1. 金属离子的去除方法
化学沉淀法是通过化学反应将重金属从溶解状态转变为不溶于水的重金属化合物,从而实现去除。例如,中和沉淀法和硫化物沉淀法都是常用的方法。这种方法特别适合处理含有重金属的废水,如电镀废水中的铬(Cr)以六价离子形式存在时,可以通过投加还原剂(如FeSO4、NaHSO3、铁屑等)将其还原成三价铬(Cr3+),再通过中和或投加石灰、NaOH生成Cr(OH)3沉淀进行分离去除。这种方法操作简单,容易掌握,能承受大水量和高浓度废水的冲击。
化学还原法处理含Cr废水时,碱化通常使用石灰,但会产生大量废渣;若使用NaOH或Na2CO3,虽然污泥较少,但药剂成本较高,处理费用较大。这种方法的主要缺点在于碱化时会产生大量污泥,且处理成本较高。
溶剂萃取法是一种高效分离和净化物质的方法,它通过液-液接触连续操作,分离效果较好。在萃取操作时,需选择具有较高选择性的萃取剂。重金属通常以阳离子或阴离子形式存在于废水中,在酸性条件下与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下反萃取回到水相,使溶剂再生循环使用。然而,溶剂在萃取过程中的流失和再生过程中能源消耗较大,因此这种方法的应用受到一定限制。
吸附法利用吸附剂的独特结构去除重金属离子。常用的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。活性炭因其装备简单,在废水处理中应用广泛,但其再生效率低,处理水质难以达到回用要求,通常用于电镀废水的预处理。腐植酸类物质作为廉价的吸附剂,已成功应用于处理含铬(Cr)和镍(Ni)废水。研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,经过交联处理后,壳聚糖树脂可重复使用10次,吸附容量无明显下降。利用改性的海泡石处理重金属废水,对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量明显低于污水综合排放标准。
膜分离法是利用高分子材料的选择性进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。电渗析法处理电镀工业废水后,废水组成不变,有利于回用;含Cu2+、Ni2+、Zn2+、Cr6+等重金属离子的废水均可用电渗析法处理,已有成套设备。反渗透法已广泛应用于镀Zn、Ni、Cr漂洗水和混合重金属废水的处理。采用反渗透法处理电镀废水,处理后的水可以回用,实现闭路循环。液膜法在处理含锌(Zn)废水方面已取得一定进展,我国和奥地利均采用了乳状液膜技术。膜萃取技术作为一种高效、无二次污染的分离技术,在金属萃取领域取得了显著进展。
2. 怎么处理含铬废水
前期实验——硫酸亚铁法:原水调PH=2-3,加硫酸亚铁(1:6)反应30min后,溶液变成黑褐色,在回调PH过滤
样品一:调PH=9过滤仍有浅褐色,再调PH=11.7过滤,滤液无色透明,测铬=0.071ppm(可能部分铁离子被络合)
样品二:直接调碱至12,滤液无色透明,但测铬=0.602.滤液再调PH=7.4,滤液测铬=0.295ppm(可能PH过高时铬反溶)
可以使铬达标,但污泥量很大,需在不同PH条件下沉淀两次
在原水PH=1.81条件下,加亚硫酸氢钠(1:8)搅拌反应30min,溶液变为深绿色。调碱至PH=11.58的过程中,均无明显沉淀物,溶液仍然为深绿色。(判定三价格铬为络合状态)
加入5000ppm PAC(至少5000ppm才能有效失色)出现大量绿色沉淀,过滤后,滤液无色透明。
分别在PH=8.7、10.6、12.1条件下加相同量R-S-1-0-0(2500ppm);过滤后测铬均未检出,待验证关键因素是PAC还是R-S-1-0-0
原水PH约为1.81,经测铬为1030ppm,去100ml,按1:8添加亚硫酸氢钠(固体约为0.8g),还原反应30min,直到水溶液变为深绿色,可初步判断还原完成
加NaOH取调PH=11以上仍然为深绿色,无明显沉淀颗粒物产生,有光度不高,在强光下可见大量很小的悬浮物,可通过滤纸
加PAC+PAM过滤后加R-S-1-0-0+PAC+PAM过滤测铬
3. 重金属污染的水怎么处理
处理方法
目前,重金属废水处理的方法大致可以分为三大类:(1)化学法;(2)物理处理法;(3)生物处理法。
化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。
2.1.1化学沉淀法
化学沉淀法的原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除,包括中和沉淀法、硫化物沉淀法、铁氧体共沉淀法。由于受沉淀剂和环境条件的影响,沉淀法往往出水浓度达不到要求,需作进一步处理,产生的沉淀物必须很好地处理与处置,否则会造成二次污染。
