电的情况、在电场中的行为、离心沉降的表现、在各种凝胶、树脂等填料中的分配系数. ? ⑤其他化学性质:如对各种蛋白酶、水解酶的稳定性和对各种化学试剂的稳定性. ? ⑥对其他生物分子的特殊亲和力. ? 制备生物大分子的分离纯化方法多种多样,主要是利用它们之间特异性的差异,如分子的大小、形状、酸碱性、溶解性、溶解度、极性、电荷和与其他分子的亲和性等. ? 各种方法的基本原理可以归纳为两个方面: ? ①利用混合物中几个组分分配系数的差异,把它们分配到两个或几个相中,如盐析、有机溶剂沉淀、层析和结晶等; ? ②将混合物置于某一物相(大多数是液相)中,通过物理力场的作用,使各组分分配于不同的区域,从而达到分离的目的,如电泳、离心、超滤等. ? 目前纯化蛋白质等生物大分子的关键技术是电泳、层析和高速与超速离心. ? 2.2 生物大分子制备的前处理 ? 2.2.1 生物材料的选择 ? 制备生物大分子,首先要选择适当的生物材料.材料的来源无非是动物、植物和微生物及其代谢产物. ? 选择的材料应含量高、来源丰富、制备工艺简单、成本低,尽可能保持新鲜,尽快加工处理. ? 动物组织要先除去结缔组织、脂肪等非活性部分,绞碎后在适当的溶剂中提取,如果所要求的成分在细胞内,则要先破碎细胞. ? 植物要先去壳、除脂. ? 微生物材料要及时将菌体与发酵液分开. ? 生物材料如暂不提取,应冰冻保存.动物材料则需深度冷冻保存. ? 2.2.2 细胞的破碎 ? 不同的生物体或同一生物体的不同部位的组织,其细胞破碎的难易不一,使用的方法也不相同,如动物脏器的细胞膜较脆弱,容易破碎,植物和微生物由于具有较坚固的纤维素、半纤维素组成的细胞壁,要采取专门的细胞破碎方法. ? (1)机械法: ? 1) 研磨:将剪碎的动物组织置于研钵或匀浆器中,加入少量石英砂研磨或匀浆. ? 2) 组织捣碎器:这是一种较剧烈的破碎细胞的方法,通常可先用家用食品加工机将组织打碎,然后再用10000r/min~20000r/min的内刀式组织捣碎机(即高速分散器)将组织的细胞打碎. ? (2)物理法: ? 1) 反复冻融法:将待破碎的细胞冷至-15℃到-20℃,然后放于室温(或40℃)迅速融化,如此反复冻融多次,由于细胞内形成冰粒使剩余胞液的盐浓度增高而引起细胞溶胀破碎. ? 2) 超声波处理法:此法是借助超声波的振动力破碎细胞壁和细胞器.破碎微生物细菌和酵母菌时,时间要长一些. ? 3) 压榨法:这是一种温和的、彻底破碎细胞的方法.在1000×105Pa~2000×105Pa 的高压下使细胞悬液通过一个小孔突然释放至常压,细胞将彻底破碎. ? 4) 冷热交替法:从细菌或病毒中提取蛋白质和核酸时可用此法.在90℃左右维持数分钟,立即放入冰浴中使之冷却,如此反复多次,绝大部分细胞可以被破碎. ? (3)化学与生物化学方法: ? 1) 自溶法:将新鲜的生物材料存放于一定的pH和适当的温度下,细胞结构在自身所具有的各种水解酶(如蛋白酶和酯酶等)的作用下发生溶解,使细胞内含物释放出来. ? 2) 溶胀法:细胞膜为天然的半透膜,在低渗溶液和低浓度的稀盐溶液中,由于存在渗透压差,溶剂分子大量进入细胞,将细胞膜胀破释放出细胞内含物. ? 3) 酶解法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛酶和酯酶等,于37℃,pH8,处理15分钟,可以专一性地将细胞壁分解. ? 4) 有机溶剂处理法:利用氯仿、甲苯、丙酮等脂溶性溶剂或SDS(十二烷基硫酸钠)等表面活性剂处理细胞,可将细胞膜溶解,从而使细胞破裂,此法也可以与研磨法联合使用. ? ? 2.2.3 生物大分子的提取 ? “提取”是在分离纯化之前将经过预处理或破碎的细胞置于溶剂中,使被分离的生物大分子充分地释放到溶剂中,并尽可能保持原来的天然状态不丢失生物活性的过程. ? 影响提取的因素主要有: ? 目的产物在提取的溶剂中溶解度的大小; ? 由固相扩散到液相的难易; ? 溶剂的pH值和提取时间等. ? 通常: ? 