导航:首页 > 污水知识 > 模拟氨氮废水

模拟氨氮废水

发布时间:2025-03-15 21:56:26

A. 配模拟废水

COD可以用葡萄糖、甲醇、淀粉等配置,虽然有理论COD,但还是自己测定一下为好版
氨氮用氯化铵即可,可以按权照氮的含量来计算
至于钾、钙、铁、磷等元素,可参照如下浓度
模拟氨氮(NH4+-N)废水:每1L自来水中加入以下药品,然后根据所需不同浓度稀释而成。具体配比如下:

NH4Cl: 54g NaHCO3: 100g

KH2PO4: 10g FeCl3·6H2O: 2g

CaCl2: 4g KCl : 4g

NaCl: 4g MgSO4: 4g

该废水的上清液NH4+−N=11000mg/L。

B. 高浓度氨氮废水的处理方法有哪些呀!急!!

新型生物脱氮法
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。
1 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。Ruiza等[16]用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。当DO=0.7 mg/L时,可以实现65%的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。DO<0.5 mg/L时发生氨氮积累,DO>1.7 mg/L时全部硝化生成硝酸盐。刘俊新等[17]对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
刘超翔等[18]短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4 mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。
2 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。ANAMMOX的生化反应式为:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是专性厌氧自养菌,因而非常适合处理含NO2-、低C/N的氨氮废水。与传统工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。厌氧氨氧化的应用主要有两种:CANON工艺和与中温亚硝化(SHARON)结合,构成SHARON-ANAMMOX联合工艺。
CANON工艺是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是SHARON和ANAMMOX工艺的结合,在同一个反应器中进行。孟了等[19]发现深圳市下坪固体废弃物填埋场渗滤液处理厂,溶解氧控制在1 mg/L左右,进水氨氮<800 mg/L,氨氮负荷<0.46 kgNH4+/(m3•d)的条件下,可以利用SBR反应器实现CANON工艺,氨氮的去除率>95%,总氮的去除率>90%。
Sliekers等[20]的研究表明ANAMMOX和CANON过程都可以在气提式反应器中运转良好,并且达到很高的氮转化速率。控制溶解氧在0.5mg/L左右,在气提式反应器中,ANAMMOX过程的脱氮速率达到8.9 kgN/(m3•d),而CANON过程可以达到1.5 kgN/(m3•d)。
3 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
贾剑晖等[21]用序批式反应器处理氨氮废水,试验结果验证了好氧反硝化的存在,好氧反硝化脱氮能力随混合液溶解氧浓度的提高而降低,当溶解氧浓度为0.5 mg/L时,总氮去除率可达到66.0%。
赵宗胜等[22]连续动态试验研究表明,对于高浓度氨氮渗滤液,普通活性污泥达的好氧反硝化工艺的总氮去除串可达10%以上。硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升。硝化及反硝化的动力学分析表明,在溶解氧为0.14 mg/L左右时会出现硝化速率和反硝化速率相等的同步硝化反硝化现象。其速率为4.7mg/(L•h),硝化反应KN=0.37 mg/L;反硝化反应KD=0.48 mg/L。
在反硝化过程中会产生N2O是一种温室气体,产生新的污染,其相关机制研究还不够深入,许多工艺仍在实验室阶段,需要进一步研究才能有效地应用于实际工程中。另外,还有诸如全程自养脱氮工艺、同步硝化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。

C. 实验室配制的标准氨氮溶液,怎么标定

氨氮标准溶液用优级纯氯化铵直接配制,无需标定。
氨氮标准溶液配制方法:
称取3.8190g氯化铵(优级纯,在100~105℃干燥2h),溶于水中,移入1000mL容量瓶中,加水至刻度,摇匀,可在2~5℃保存1个月。此标准溶液浓度为1000μg/mL。
吸取上述溶液5.00mL,于500容量瓶中,加水至刻度,摇匀,临用前配制。此标准溶液浓度为10μg/mL。

