㈠ 地埋式垃圾转运站渗滤液怎么处理
青岛水天环境工程为您解答:
一、安装调试人员首先要打开进水阀门、出水阀门,启动设备进水提升水泵,将调节池(可土建)的污水输送到地生活污水处理设备中开始。
二、对于初次使用及调试的设备,当水位达到设备1/2高度时停止水泵进水,打开风机进 水阀,开启风机,缓缓打开风机出风阀,向接触氧化池内曝气48小时后再启动进水提升水泵将污水加入至设备3/4处,再向池内曝气24小时;
三、工作人员要用手触摸填料是否有粘状感,同时观察水体微生物生长情况,直至填料上生长出一层橙黄色生物膜,方可连续向设备输送污水,水量应逐步增加至设计水量;
四、定时观察水中微生物生长情况,发现异常应及时控制进水水量加以调整;
五、要观察二沉池水流流态,出水堰集水必须均匀,一般每隔24小时必须排泥一次,排泥时打开排泥电磁阀,利用气提方式将二沉池内的污泥提升至污泥池;
六、地埋式污水处理设备根据需要在消毒池内加入消毒剂(氯晶片等),二沉池来水经过消毒剂加药罐,药剂部分溶解,达到消毒的目的。经处理过的水在清水箱内停留约0.5小时后,就达到了排放要求,可以向外界受水体排放;
七、设备调试结束并正常运行后,系统即可进入自动运行。现场将水泵、风机的操作切换在自动运行状态,由于电气操作控制柜是利用PLC自动控制程序,在设备出厂前就已经加以了程序编制(一般每班各切换一次),运行时不必另行设置;
八、使用方应不定期对出水水质按照环保排放要求进行检测,以保证地埋式污水处理设备正常运行。
希望以上的内容对大家是有一定的帮助的,如果大家还想知道更多的关于地埋式污水处理设备的知识,还请大家继续关注我们的网站吧!
㈡ 城市垃圾渗滤液的处理工艺一般有哪些
城市垃圾渗滤液的处理工艺一般是以下三种:
1.全量化垃圾渗滤液处理工艺
国内新出的要求,垃圾渗滤液必须达到全量化处理,符合标准排放。采用物化(预处理)+生化(包括厌氧和好氧)+物化(深度处理)的组合工艺:SN耦合氧化+生化处理+深度处理;能有效降低处理成本。该工艺将重金属和有毒有害有机物降解,提高可生化性和生化效率,将垃圾渗滤液直接处理至达标排放。 优点:污染物降解,生化系统高效运行,出水稳定达标;管理难度小,药剂用量小,污泥产生量较少,系统操作简易;抗冲击负荷强,工艺及生化系统高效稳定,确保出水水质稳定达标,设备寿命10年以上,最重要的是成本低,不产生浓缩液。
2.RO膜处理工艺。
国内采用膜技术处理垃圾渗滤液的工程实例中,RO工艺采用的膜装置主要是反渗透系统,绝大多数采用二级RO,水回收率一般为70%~80%,浓缩液多数采用回灌处理方式,也有采用蒸发和厂外处理方式,在选用反渗透工艺时,必须要选用适宜的预处理工艺,这是保证反渗透系统正常运行的前提。目前采用的预处理工艺主要以生化法为主。
3.DT膜处理工艺。
垃圾渗滤液以重力流方式进入调节池,调节渗滤液的水质和水量。由泵提升进入纳滤系统和碟管反渗透系统进行深度处理,保证出水达到排放标准,处理后的出水贮存在出水池,然后用泵送至回用水点或达标排放。渗滤液处理产生的剩余污泥进入污泥浓缩池,污泥经浓缩后,上清液回流到调节池,浓缩污泥经过脱水机脱水后送至垃圾储坑;碟管反渗透浓缩液回流至垃圾储坑。通过污水泵提升至pH调节罐进行pH调节,经pH调节的渗滤液经过提升泵进入砂滤器和筒式过滤器,去除渗滤液中较大颗粒悬浮物。
㈢ 垃圾渗滤液处理起来为什么效果这么差呢
垃圾渗滤液处理工艺:生物处理+深度处理+后处理
预处理包括生物法、版物理法、化学法等,处理权目的主要是去除氨氮和无机杂质,或改善渗沥液的可生化性。
生物处理包括厌氧法、好氧法等,处理对象主要是渗沥液中的有机污染物和氨氮等。
深度处理包括纳滤、反渗透、吸附过滤、高级化学氧化等,处理对象主要是渗沥液中的悬浮物、溶解物和胶体等。深度处理应以膜处理工艺为主,具体工艺应根据处理要求选择。
后处理包括污泥的浓缩、脱水、干燥、焚烧以及浓缩液蒸发、焚烧等,处理对象是渗沥液处理过程产生的剩余污泥以及纳滤和反渗透产生的浓缩液。
㈣ 垃圾渗沥液处理
俗称“垃圾汤”的渗沥液,是生活垃圾在分解过程中产生的一种高浓度有毒有害液体,经过处理达标后方能排放。那么,垃圾渗沥液处理呢?下面就让小编来介绍一下吧!