极性物质易溶于极性溶剂,非极性物质易溶于非极性溶剂; ? 碱性物质易溶于酸性溶剂,酸性物质易溶于碱性溶剂; ? 温度升高,溶解度加大; ? 远离等电点的pH值,溶解度增加. ? 提取时所选择的条件应有利于目的产物溶解度的增加和保持其生物活性. ? ⑴ 水溶液提取: ? 蛋白质和酶的提取一般以水溶液为主.稀盐溶液和缓冲液对蛋白质的稳定性好,溶解度大,是提取蛋白质和酶最常用的溶剂.用水溶液提取生物大分子应注意的几个主要影响因素是: ? 1) 盐浓度(即离子强度): ? 离子强度对生物大分子的溶解度有极大的影响,有些物质,如DNA-蛋白复合物,在高离子强度下溶解度增加. ? 绝大多数蛋白质和酶,在低离子强度的溶液中都有较大的溶解度,如在纯水中加入少量中性盐,蛋白质的溶解度比在纯水时大大增加,称为“盐溶”现象.盐溶现象的产生主要是少量离子的活动,减少了偶极分子之间极性基团的静电吸引力,增加了溶质和溶剂分子间相互作用力的结果. ? 为了提高提取效率,有时需要降低或提高溶剂的极性.向水溶液中加入蔗糖或甘油可使其极性降低,增加离子强度(如加入KCl、NaCl、NH4Cl或(NH4)2SO4)可以增加溶液的极性. ? ? 2) pH值:蛋白质、酶与核酸的溶解度和稳定性与pH值有关.过酸、过碱均应尽量避免,一般控制在pH=6~8范围内,提取溶剂的pH应在蛋白质和酶的稳定范围内,通常选择偏离等电点的两侧. ? 3) 温度:为防止变性和降解,制备具有活性的蛋白质和酶,提取时一般在0℃~5℃的低温操作. ? 4) 防止蛋白酶或核酸酶的降解作用:加入抑制剂或调节提取液的pH、离子强度或极性等方法使相应的水解酶失去活性,防止它们对欲提纯的蛋白质、酶及核酸的降解作用. ? 5) 搅拌与氧化:搅拌能促使被提取物的溶解,一般采用温和搅拌为宜,速度太快容易产生大量泡沫,增大了与空气的接触面,会引起酶等物质的变性失活.因为一般蛋白质都含有相当数量的巯基,有些巯基常常是活性部位的必需基团,若提取液中有氧化剂或与空气中的氧气接触过多都会使巯基氧化为分子内或分子间的二硫键,导致酶活性的丧失.在提取液中加入少量巯基乙醇或半胱氨酸以防止巯基氧化. ? ⑵ 有机溶剂提取 ? 一些和脂类结合比较牢固或分子中非极性侧链较多的蛋白质和酶难溶于水、稀盐、稀酸、或稀碱中,常用不同比例的有机溶剂提取. ? 常用的有机溶剂有乙醇、丙酮、异丙醇、正丁酮等,这些溶剂可以与水互溶或部分互溶,同时具有亲水性和亲脂性. ? 有些蛋白质和酶既溶于稀酸、稀碱,又能溶于含有一定比例的有机溶剂的水溶液中,在这种情况下,采用稀的有机溶液提取常常可以防止水解酶的破坏,并兼有除去杂质提高纯化效果的作用. 例如,胰岛素(见讲义p36). ? 2.3 生物大分子的分离纯化 ? 由于生物体的组成成分是如此复杂,数千种乃至上万种生物分子又处于同一体系中,因此不可能有一个适合于各类分子的固定的分离程序,但多数分离工作关键部分的基本手段是相同的. ? 为了避免盲目性,节省实验探索时间,要认真参考和借鉴前人的经验,少走弯路.常用的分离纯化方法和技术有: ? 沉淀法(包括:盐析、有机溶剂沉淀、选择性沉淀等)、离心、吸附层析、凝胶过滤层析、离子交换层析、亲和层析、快速制备型液相色谱以及等电聚焦制备电泳等.本章以介绍沉淀法为主. ? 2.3.1 沉淀法 ? 沉淀是溶液中的溶质由液相变成固相析出的过程.沉淀法(即溶解度法)操作简便,成本低廉,不仅用于实验室中,也用于某些生产目的的制备过程,是分离纯化生物大分子,特别是制备蛋白质和酶时最常用的方法.通过沉淀,将目的生物大分子转入固相沉淀或留在液相,而与杂质得到初步的分离. ? 其基本原理是根据不同物质在溶剂中的溶解度不同而达到分离的目的,不同溶解度的产生是由于溶质分子之间及溶质与溶剂分子之间亲和力的差异而引起的,溶解度的大小与溶质和溶剂的化学性质及结构有关,溶剂组分的改变或加入某些沉淀剂以及改变溶液的pH值、离子强度和极性都会使溶质的溶解度产生明显的改变. ? 