D. 某同学模拟工业“折点加氯法”处理氨氮废水的原理,进行如下研究. 装置(气密性良好,试剂已添加

(1)A中是浓氨水滴入固体氢氧化钠中,氢氧化钠溶解过程中放热,温度升高一水合氨分解生成氨气和水,反应的化学方程式NH3?H2O═NH3↑+H2O,
故答案为:NH3?H2O═NH3↑+H2O;氨水分解过程吸热,NaOH固体溶于水放热,使环境温度升高,氨水分解反应平衡正向移动,促进了氨水分解.(或NaOH固体有吸水性,能吸收氨水分解生成的水,促进氨水分解平衡正向移动);
(2)①氨气是共价化合物,氮原子和三个氢原子形成三个共价键,氮原子有一对孤对电子,氨气的电子式为:
②焓变=反应物键能总和-生成物键能总和,6×(H-N)+3Cl-Cl-[6(H-Cl)+N≡N]=-456kJ?mol-1;得到6×(H-N)+3×243KJ/mol-[6(H-Cl)+945KJ/mol]=-456kJ?mol-1;得到6×(H-N)-6(H-Cl)=-456kJ?mol-1-3×243KJ/mol+945KJ/mol;(H-N)-(H-Cl)=-40KJ/mol,断开1mol H-N键与断开1mol H-Cl键所需能量相差约为40KJ;
故答案为:40KJ;
(3)氨气被氯气氧化生成氮气和氯化氢,3Cl2+2NH3=N2+6HCl,氨气过量和生成的氯化氢反应生成固体氯化铵白色固体颗粒,NH3+HCl=NH4Cl;
故答案为:HCl+NH3=NH4Cl;
(4)①装置为原电池反应,钠离子移向可知a为负极,氨气失电子生成氮气,b为正极,氯气得到电子生成氯离子,发生还原反应,故答案为:还原;
②石墨a电极为负极,氨气失电子生成氮气,碱溶液中电极反应式为2NH3+6OH--6e-=N2+6H2O,故答案为:2NH3+6OH--6e-=N2+6H2O.

E. 废水氨氮含量一般是多少

还是看什么水,一般生活污水差不多10-30mg/L。
水力停留时间对曝气生物滤池处理效能及运行版特性的影响权
邱立平,马军,张立昕
通过实验室模型试验研究了曝气生物滤池处理模拟生活污水的效能 ,分析了水力停留时间 ( HRT)变化对曝气生物滤池处理效果及运行特性的影响规律。研究发现 ,当 HRT大于 0 .6h时 ,曝气生物滤池具有良好的有机物和浊度的去除效果 ,而当HRT为 0 .4h时 ,处理效果则显著下降 ;反应器的硝化反硝化脱氮能力受 HRT的影响比较明显 ,缩短 HRT将使氨氮和总氮去除率迅速下降 ,当 HRT为 1.2 5 h时 ,氨氮和总氮去除率分别达到 70 %和 40 %以上 ;缩短 HRT会在一定程度上促进亚硝酸盐积累现象的发生 ,而反应器的过滤周期则与 HRT呈明显的线性关系。

F. 废水中氨氮应该如何去除

高氨氮废水处理方法:
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。"遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术--超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。