常用的垃圾渗沥液处理方式有以下四种:
1、将渗沥液输送至城市污水处理厂进行合并处理;
2、经预处理后输送至城市污水处理厂合并处理,即预处理——合并处理;
3、渗沥液回灌至填埋场的循环喷洒处理;
4、在填埋场建设污水处理厂进行单独处理。
垃圾渗滤液具有不同于一般城市污水的特点:
BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。常用的处理方法如下。
以上便是小编为大家介绍的关于垃圾渗沥液处理的一些内容,希望对大家有所帮助哦!如果想要了解更多关于环境污染的知识。请您多多关注倍领安全网吧!
㈤ 垃圾渗滤液的处理工艺
比较选择
城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。渗滤液是液体在填埋场重力流动的产物,主要来源于降水和垃圾本身的内含水。由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。一般来说,其pH值在4~9之间,COD在2000~62000mg/L的范围内,BOD5从60~45000mg/L,重金属浓度和市政污水中重金属的浓度基本一致。城市垃圾填埋场渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染。以保护环境为目的,对渗滤液进行处理是必不可少的。
1 渗滤液处理工艺的现状
垃圾渗滤液的处理方法包括物理化学法和生物法。物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化法等多种方法,在COD为2000~4000?mg/L时,物化方法的COD去除率可达50%~87%。和生物处理相比,物化处理不受水质水量变动的影响,出水水质比较稳定,尤其是对BOD5/COD比值较低(0.07~0.20)难以生物处理的垃圾渗滤液,有较好的处理效果。但物化方法处理成本较高,不适于大水量垃圾渗滤液的处理,因此垃圾渗滤液主要是采用生物法。
生物法分为好氧生物处理、厌氧生物处理以及二者的结合。好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等。厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。
2 渗滤液处理介绍
垃圾渗滤液具有不同于一般城市污水的特点:BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。常用的处理方法如下。
2.1 好氧处理
用活性污泥法、氧化沟、好氧稳定塘、生物转盘等好氧法处理渗滤液都有成功的经验,好氧处理可有效地降低BOD5、COD和氨氮,还可以去除另一些污染物质如铁、锰等金属。在好氧法中又以延时曝气法用得最多,还有曝气稳定塘和生物转盘(主要用以去除氮)。下面将分别予以介绍。
2.1.1 活性污泥法
2.1.1.1 传统活性污泥法
渗滤液可用生物法、化学絮凝、炭吸附、膜过滤、脂吸附、气提等方法单独或联合处理,其中活性污泥法因其费用低、效率高而得到最广泛的应用。美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,活性污泥法可以获得令人满意的垃圾渗滤液处理效果。例如美国宾州Fall Township污水处理厂,其垃圾渗滤液进水的CODCr为6000~21000mg/L,BOD5为?3000~13000mg/L,氨氮为200~2000mg/L。曝气池的污泥浓度(MLVSS)为6000~12000mg/L,是一般污泥浓度的3~6倍。在体积有机负荷为1.87kgBOD5/(m3·d)时,F/M为0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率为97%;在体积有机负荷为0.3kgBOD5/(m3·d)时,F/M为0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率为92%。该厂的数据说明,只要适当提高活性污泥法浓度,使F/M在0.03~0.31kgBOD5/(kgMLSS·d)之间(不宜再高),采用活性污泥法能够有效地处理垃圾渗滤液。
许多学者也发现活性污泥能去除渗滤液中99%的BOD5,80%以上的有机碳能被活性污泥去除,即使进水中有机碳高达1000mg/L,污泥生物相也能很快适应并起降解作用。在低负荷下运行的活性污泥系统,能去除渗滤液中80%~90%的COD,出水BOD5<20mg/L。对于COD? 4000~13000?mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的渗滤液,混合式好氧活性污泥法对COD的去除率可稳定在90%以上。众多实际运行的垃圾渗滤液处理系统表明,活性污泥法比化学氧化法等其它方法的处理效果更佳。
2.1.1.2 低氧好氧活性污泥法