在生物大分子制备中最常用的几种沉淀方法是: ? ⑴中性盐沉淀(盐析法):多用于各种蛋白质和酶的分离纯化. ? ⑵有机溶剂沉淀:多用于蛋白质和酶、多糖、核酸以及生物小分子的分离纯化. ? ⑶选择性沉淀(热变性沉淀和酸碱变性沉淀):多用于除去某些不耐热的和在一定pH值下易变性的杂蛋白. ? ⑷等电点沉淀:用于氨基酸、蛋白质及其他两性物质的沉淀,但此法单独应用较少,多与其他方法结合使用. ? ⑸有机聚合物沉淀: 是发展较快的一种新方法, 主要使用PEG聚乙二醇(Polyethyene glycol)作为沉淀剂. ? 2.3.1.1 中性盐沉淀(盐析法) ? 在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”.除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离. ? 盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是: ? ①成本低,不需要特别昂贵的设备. ? ②操作简单、安全. ? ③对许多生物活性物质具有稳定作用. ? ⑴ 中性盐沉淀蛋白质的基本原理 ? 蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2和-OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大.亲水胶体在水中的稳定因素有两个:即电荷和水膜.因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀.盐析示意图如下页“图 4”所示. ? ⑵ 中性盐的选择 ? 常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点: ? 1) 溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的.由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行.由下表可以看到, 硫铵在0℃时的溶解度,远远高于其它盐类: ? 表2-1 几种盐在不同温度下的溶解度(克/100毫升水) ? 0℃ 20℃ 80℃ 100 ℃ (NH4)2SO4 70.6 75.4 95.3 103 ? Na2SO4 4.9 18.9 43.3 42.2 ? NaH2PO4 1.6 7.8 93.8 101 ? ? ? ? ? 2) 分离效果好:有的提取液加入适量硫酸铵 盐析,一步就可以除去75%的杂蛋白,纯 度提高了四倍. ? 3) 不易引起变性,有稳定酶与蛋白质结构的 作用.有的酶或蛋白质用2~3mol/L浓度的 (NH4)2SO4保存可达数年之久. ? 4) 价格便宜,废液不污染环境. ? ⑶ 盐析的操作方法 ? 最常用的是固体硫酸铵加入法.将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀.盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤. ? 在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法. ? 各种饱和度下需加固体硫酸铵的量可由附录中查出. ? ⑷ 盐析曲线的制作 ? 如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度.具体操作方法如下(讲义p39): 蛋白质量(mg)或酶活力 10 20 30 40 50 60 70 80 90 100 硫铵饱 和度% ? ⑸盐析的影响因素 ? 1) 蛋白质的浓度:高浓度的蛋白质用稍低的硫酸铵饱和度沉淀,若蛋白质浓度过高,易产生各种蛋白质的共沉淀作用.低浓度的蛋白质,共沉淀作用小,但回收率降低.较适中的蛋白质浓度是2.5%~3.0%,相当于25 mg/mL~30mg/mL. ? 