2.1.2电解法
电解法是利用金属的电化学性质,金属离子在电解时能够从相对高浓度的溶液中分离出来,然后加以利用。电解法主要用于电镀废水的处理,这种方法的缺点是水中的重金属离子浓度不能降的很低。所以,电解法不适于处理较低浓度的含重金属离子的废水。2.1.3螯合法[1]
螯合法又称高分子离子捕集剂法,是指在废水处理过程中通过投加适量的重金属捕集剂,利用捕集剂与金属离子铅、镉结合时形成相应的螯合物的原理实现铅、镉的去除分离。该反应能在常温和较大pH范围(3?11)下发生,同时捕集剂不受共存重金属离子的影响。因此该方法去除率高,絮凝效果佳,污泥量少且整合物易脱水。
2.1.4纳米重金属水处理技术
纳米材料因其比表面积远超普通材料,故同一种物质将会显示出不同的物化特型,很多新型的纳米材料都不断地在水处理行业中实验、实践。被环保部、科技部、工信部、财政部四部委联合审批立项为“2011年国家重大科技成果转化项目”———纳米水处理工艺及系列产品,在江西铜业股份有限公司应用取得了历史性的突破,填补了国内空白。
国内通常采用的重金属废水处理方法,包括石灰中和法和硫化法等。这些传统的处理工艺,虽然可以将废水中的重金属去除掉,但是处理效果并不稳定,处理后回收的清水水质仍难以确保稳定达标排放,而且还会产生二次污染。纳米重金属水处理技术不仅能使处理后的出水水质优于国家规定的排放标准且稳定可靠,投资成本和运行成本较低,与水中重金属离子反应快,吸附、处理容量是普通材料的10倍到1000倍,而且使沉淀的污泥量较传统工艺降低50%以上,污泥中杂质也少,有利于后续处理和资源回收。有数据显示,同样是每日处理300立方米重金属污水量,传统工艺每天要产生25吨石灰渣污泥,而采用纳米技术后每月只产生25吨纳米金属泥。尤其值得关注的是,这种污泥中的重金属单位含量提高了30倍。
4. 含铬废水处理方法
含铬废水处理常用方法如下:
1、药剂还原沉淀法
还原沉淀法是目前应用较为广泛的含铬废水处理方法。基本原理是在酸性条件下向废水中加入还原剂,将Cr6+还原成Cr3+,然后再加入石灰或氢氧化钠,使其在碱性条件下生成氢氧化铬沉淀,从而去除铬离子。
可作为还原剂的有:SO2、FeSO4 、Na2SO3、NaHSO3、Fe等。还原沉淀法具有一次性投资小、运行费用低、处理效果好、操作管理简便的优点,因而得到广泛应用,但在采用此方法时,还原剂的选择是至关重要的一个问题。
2、SO2还原法
二氧化硫还原法设备简单、效果较好,处理后六价铬含量可达到0.l mg/L 。但二氧化硫是有害气体,对操作人员有影响,处理池需用通风没备,另外对设备腐蚀性较大,不能直接回收铬酸。
烟道气中的二氧化硫处理含铬(VI)废水,充分利用资源,以废治废,节约了处理成本,但也同样存在以上的问题。
3、铁氧体法
铁氧体法实际上是硫酸亚铁法的发展,向含铬废水中投加废铁粉或硫酸亚铁时,Cr6+ 可被还原成Cr3+。再加热、加碱、通过空气搅拌,便成为铁氧体的组成部分,Cr3+转化成类似尖晶石结构的铁氧体晶体而沉淀。
铁氧体是指具有铁离子、氧离子及其他金属离子所组成的氧化物。铁氧体法不仅具有还原法的一般优点,还有其特点,即铬污泥可制作磁体和半导体,这样不但使铬得以回收利用,又减少了二次污染的发生,出水水质好,能达到排放标准。
4、铁屑铁粉处理法
铁屑铁粉由于原料易得,价格便宜,处理含铬(VI)等重金属废水效果较好,但该法要消耗较多的酸(电镀厂可用车间生产的废酸),同时污泥量较大。
5. 电镀含铬废水处理有几个方法
电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有电解法、化学法、离子交换法等。
工具/原料
亚硫酸盐
硫酸亚铁
方法/步骤
电解法
电解还原处理含铬废水是利用铁板作阳极,在电解过程中铁溶解生成亚铁离子,在酸性条件下,亚铁离子将六价铬离子还原成三价铬离子。同时由于阴极上析出氢气,使废水pH逐渐上升,最后呈中性,此时Cr3+、Fe3+都以氢氧化物沉淀析出,达到废水净化的目的。
电解还原处理含铬废水的工艺参数:
① 含铬废水Cr6+浓度为50~200mg/L;
② 废水pH≤6.5,一般含铬25~150mg/L之间的废水,pH值为3.5~6.5,故不需调节pH值;
③ 温度影响不大,一般处理后水温约上升1~2℃。
电解还原法具有体积小、占地少、耗电低、管理方便、效果好等特点。缺点是铁板耗量较多,污泥中混有大量的氢氧化铁,利用价值低,需妥善处理。
化学法
电镀废水中的六价铬主要以CrO42-和Cr2O72--两种形式存在,在酸性条件下,六价铬主要以Cr2O72形式存在,碱性条件下则以CrO42-形式存在。六价铬的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH)3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。