低氧?好氧活性污泥法及SBR法等改进型活性污泥流程,因其具有能维持较高运转负荷,耗时短等特点,比常规活性污泥法更有效。同济大学徐迪民等用低氧?好氧活性污泥法处理垃圾填埋场渗滤液,试验证明:在控制运行条件下,垃圾填埋场渗滤液通过低氧?好氧活性污泥法处理,效果卓越。最终出水的平均CODCr、BOD5、SS分别从原来的?6466? mg/L、3502?mg/L以及239.6mg/L相应降低到CODCr<300mg/L、BOD5<50mg/L(平均为13.3mg/L)以及SS<100mg/L(平均为27.8mg/L)。总去除率分别为CODCr 96.4%、BOD5 99.6%、SS 83.4%。
处理后的出水若进一步用碱式氯化铝进行化学混凝处理,可使出水的CODCr下降到1 00mg/L以下。
两段法处理渗滤液的氮、磷也均较一般生物法为佳。磷的平均去除率为90.5%;氮的平均去除率为67.5%。此外该法运行弥补厌氧?好氧两段生物处理法第一段形成NH3-N较多,导致第二段难以进行和两次好氧处理历时太长的不足。
2.1.1.3 物化活性污泥复合处理系统
由于渗滤水中难以降解的高分子化合物所占的比例高,存在的重金属产生的抑制作用,所以常用生物法和物理?化学法相结合的复合系统来处理垃圾渗滤液。对于BOD5?1500m g/L、Cl-800mg/L、硬度(以CaCO3计)800mg/L、总铁600mg/L、有机氮100mg/L、TSS 300mg/L、 SO2-4300mg/L的渗滤液,有学者采用该方法进行处理,发现效果很好,其BOD5 、COD、NH3-N、Fe的去除率分别达99%、95%、90%、99.2%。该系统中的进水通过调节池后,可以避免毒性物质出现瞬时的高浓度而对活性污泥生物产生抑制作用;在澄清池中加入石灰,可去除重金属和部分有机质;气提池(进行曝气,温度低时加入NaOH)能去除进水NH3-N的50%,从而使NH3的浓度处于抑制水平之下;由于废水中磷被加入的石灰所沉淀,且 pH值过高,因而需添加磷和酸性物质;活性污泥系统可以串联或并联使用,运行时可通过调节回流污泥比来选用常规法或延时曝气法处理,具有较大的操作灵活性。
2.1.2 曝气稳定塘
与活性污泥法相比,曝气稳定塘体积大,有机负荷低,尽管降解进度较慢,但由于其工程简单,在土地不贵的地区,是最省钱的垃圾渗滤液好氧生物处理方法。美国、加拿大、英国、澳大利亚和德国的小试、中试及生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗滤液处理效果。
例如英国在Bryn Posteg Landfill投资60000英镑建立一座1000m3的曝气氧化塘,设2台表面曝气装置,最小水力停留时间为10d,氧化塘出水经沉淀后流经3km长的管道入城市下水道。此系统1983年开始运行,渗滤液最大CODCr为24000mg/L,最大BOD5为?10000?mg/L,F/M=0.05~0.3kgCOD/(kgMLSS·d),水量变化范围0~150m3/d,出水BOD5平均为 24mg/L,但偶然有超过50mg/L的时候,COD去除率达97%,但在运行过程中需投加P,考虑到日常运行费用,投资偿还及其利息,与渗滤液直接排至市政管网相比,每年可节约750英镑。
英国水研究中心(Water Research Center)对东南部New Park Landfill的CODCr> 15000mg/L的渗滤液也做了曝气稳定塘的中试,当负荷为0.28~0.32kgCOD/(kgMLSS·d)或者说为0.04~0.64kgCOD/(kgMLSS·d),泥龄为10d时,COD和BOD5去除率分别为98%和91%以上。在运行过程中也需要投加磷酸。?
2.1.3 生物膜法
与活性污泥法相比,生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较长的微生物,如硝化菌之类。加拿大British Columbia大学的C.Peddie和J.Atwater用直径0.9m的生物转盘处理CODCr<?1 000?mg/L,NH3-N<50m g/L的弱性渗滤液,其出水BOD5<25mg/L,当温度回升,微生物的硝化能力随即恢复。但是应当指出,这种渗滤液的性质与城市污水相近,对于较强的渗滤液此方法是否适用还待研究。?
2.2 厌氧生物处理
厌氧生物处理的有目的运用已有近百年的历史。但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度(BOD5 ≥2000?mg/L)有机废水方面取得了良好效果。
厌氧生物处理有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少,如其BOD5/P只需为4000∶1,虽然渗滤液中P的含量通常少于1mg/L,但仍能满足微生物对P的要求。用普通的厌氧硝化,35℃ 、负荷为1kgCOD/(m3·d),停留时间10d,渗滤液中COD去除率可达90%。
开发的厌氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。
2.2.1 厌氧生物滤池
厌氧滤池适于处理溶解性有机物,加拿大Halifax Highway101填埋场渗滤液平均COD为12850mg/L、BOD5/COD为0.7,pH为5.6。将此渗滤液先经石灰水调节至pH=7.8,沉淀1h后进厌氧滤池(此工序还起到去除Zn等重金属的作用),当负荷为4kgCOD/(m3·d)时,COD去除率可达92%以上;当负荷再增加时,其去除率急剧下降。