G. 姹℃按澶勭悊涓姘ㄦ爱楂樻庝箞澶勭悊

1. 鑶滃垎绂绘妧鏈鏄姹℃按澶勭悊涓姘ㄦ爱鍘婚櫎鐨勬湁鏁堟墜娈碉紝鍒╃敤鑶滅殑閫夋嫨鎬ч忚繃鐗规э紝鍙浠ラ珮鏁堝洖鏀舵皑姘锛屽悓鏃堕伩鍏嶄簩娆℃薄鏌撱備緥濡傦紝搴旂敤姘旀按鍒嗙昏啘鎶鏈鍙浠ユ湁鏁堣劚闄ゆ皑姘銆
2. 姘ㄦ爱鍦ㄦ按涓鐨勫瓨鍦ㄥ舰寮忎笌pH鍊煎瘑鍒囩浉鍏炽俻H鍊煎崌楂樻椂锛屾皑姘浠NH3鐨勫舰寮忔瘮渚嬪炲姞銆傚湪鐗瑰畾鐨勬俯搴﹀拰鍘嬪姏涓嬶紝NH3鐨勬皵鎬佸拰娑叉佽揪鍒板钩琛°傛牴鎹甃e Chatelier鍘熺悊锛屽綋骞宠绯荤粺鐨勬潯浠跺彂鐢熷彉鍖栨椂锛岀郴缁熶細鍚戝噺寮辫繖绉嶅彉鍖栫殑鏂瑰悜绉诲姩銆
3. 鍩轰簬涓婅堪鍘熺悊锛岃捐′簡涓绉嶆皑姘搴熸按澶勭悊鏂规硶銆傚湪鑶滅殑涓渚ф槸楂樻祿搴︽皑姘搴熸按锛屽彟涓渚ф槸閰告ф按婧舵恫鎴栨按銆傞氳繃缁存寔閫傚綋鐨勬俯搴︺乸H鍜屽帇鍔涘樊锛屾皑姘搴熸按涓鐨勬皑鍒嗗瓙浼氱┛杩囪啘瀛旓紝杩涘叆鍚告敹娑诧紝涓嶩+鍙嶅簲鐢熸垚閾电洂銆
4. 鐢熺墿纭濆寲鍜屽弽纭濆寲鏄鍙︿竴绉嶇粡娴庝笖骞挎硾搴旂敤鐨勬皑姘鍘婚櫎鏂规硶銆傝ユ柟娉曟ā鎷熻嚜鐒舵爱寰鐜杩囩▼锛屽埄鐢ㄧ濆寲鍜屽弽纭濆寲鑿屽皢姘ㄦ爱杞鍖栦负姘姘斻傚敖绠¤繖绉嶆柟娉曞湪姘寰鐜杩囩▼涓闇瑕佸ぇ閲忔哀姘旓紝瀵艰嚧鏇濇皵鎴愭湰杈冮珮锛屼絾閫氳繃鐭绋嬬濆寲鍜屽弽纭濆寲鎶鏈鍙浠ユ樉钁楅檷浣庢哀渚涘簲閲忓拰鑳借椼
5. 鐭绋嬬濆寲鍙嶇濆寲鎶鏈閫氳繃鎺у埗姘ㄦ爱姘у寲鍦ㄤ簹纭濆寲闃舵碉紝閬垮厤浜嗕紶缁熺敓鐗╄劚姘杩囩▼涓鐨勪袱涓鐜鑺傦紝浠庤岃妭鐪佷簡姘т緵搴斻侀檷浣庝簡鑳借楋紝骞跺噺灏戜簡鍙嶅簲浣撶Н鍜屾薄娉ヤ骇閲忋
6. 鍏ㄧ▼鑷鍏昏劚姘鎶鏈鏄鍦ㄤ竴涓鍙嶅簲鍣ㄤ腑瀹屾垚鐨勬皑姘鍘婚櫎杩囩▼锛屽叾鏈哄埗灏氫笉瀹屽叏娓呮氥傜爺绌惰〃鏄庯紝鍦ㄩ檺鍒舵憾瑙f哀鍜屼笉鍔犳湁鏈虹⒊婧愮殑鏉′欢涓嬶紝瓒呰繃60%鐨勬皑姘鍙浠ヨ浆鍖栦负姘姘斻
7. 瀹為獙璇佹槑锛屽湪浣庢憾瑙f哀娴撳害涓嬶紝缁嗚弻浣跨敤浜氱濋吀鏍圭诲瓙浣滀负鐢靛瓙鍙椾綋锛屼互閾垫牴绂诲瓙浣滀负鐢靛瓙渚涗綋锛屾渶缁堢敓鎴愭爱姘斻備娇鐢ㄨ崸鍏夊師浣嶆潅浜ゆ妧鏈鐩戞祴鍙戠幇锛屽湪鍏ㄧ▼鑷鍏昏劚姘鍙嶅簲鍣ㄤ腑锛岀ǔ瀹氶樁娈垫椂瀛樺湪娲昏穬鐨勫帉姘ф皑姘у寲鑿岋紝鑰屼笉瀛樺湪纭濆寲鑿岋紝姘ㄦ爱杞鍖栦负姘姘旂殑鏁堢巼楂樿揪85%銆
8. 鍏ㄧ▼鑷鍏昏劚姘杩囩▼鍙鑳藉寘鎷涓や釜姝ラわ細棣栧厛鏄灏嗛儴鍒嗘皑姘姘у寲涓轰簹纭濋吀鐩愶紝鐒跺悗杩涜屽帉姘ф皑姘у寲銆傝繖绉嶅勭悊鏂规硶鍏锋湁娼滃湪鐨勯珮鏁堟у拰缁忔祹鎬с

阅读全文

与模拟氨氮废水相关的资料

热点内容
装蒸馏水的塑料桶如何清洗 浏览:480
男女聊天用秒回吗 浏览:79
康唯美电解水机用的是什么滤芯 浏览:56
迈锐宝xl汽车过滤网怎么拆 浏览:167
家用提升泵的连接方法 浏览:211
污水处理曝气时间如何算 浏览:622
净水机上水垢绿色 浏览:762
排污主管是怎么防止污水倒灌 浏览:162
污水处理一级a是什么标准 浏览:182
不锈钢水槽结水垢 浏览:740
水壶的水垢喝进去有害吗 浏览:453
冲床气压过滤器 浏览:484
溴苯与液溴可以用蒸馏 浏览:318
爱的饮水机多少钱 浏览:248
花果园污水处理站在哪里 浏览:467
宝山区超纯水大概多少钱 浏览:245
壁挂炉水垢堵 浏览:698
反渗透进油怎么处理 浏览:803
甘肃哪里买养猪污水处理设备 浏览:908
艾叶和生姜花椒纯水有什么功效 浏览:282