2) pH值对盐析的影响:在等电点处溶解度小,pH值常选在该蛋白质的等电点附近. ? 3) 温度的影响:对于蛋白质、酶和多肽等生物大分子,在高离子强度溶液中,温度升高,它们的溶解度反而减小.在低离子强度溶液或纯水中蛋白质的溶解度大多数还是随浓度升高而增加的.一般情况下,可在室温下进行.但对于某些对温度敏感的酶,要求在0℃~4℃下操作,以避免活力丧失. ? ? 2.3.1.2 有机溶剂沉淀法 ? ⑴基本原理 ? 有机溶剂对于许多蛋白质(酶)、核酸、多糖和小分子生化物质都能发生沉淀作用,是较早使用的沉淀方法之一.其原理主要是: ? ①降低水溶液的介电常数,向溶液中加入有机溶剂能降低溶液的介电常数,减小溶剂的极性,从而削弱了溶剂分子与蛋白质分子间的相互作用力,导致蛋白质溶解度降低而沉淀. ? ②由于使用的有机溶剂与水互溶,它们在溶解于水的同时从蛋白质分子周围的水化层中夺走了水分子,破坏了蛋白质分子的水膜,因而发生沉淀作用. ? ? 有机溶剂沉淀法的优点是: ? ①分辨能力比盐析法高,即一种蛋白质或其他溶质只在一个比较窄的有机溶剂浓度范围内沉淀. ? ②沉淀不用脱盐,过滤比较容易(如有必要,可用透析袋脱有机溶剂).因而在生化制备中有广泛的应用. ? 其缺点是对某些具有生物活性的大分子容易引起变性失活,操作需在低温下进行. ? ⑵有机溶剂的选择和浓度的计算 ? 用于生化制备的有机溶剂的选择首先是要能与水互溶.沉淀蛋白质和酶常用的是乙醇、甲醇和丙酮. ? 为了获得沉淀而不着重于进行分离,可用溶液体积的倍数:如加入一倍、二倍、三倍原溶液体积的有机溶剂,来进行有机溶剂沉淀. ? ⑶有机溶剂沉淀的影响因素 ? 1) 温度:多数生物大分子如蛋白质、酶和核酸在有机溶剂中对温度特别敏感,温度稍高就会引起变性,且有机溶剂与水混合时产生放热反应,因此必须预冷,操作要在冰盐浴中进行,加入有机溶剂时必须缓慢且不断搅拌以免局部过浓. ? 一般规律是温度越低,得到的蛋白质活性越高. ? 2) 样品浓度:低浓度样品回收率低,要使用比例更大的有机溶剂进行沉淀.高浓度样品,可以节省有机溶剂,减少变性的危险,但杂蛋白的共沉淀作用大. ? 通常使用5mg/mL~20mg/mL的蛋白质初浓度为宜. ? ? 3) pH值:选择在样品稳定的pH值范围内,通常是选在等电点附近,从而提高此沉淀法的分辨能力. ? 4) 离子强度:盐浓度太大或太小都有不利影响,通常盐浓度以不超过5%为宜,使用乙醇的量也以不超过原蛋白质水溶液的2倍体积为宜,少量的中性盐对蛋白质变性有良好的保护作用,但盐浓度过高会增加蛋白质在水中的溶解度,降低了沉淀效果,通常是在低浓度缓冲液中沉淀蛋白质. ? 沉淀所得的固体样品,如果不是立即溶解进行下一步的分离,则应尽可能抽干沉淀,减少其中有机溶剂的含量,如若必要可以装透析袋透析脱有机溶剂,以免影响样品的生物活性. ? 2.3.1.3 选择性变性沉淀法 ? 这一方法是利用生物大分子与非目的生物大分子在物理化学性质等方面的差异,选择一定的条件使杂蛋白等非目的物变性沉淀而得到分离提纯. ? ⑴ 热变性 ? 利用生物大分子对热的稳定性不同,加热升高温度使非目的生物大分子变性沉淀而保留目的物在溶液中. ? ⑵ 表面活性剂和有机溶剂变性 ? 使那些对表面活性剂和有机溶剂敏感性强的杂蛋白变性沉淀.通常在冰浴或冷室中进行. ? ⑶ 选择性酸碱变性 ? 利用对pH值的稳定性不同而使杂蛋白变性沉淀.通常是在分离纯化流程中附带进行的分离纯化步骤. ? 2.3.1.4 等电点沉淀法 ? 利用具有不同等电点的两性电解质,在达到电中性时溶解度最低,易发生沉淀,从而实现分离的方法.氨基酸、蛋白质、酶和核酸都是两性电解质,可以利用此法进行初步的沉淀分离. ? 由于许多蛋白质的等电点十分接近,而且带有水膜的蛋白质等生物大分子仍有一定的溶解度,不能完全沉淀析出,因此,单独使用此法分辨率较低,因而此法常与盐析法、有机溶剂沉淀法或其他沉淀剂一起配合使用,以提高沉淀能力和分离效果. ? 