加拿大Toronto大学的J.G.Henry等也在室温条件下成功地用厌氧滤池分别处理年龄为1.5 年和8年的填埋场渗滤液,它们的COD各为14000mg/L和4000?mg/L,BOD5/COD各为0.7和0.5,当负荷为1.26~1.45kgCOD/(m3·d),水力停留时间为24~96h时,COD去除率均可达90%以上。当负荷再增加,其去除率也急剧下降。由此可见,虽然厌氧滤池处理高浓度有机污水时负荷可达5~20kgCOD/(m3·d),但对于渗滤液其负荷必须保持较低水平才能得到理想的处理效果。
2.2.2 上向流式厌氧污泥床
英国的水研究中心报道用上向流式厌氧污泥床(UASB)处理COD>10000mg/L的渗滤液,当负荷为3.6~19.7kgCOD/(m3·d),平均泥龄为1.0~4.3d,温度为30℃时COD和BOD5的去除率各为82%和85%,它们的负荷比厌氧滤池要大得多。
在厌氧分解时,有机氮转为氨氮,且存在NH4+?NH3+H?+反应。若pH>7时,平衡中的NH3占优势,可用吹脱法去除。但厌氧分解时pH近似等于7,因此出水中可能含有较多的NH4+,将会消耗接纳水体的溶解氧。
2.3 厌氧与好氧的结合方式
虽然实践已经证明厌氧生物法对高浓度有机废水处理的有效性,但单独采用厌氧法处理渗滤液也很少见。对高浓度的垃圾渗滤液采用厌氧好氧处理工艺既经济合理,处理效率又高。COD和BOD的去除率分别达86.8%和97.2%。
2.3.1 厌氧?好氧生物氧化工艺(厌氧硝化和生物氧化塘)
西南师大生物系对pH为8.0~8.6,COD为16124mg/L,BOD5为214~406mg/L、NH3- N为475mg/L的渗滤液采用厌氧好氧生物化学法处理,取得出水pH为7.1~7.9,COD为170.33~314.8mg/L,BOD5为91.4mg/L、NH3-N为29.1mg/L的良好效果。
2.3.2 厌氧?氧化沟?兼性塘工艺
下面结合广州市李坑垃圾填埋场作以下说明及分析。李坑垃圾填埋场污水处理厂按流量300m3/d设计,进水BOD5为2500mg/L、CODCr为4000mg/L、NH3-N 为?1000mg/L、SS为600mg/L、色度为1000倍;出水BOD5为30mg/L、CODCr为80mg/L 、NH3-N为10mg/L、SS为70mg/L、色度为40倍。选用工艺流程为:厌氧氧化沟兼性塘絮凝沉淀。当进水水质较好,兼性塘出水达标时,即可直接将兼性塘水向外排放;而当进水水质较差,兼性塘出水达不到排放标准时,则启用混凝沉淀系统,再排放沉淀池上清液。
从该套工艺的运行情况来看,当进水的COD较高时,出水水质良好;一旦COD 降低,特别是冬季低温少雨,COD降低到不利于生化处理时,出水各水质成分均偏高难以达标,出水呈棕褐色,尽管启用絮凝沉淀系统,效果仍不理想。由此可见,对于渗滤液的色度和NH3-N的有效去除,对生化处理将产生有利影响。
2.3.3 厌氧?气浮?好氧工艺
大田山垃圾卫生填埋场渗滤液处理采用的是此工艺。根据广州市环境卫生研究所对类似垃圾填埋场渗滤液检测资料及模拟试验,结合本场实际情况定出渗滤液污水处理设计参数。进水水质CODCr为8000mg/L、BOD5为5000mg/L、SS为700mg/L、pH值为7.5 ;出水水质CODCr为100mg/L、BOD5为60mg/L、SS为500mg/L、pH值为6.5~7.5。?针对该场远离市区的特点,为便于管理和节省能耗,经比较后选用厌氧和好氧联合处理工艺。厌氧段为上向流式厌氧污泥床反应器,好氧段为生物接触氧化法,加化学混凝沉淀和生物氧化塘,净化处理达标后排放。剩余污泥经浓缩后送回填埋场处理。
考虑到渗滤液水质变幅较大的特点,在厌氧段后加入气浮工艺,提高处理能力以应付进水水质偏高的情况。
2.3.4 UASB?氧化沟稳定塘
福州市于1995年建成全国最大的现代化的城市垃圾综合处理场--福州市红庙岭垃圾卫生填埋场。处理垃圾渗滤液水量为1000m3/d;垃圾渗滤液水质(入口)为CODCr为 8000mg/L、BOD5为5500mg/L;处理水质要求(出口)为CODCr去除率95%、 BOD5去除率97%。
设计采用上向流式厌氧污泥床?奥贝尔氧化沟?稳定塘工艺流程。垃圾填埋场的垃圾渗滤液集中到贮存库,依靠库址的较高地形,自流到集水池、格栅,经巴式计量槽计量后,靠势能流至配水池,再依靠静水头压至上向流式厌氧污泥床。经厌氧处理后的污水流至一沉池进行固液分离,上清液自流到奥贝尔氧化沟,沉淀污泥靠重力排至污泥池,污泥定期用罐车送到垃圾填埋场或堆肥利用。
污水在奥贝尔氧化沟进行好氧生化处理,奥贝尔氧化沟采用三沟式A/O工艺,具有先进的污水脱氮处理效果。该工艺突出的优点是在第一沟中既能对氨氮进行硝化,又能以BOD为碳源对硝酸盐进行反硝化,总氮去除率可达80%,由于利用了污水中BOD作碳源,导致污水中的 BOD5被去除,减少了污水中的需氧量。为了提高氧化沟脱氮效果,把第三沟的出水用潜水泵再抽至第一沟进行内回流,在第一沟中进行反硝化。
经氧化沟处理的污水流入二沉池进行固液分离,澄清水自流至稳定塘进行生物处理。二沉池的剩余污泥靠重力排至浓缩池。浓缩池中的上清液回流至氧化沟处理,其浓缩后的污泥用潜水泵抽至罐车输送到垃圾填埋场填埋,或进行堆肥处理。?