(1)亚硫酸盐还原法
目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应:
4H2CrO4+6NaHSO3+3H2SO4=2Cr2(SO4)3+3Na2SO4+10H2O
2H2CrO4+3Na2SO3+3H2SO4= Cr2(SO4)3+3Na2SO4+5H2O
还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH)3沉淀。
采用亚硫酸盐还原法的工艺参数控制如下:
① 废水中六价铬浓度一般控制在100~1000mg/L;
② 废水pH为2.5~3
③ 还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1
焦亚硫酸钠∶六价铬=3∶1
亚硫酸钠∶六价铬=4∶1
投料比不应过大,否则既浪费药剂,也可能生成[Cr2(OH)2SO3]2-而沉淀不下来;
④ 还原反应时间约为30min;
⑤ 氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。
(2)硫酸亚铁还原法
硫酸亚铁还原法处理含铬废水是一种成熟的较老的处理方法。由于药剂来源容易,若使用钢铁酸洗废液的硫酸亚铁时,成本较低,除铬效果也很好。硫酸亚铁中主要是亚铁离子起还原作用,在酸性条件下(pH=2~3),其还原反应为:
H2Cr2O7+6FeSO4+6H2SO4=Cr2(SO4)3+3Fe 2(SO4)3+7H2O
用硫酸亚铁还原六价铬,最终废水中同时含有Cr3+和Fe3+,所以中和沉淀时Cr3+和Fe3+一起沉淀,所得到的污泥是铬与铁氢氧化物的混合污泥,产生的污泥量大,且没有回收价值,这是本法的最大缺点。其主要工艺参数为:
① 废水的六价铬浓度为50~100mg/L;
② 还原时废水的pH=1~3;
③ 还原剂用量一般控制在Cr6+∶ FeSO4·7H2O=1∶25~30
④ 反应时间不小于30min
⑤ 中和沉淀的pH控制在7~9
(3)铁氧体法
铁氧体法实质上是硫酸亚铁法的演变与发展,其特点是投加亚铁盐还原六价铬,调节pH沉淀后,需要加热至60~80℃,并较长时间的曝气充氧。形成的铬铁氧体沉淀属尖晶石结构,Cr3+占据部分Fe3+位置,其他二价金属阳离子占据了部分Fe2+的位置,即进入铁氧体的晶格中。进入晶格的三价铬离子极为稳定,在自然条件或酸性和碱性条件都不为水所浸出,因而不会造成二次污染,从而便于污泥的处置。铁氧体法的工艺条件为:
① 硫酸亚铁投加量FeSO4·7H2O∶CrO3=16∶1;
② 加NaOH沉淀pH=8~9;
③ 加热温度控制在60~80℃之内,不宜超过80℃;
④ 压缩空气曝气,既充氧又搅拌。
(4)化学还原气浮分离法
气浮法处理含铬废水实际是化学还原法在固液分离方法上的发展,硫酸亚铁还原气浮法主要是利用Fe(OH)3凝胶体的强吸附能力,吸附废水中包括Cr(OH)3在内的其它氢氧化物沉淀,形成共絮体,这种共絮体能有效地被气泡拈着并浮上去除。气浮法固液分离技术适应性强,可处理镀铬废水,也可处理含铬钝化废水以及混合废水,处理量大。不仅可去除重金属氢氧化物,也可以同时去除其他悬浮物、乳化油、表面活性剂等,加上整个过程可以连续处理,管理较为方便,可以操作自动化。
(5)水合肼还原法
水合肼N2H4·H2O在中性或微碱性条件下,能迅速地还原六价铬并生成氢氧化铬沉淀。
4CrO3+3N2H4=4Cr(OH)3+3N2
这种方法可以处理镀铬生产线第二回收槽带出的含铬废水,也可以处理铬酸盐钝化工艺中所产生的含铬漂洗水。水合肼还原法产生的污泥量少,含铬量高,便于回收利用。特别在中性或微碱性条件处理含铬废水,不会引入中性盐,显然改善了排放废水的水质。水合肼方法处理含铬钝化废水时,Zn、Cd、Fe、Ni等重金属也可同时去除。
3
离子交换法
离子交换法是利用一种高分子合成树脂进行离子交换的方法。应用离子交换法处理含铬废水是使用离子交换树脂对废水中六价铬进行选择性吸附,使六价铬与水分离,然后再用试剂将六价铬洗脱下来,进行必要的净化,富集浓缩后回收利用。用这种方法可以回收六价铬、回用部分水。但由于钝化含铬废水、地面冲洗含铬废水等,除了含六价铬外,还含大量的其他重金属阳离子以及多种酸根阴离子。组分比镀铬漂洗水复杂得多。因而离子交换法处理镀铬废水比较容易,而处理其他含铬废水比较困难,虽然该方法在技术上有独特之处,在资源回收和闭路循环方面发挥了主导作用,但其投资费用大、操作管理复杂,一般的中小型企业难于适应。
以上就是几种方法的详细介绍,如需了解更多信息至http://www.weidian65.com/望采纳。