此法主要用于在分离纯化流程中去除杂蛋白,而不用于沉淀目的物. ? 2.3.1.5 有机聚合物沉淀法 ? 有机聚合物是六十年代发展起来的一类重要的沉淀剂,最早应用于提纯免疫球蛋白和沉淀一些细菌和病毒.近年来广泛用于核酸和酶的纯化.其中应用最多的是 “聚乙二醇”【HOCH2(CH2OCH2)nCH2OH (n >4)】( Polyethylene Glycol 简写为 PEG ),它的亲水性强,溶干水和许多有机溶剂,对热稳定,有广泛围的分子量,在生物大分子制备中,用的较多的是分子量为6000~20000的 PEG. ? 本方法的优点是: ? ①操作条件温和,不易引起生物大分子变性. ? ②沉淀效能高,使用很少量的P“EG即可以沉淀相当多 的生物大分子. ? ③沉淀后有机聚合物容易去除. ? 2.3.2 透析 ? 自Thomas Graham 1861年发明透析方法至今已有一百多年.透析已成为生物化学实验室最简便最常用的分离纯化技术之一.在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术. ? 透析只需要使用专用的半透膜即可完成.保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”.截留分子量MwCO通常为1万左右. ? 用1% BaCl2检查(NH4)2SO4,用1% AgNO3 检查NaCl、KCl等. ? 2.3.3 超滤 ? 超过滤即超滤,自20年代问世后,直至60年代以来发展迅速,很快由实验室规模的分离手段发展成重要的工业单元操作技术.超滤现已成为一种重要的生化实验技术,广泛用于含有各种小分子溶质的各种生物大分子(如蛋白质、酶、核酸等)的浓缩、分离和纯化. ? 超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化. ? 超滤根据所加的操作压力和所用膜的平均孔径的不同,可分为微孔过滤、超滤和反渗透三种. ? 微孔过滤所用的操作压通常小于4×104Pa,膜的平均孔径为500埃~14微米(1微米=104埃),用于分离较大的微粒、细菌和污染物等. ? 超滤所用操作压为4×104Pa~7×105Pa,膜的平均孔径为10—100埃,用于分离大分子溶质. ? 反渗透所用的操作压比超滤更大,常达到35×105Pa~140×105Pa,膜的平均孔径最小,一般为10埃以下,用于分离小分子溶质,如海水脱盐,制高纯水等. ? 超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冰冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶. ? 在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等. ? 超滤法也有一定的局限性,它不能直接得到干粉制剂.对于蛋白质溶液,一般只能得到10~50%的浓度. ? 超滤技术的关键是膜. ? 常用的膜是由乙酸纤维或硝酸纤维或此二者的混合物制成.近年来发展了非纤维型的各向异性膜,例如聚砜膜、聚砜酰胺膜和聚丙烯腈膜等.这种膜在pH 1~14都是稳定的,且能在90℃下正常工作.超滤膜通常是比较稳定的,能连续用1~2年. ? 超滤膜的基本性能指标:水通量(cm3/(cm2?h));截留率(以百分率%表示);化学物理稳定性(包括机械强度)等. ? 超滤装置由若干超滤组件构成.分为板框式、管式、螺旋卷式和中空纤维式四种主要类型. ? 由于超滤法处理的液体多数是含有水溶性生物大分子、有机胶体、多糖及微生物等.这些物质极易粘附和沉积于膜表面上,造成严重的浓差极化和堵塞,这是超滤法最关键的问题,要克服浓差极化,通常可加大液体流量,加强湍流和加强搅拌. ? 2.3.4 冰冻干燥 ? 冰冻干燥机是生化与分子生物学实验室必备的仪器之一,因为大多数生物大分子分离纯化后的最终产品多数是水溶液,要从水溶液中得到固体产品,最好的办法就是冰冻干燥