2.4 土地处理
土地处理法亦即土壤灌溉法,是人类最早采用的污水处理法,但是土地处理系统的应用多见于城市污水处理。对于渗滤液的处理方法,将渗滤液收集起来,通过喷灌使之回流到填埋场。循环填埋场的渗滤液由于增加垃圾湿度,从而提高了生物活性,加速甲烷生产和废物分解。其次由于喷灌中的蒸发作用,使渗滤液体积减小,有利于废水处理系统的运转,且可节约能源费用。北英格兰的Seamer Carr垃圾填埋场,有一部分采用渗滤液再循环,20个月后再循环区渗滤液的COD值降低较多,金属浓度有较大幅度下降,而NH3 -N、Cl-浓度变化较小。说明金属浓度的下降不仅是由于稀释作用引起的,也可能是垃圾中无机成分对其吸附造成的。
由于再循环渗滤液具有诸多优点,所以设计填埋场时顶部不要全部封闭,而应设立规则性排列的沟道以免对周围水源的污染。低浓度渗滤液不能直接排放,因NH3-N、Cl-浓度仍较高,温度较低季节,蒸发少,生物活性弱,再循环渗滤液的效果有待进一步研究。
2.5 硝化和反硝化
老的填埋场往往处于甲烷发酵阶段,其渗滤液中氨氮含量较高,通常为100~1000mg /L。去除氨氮主要有两种方法:一是硝化和反硝化;另一种是提高pH值至9以上,再用空气吹脱。Robinson和Maris将年龄为20年的填埋场渗滤液在温度为10℃,泥龄为60d的条件下曝气(实际上此与氧化塘运行条件相仿),可完全硝化。其它用生物转盘等好氧方法也都取得了成功,因此普遍认为渗滤液的硝化是不成问题的。
常见的处理工艺:
(1)硝化/反硝化系统+MBR+RO
硝化/反硝化工艺是针对氨氮去除的生化处理方法,经硝化段和反硝化段的联合作用,实现对COD和氨氮的同时彻底去除,出水通过MBR泥水分离和RO对离子的深度截留最终达到国家排放标准。
(2)两级反渗透工艺(或两级DTRO工艺或全膜法处理工艺)
该工艺为纯物理的处理方法,占地面积较小,施工和调试周期短,但很容易造成污染物质的富集,很难实现出水长期稳定达标,且一次性投资和运行费用很高。
(3)絮凝沉淀+硝化/反硝化系统+MBR+NF+RO
采用该工艺大多做成集成设备,前端增加化学法进行预处理,工艺路线较长,增加整体的控制难度,集成设备对水质水量波动适应能力差,很容易出现池容偏小,生化效果差的问题。
(4)中温厌氧系统+硝化/反硝化+MBR+RO
对高浓度COD去除效果较好,常应用在垃圾焚烧厂、垃圾中转站等新鲜垃圾渗滤液的处理中,该工艺对进水的稳定性要求很高,且厌氧系统要保持35°C,投资和运行成本高。
2.6 英Rochem's反渗透处理厂
在英国垃圾渗滤液处理厂使用Rochem's专利圆盘管反渗透系统对初级渗滤液进行处理。这种处理技术是由南亨伯赛德郡温特顿填埋场所设计和生产的Rochem's离析膜系统。
这个系统的心脏是Rochem's专利圆盘管。这个圆柱体的组成包括板片、八角型钢和一个圆管内的耐磨膜垫层,它能处理那些快速堵塞普通的反渗透膜系统的渗滤液。在膜的压力下渗滤液进入Rochem's处理系统进行曝气和pH校正。当含有污染物的渗滤液流经圆柱体内膜表面时,渗滤液中的污染物质由于反渗透作用而分离出来并经膜排出。整个系统清理的操作是自动化的,当需要对该系统进行化学清洗时,控制指示器就会显示出信息来,同时自动清洗系统就会用已经程式化的化学制剂对该系统进行内部清洗,使其恢复到最初的功能。因为渗滤液在封闭情况下,在膜的表面形成湍流,减少氧化,产生恶臭,所以到一定时间要进行内部清洗,但这种清洗的间隔时间较长,Rochem's 离析膜系统能够去除重金属、固体悬浮物、氨氮和有害的难降解的有机物,处理后的水满足严格的排放标准。
德国的Ihlenbery填埋场安装投入使用的Rochem's处理系统,其处理能力的污水量为50m3/h,水的回收率为90%。
城市垃圾渗滤液处理工艺介绍 来自: 免费论文网
3 处理工艺的分析比较
与好氧方法相比,厌氧生物处理具有以下优点。
(1)好氧方法需消耗能量(空气压缩机、转刷等),而厌氧处理却可产生能量(产生甲烷气) 。COD浓度越高,好氧方法耗能越多;厌氧方法产能越多,两者的差异就越明显。
(2)厌氧处理时有机物转化成污泥的比例(0.1kgMLSS/kgCODCr)远小于好氧处理的比例(0.5kgMLSS/kgCODCr),因此污泥处理和处置的费用大为降低。
(3)厌氧处理时污泥的生长量小,对无机营养元素的要求远低于好氧处理,因此适于处理磷含量比较低的垃圾渗滤液。
(4)根据报道,许多在好氧条件下难于处理的卤素有机物在厌氧时可以被生物降解。
(5)厌氧处理的有机负荷高,占地面积比较小。
但是,厌氧处理出水中的COD浓度和氨氮浓度仍比较高,溶解氧很低,不宜直接排放到河流或湖泊中,一般需要进行后续的好氧处理。另外,世界上大多数垃圾渗滤液多是偏酸性的 (pH值一般在5.5~7.0)。pH在7以下,产甲烷菌将会受到抑制甚至死亡,不利于厌氧处理,而好氧处理对pH的要求就没有这么严格。再者,厌氧处理的最适温度是35℃,低于这个温度时,处理效率迅速降低。比较而言,好氧处理对温度要求不高,在冬季时即使不控制水温,仍能达到较好的出水水质。
鉴于以上原因,对COD浓度在50 000mg/L以上的高浓度垃圾渗滤液建议采用厌氧方法 (后接好氧处理)进行处理,对COD浓度在5 000mg/L以下的垃圾渗滤液建议采用好氧生物处理法。对于COD在5 000~50 000mg/L之间的垃圾渗滤液,好氧或厌氧方法均可,选择工艺时主要考虑其它因素。
4 结论和建议
通过对上述几种处理方法及处理工艺的分析比较可得以下结论,并提出水质、水量等方面的建议和意见:
(1)垃圾渗滤液具有成分复杂,水质水量变化巨大,有机物和氨氮浓度高,微生物营养元素比例失调等特点,因此在选择垃圾渗滤液生物处理工艺时,必须详细测定垃圾渗滤液的各种成分,分析其特点,以便采取相应的对策。还应通过小试和中试,取得可靠优化的工艺参数,以获得理想的处理效果。
(2)多种方法应用于渗滤液的处理是可行的。在有条件的地方修筑生物塘,同时采用水生植物系统处理渗滤液,不仅投资省,而且运行费用低。土地处理也受到人们的重视,但在渗滤液的处理中选用尚少。生物膜法和活性污泥法有成熟的运行管理经验,结合采用厌氧好氧工艺生物处理渗滤液较多。但修建专用的渗滤液处理厂投资大,运行管理费用高,而且随着填埋场的关闭,最终使水处理设施报废,故应慎重选用。
(3)我国真正能满足卫生填埋标准的填埋场并不多,许多填埋场因为投资所限无法按设计要求建造能达到环境保护要求的渗滤液收集系统。因此,宜发展投资省,效果好的渗滤液处理技术。垃圾填埋场渗滤液向填埋场回灌,利用土地吸附,土壤生物降解及垃圾填埋层的厌氧滤床作用使渗滤液降解,具有投资省、效果好,无需专门处理设施投资等特点。而且渗滤液的回灌可使垃圾保持湿润,加速填埋场的稳定。回灌法采用较少,可作深入研究,以明确回灌法的使用条件,处理效率及回灌处理的工程设计参数。
(4)对垃圾填埋场渗滤液进行处理是问题的一个方面,另一方面应当考虑减少渗滤液产生量。宜发展可减少渗滤液产生量的填埋技术,如好氧填埋或准好氧填埋。
(5)对垃圾渗滤液的处理,我国尚处于研究探索阶段,为了建设标准化的城市垃圾卫生填埋场,对其渗滤液的处理应作更深入的研究。
㈥ 如何处理渗滤液
渗滤液常用的处理方法生物处理法分为好氧生物处理法、厌氧生物处理法和厌氧—好氧组合处理方式三种。好氧生物处理法包括活性污泥法、曝气氧化塘法和生物膜法;物理化学处理法包括混凝沉淀法、化学氧化法、吸附法和膜分离法等;土地处理法。
随着城市垃圾产量的剧增,目前比较经济的处理方法是对其进行卫生填埋。而垃圾渗滤液的产生是卫生填埋的最大问题,其成分复杂、有机物浓度高、水质水量多变。一般来说,垃圾渗滤液的pH值为4~9,COD为2000~62000mg/L,BOD5为60~45000mg/L,处理起来十分棘手。
1 渗滤液处理方法介绍
1.1 常用的处理方法
(1)生物处理法
分为好氧生物处理法、厌氧生物处理法和厌氧—好氧组合处理方式三种。好氧生物处理法包括活性污泥法、曝气氧化塘法和生物膜法。厌氧生物处理法包括普通厌氧硝化、两相厌氧硝化、厌氧滤池、上流式厌氧污泥床(UASB)、厌氧复合床(UASBF)等。厌氧—好氧组合处理方式包括SBR法、AB法、厌氧池—SBR法、厌氧池—活性污泥法、厌氧/好氧生物床等。
(2)物理化学处理法包括混凝沉淀法、化学氧化法、吸附法和膜分离法等。
(3)土地处理法包括循环回灌法和土壤植物处理系统。
1.2 渗滤液处理方法的比较
垃圾渗滤液的多种处理方法,各具优缺点。
生物法中,好氧工艺的活性污泥法和生物膜法的处理效果最好,停留时间较短,已有丰富的运行经验,但工程投资大、运行管理费用高;相对而言,曝气氧化塘工艺简单、投资少、便于管理,但停留时间长、占地面积大且易受季节影响。厌氧处理工艺适于高浓度的有机废水,它的缺点是停留时间长,污染物的去除率较低,对温度的变化敏感。因此,对高浓度的垃圾渗滤液采用厌氧—好氧组合处理工艺既经济合理,又提高了处理效率。目前我国已有不少填埋场采用此法,福州红庙岭的UASB—氧化沟—稳定塘工艺,处理垃圾渗滤液水量为1000m3/d;入口水质CODcr为8000mg/L、BOD5为5500mg/L;CODcr的去除率为95%、BOD5的去除率为97%,去除率较高,但出口水质仍未达到《生活垃圾填埋控制标准》(GB16889—1997)中垃圾渗滤液二级排放标准的要求。广州大田山垃圾卫生填埋场渗滤液的处理采用厌氧—气浮—好氧工艺,进水水质CODcr为8000mg/L、BOD5为5000mg/L、SS为700mg/L、pH值为7.5 ;出水水质CODcr为100mg/L、BOD5为60mg/L、SS为500mg/L、pH值为6.5~7.5,达到了垃圾渗滤液的二级排放标准。虽然厌、好氧组合工艺的处理效果相对较好,但此工艺组合的搭配协调较为困难。
与生物处理相比,物化处理不受水质水量变动的影响,出水水质比较稳定,尤其是对BOD5/COD值较低(0.07~0.20)的难以生物处理的垃圾渗滤液有较好的处理效果,现已成为渗滤液后处理工艺中最常用的方法之一。但其成本较高,不适于大水量垃圾渗滤液的处理。同时可以查看中国污水处理工程网更多技术文档。
土壤植物处理系统是在人工控制的条件下,通过土地—植物系统的物理—生物—化学的综合反应,使渗滤液得到净化。循环回灌法实质上是以填埋场为巨大的生物滤床,将渗滤液收集起来,通过喷灌使之回流到填埋场。其净化作用主要体现在两个方面:一是减量。渗滤液回灌后通过蒸发或被植被吸收,减少了渗滤液的场外处理量;二是加速稳定化进程。回喷可增加垃圾湿度,增强微生物活性,加快甲烷的产生速率及有机物的分解,缩短填埋垃圾的稳定化进程。北英格兰的Seamer Carr垃圾填埋场,部分垃圾渗滤液采用了渗滤液再循环后,发现COD值和金属浓度有较大幅度的下降。希腊的Diamadopoulos E报道,循环回灌法处理COD为69400mg/L、BOD为56500mg/L、NH3-N为1260mg/L的渗滤液,COD的去除率大于90% ,BOD的去除率大于98%。
目前该项技术在我国应用的较少。据资料介绍,唐山市垃圾卫生填埋场的渗滤液处理采用了循环回灌法,渗滤液被收集并经沉淀调节池处理后,回灌至填埋场;沉淀调节池中的沉淀污泥与渗滤液也一并回流至填埋场,避免了污泥的二次污染。张瑞明等人在杭州天子岭填埋厂的中试研究表明,通过循环回灌法基本可实现渗滤液的产生与蒸发量的平衡,同时可使COD由10400mg/L降至142mg/L,TN由899mg/L降至18mg/L。但是,循环回灌法对氨氮的去除效果并不明显,其只能降低垃圾渗滤液的浓度、减少其产量,而且产生的低浓度渗滤液不能直接排放。有废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。
2 适合我国的垃圾渗滤液处理方法初探
2.1 预处理方法
现今,垃圾渗滤液的排放标准日益严格,目前我国能真正满足卫生填埋标准的填埋场并不多,许多填埋场因为资金所限无法建造能达到标准的垃圾渗滤液收集处理系统。因此,我们应发展投资省、效果好的渗滤液处理技术。但是,由于垃圾渗滤液成分复杂、水质水量变化大、污染物浓度高,单独采用一种方法处理难以满足要求,因此须采用多种方法的组合工艺。如用生物法或土地法作为预处理,再综合考虑处理效果、资金及用地情况来选择后续处理的工艺组合即可满足要求。根据本文对各种处理方法的比较,土地处理法节约用地、经济简单,生物法的工艺搭配协调困难,投资相对较高。因此,从我国目前的国情出发,选择土地处理法为预处理方法是适宜的。
2.2 后续处理的方式方法
后续处理可分为合并处理和单独处理两种方式。
(1)合并处理
合并处理是指将预处理后的渗滤液输入城市污水处理厂进行处理。垃圾渗滤液通过土地处理法进行预处理后,重金属浓度大大降低,不会对城市污水处理厂的微生物造成毒害;水量和有机物含量减少,基本不会对城市污水处理厂造成冲击负荷,但考虑到污水处理厂对渗滤液的接纳能力,应严格控制渗滤液与城市污水的混合比,渗滤液浓度越高,渗滤液和污水的混合比就应控制得越小,因此需在填埋场附近加筑中间调节池,在雨季和水量较多时,可将过剩的渗滤液排入调节池中。另外,经土地法预处理后,渗滤液的营养物质仍不均衡,氨氮浓度较高、磷含量较低。而城市污水量较大,可起到稀释作用,还可补充磷等营养物质,保证了生化处理所需的C∶N∶P的比例,达到渗滤液与城市污水共同处理的目的。因此,采用合并处理作为后续处理方式,既不影响城市污水处理厂的正常运作,又能保证出水水质,还可节约土地、节省工程投资和运行管理费用,也不必考虑工艺搭配组合的问题。所以,该方式是一种比较理想的处理方案。但需注意的是垃圾填埋场和城市污水厂的距离及城市污水处理厂对渗滤液的接纳能力。
(2)单独处理
单独处理是指在填埋场附近建设污水处理厂以进行渗滤液的处理。当垃圾填埋场远离城市污水处理厂时,为避免渗滤液长距离输送带来的高额费用,可考虑在填埋场附近单独建设处理系统。处理系统要根据预处理后的水量、水质进行选择。一般来说,应用土地处理法进行预处理后,水量和有机物含量较少、氨氮含量较高,应建议采用物理化学处理法对渗滤液进行深度处理。
3 结论和建议
(1)垃圾渗滤液的成分复杂、水质水量变化大、污染物浓度高、处理难度大。主要的处理方法有生物处理法、物理化学处理法和土地处理法。单独采用一种方法处理垃圾渗滤液难以满足排放要求,因此必须采用多种方法的组合工艺。
(2)以循环回灌法为预处理,再把渗滤液输送至城市污水处理厂进行合并处理是适合我国的渗滤液处理方法。但必须考虑到填埋场和污水处理厂的距离及污水厂对渗滤液的接纳能力。如单独处理,则建议采用物理化学处理法进行深度处理。
(3)建议对循环回灌法与其它工艺搭配的处理方法进行试验研究,以解决工艺的协调问题。另外,在研究垃圾渗滤液处理方法的同时,还应当研究减少渗滤液产生量的填埋技术。
㈦ 垃圾场垃圾渗滤液处理方案
敦化市地处长白模和山西麓。自从1985 年,撤县建市后,敦化市的工农业经济得到了飞速发展,城市规模不断扩大,人民生活水平显著提高。但是随之产生的城市垃圾等环境污染问题也不断恶化,成为敦化市进一步可持续发展的桎梏。据统计1998 年敦化市工业固体废弃物产生量为9.26 万吨,城市生活垃圾产生量为16.8 万吨。与我国许多城市一样形成了“垃圾包围城市”的不利局面。为此,敦化市建设了一座全省最大规模的垃圾填埋场,占地35 公顷,并积极采用垃圾制砖技术,进一步使垃圾变废为宝。垃圾填埋场的建设和运行,一个绝对不容忽视的问题就是垃圾渗滤液污染的控制与治理。垃圾渗滤液是指超过垃圾所覆土层持水量和表面蒸发潜力的雨水进入填埋场地后,沥经垃圾层和所覆土层而产生的高浓度污水。渗滤液还包括垃圾自身所含的水份、垃圾分解所产生的水及地下水的浸入量。由于渗滤液在流动过程中收到多种因素的影响(包括物理因素、化学因素、生物因素等),渗滤液的水质在一个相当大的范围内变化。一般来说,其pH 值在4~9 之间,CODCr 在2000~62000mg/L 范围内,BOD5 在60~45000mg/L 之间,难降解有机物含量较高,一般还含有较高浓度的重金属等有毒物质。总之城市垃圾渗滤液是一种成分复杂的高浓度有机废水,若不加以妥善处理、肆意排放,必将对地下水、地表水构成严重威胁。我们在深入研究国内外先进渗滤液处理技术基础上,结合敦化市的环境气候特征以及垃圾填埋场的实际情况,做了以曝气脱氮配合生物处理方案。针对敦化市的地区气候特征,采用渗滤液回灌喷洒技术,将处理过的渗滤液回灌进入垃圾填埋场,促进渗滤液的净化和减量,而且可以加速垃圾的稳定化进程。从而使垃圾填埋场渗滤液可以做到零排放。工艺设计中将氨吹脱与生物处理部分结合为一体化设备,便于操作管理。1.1 设计依据1) 《中华人民共和国污水综合排放标准》(GB8978-96)2) 《城市生活垃圾卫生填埋技术规范》(CJJ17-2001)3) 《生活垃圾填埋污染控制标准》(GB16889-1997)4) 《室宏码蚂外排水设计规范》(GBJ14-87)5) 甲方提供的相关资料6) 同类企业污水水质数据、试验报告、设计经验1.2 设计原则(1)要结合我国北方城市发展总体规划的要求,并能当地政府环境保护及污染治理总体发展规划的要求。(2)工程规模、投资数额要考虑国家和地方财政的支付能力,做到切合实际,降低工程费用。(3)应注意引进新工艺、新技术、新设备、新材料。在比较和选择工程方案时,要优先考虑工艺先进、技术可靠、经济合理的方案,以降低工程造价,减少运行成本。1.3 设计范围城市垃圾填埋场垃圾渗滤液处理设备一套,处理规模300m3/d。
方案论证2.1 设计水量按照甲方提供的原始资料确定本垃圾渗滤液处理工程设计水量为300m3/d。2.2 进出水水质进水水质依据甲方提供资料以及国内同类垃圾渗滤液的水质资料,确定进水水质如下:2.3 处理方案近十几年来国内外学者就垃圾渗滤液的处理进行了大量的探索和研究,取得了一些成功经验,有的已用于工程实践。由于渗滤液水质水量的复杂多变性,目前尚无十分完善的处理工艺,大多根据不同填埋场的具体情况及其它经济技术要求采取有针对性的处理工艺蔽埋。根据甲方提供的相关技术资料,确定了原水和出水的水质条件及其变化系数,本方案确定以曝气脱氮、厌氧-缺氧-好氧生化处理配合循环回灌的工艺路线。对于本方案的“年轻”和“年老”混合型垃圾填埋场(指垃圾中含有一定数量的工业废弃物)产生的渗滤液及城市污水处理厂规模较小而采用合并处理的情形,进行物理化学等预处理去除渗滤液中的氨氮等尤为必要。因而,本方案首先采用曝气吹脱技术处理含量较高的氨氮。经过吹脱,渗滤液中氨氮去除率可达到70%左右,降低了后续生物处理工艺的处理负荷。此外,曝气吹脱还可起到一定的预曝气作用,在一定范围内可以降低渗滤液中COD 含量,并进一步调整污水营养物质比例,使之更有利于生物处理。方案采用厌氧-缺氧-好氧生物处理工艺,这是一种将厌氧-好氧生物处磷与缺氧-好氧生物脱氮两种方法相结合的同步脱氮除磷处理工艺。污水和回流污泥自厌氧池流入,循环硝化液由好氧池用泵送入缺氧池。在厌氧池进行磷的释放,在缺氧池进行脱氮,在好氧池进行硝化和磷的摄取。经过处理后的渗滤液采用循环回灌至垃圾填埋层,是一种较为有效的处理方案。通过循环喷洒可提高垃圾层的含水率(由20%~25%提高到60%~70%),增加垃圾的湿度,增强垃圾中微生物的活性,加速产甲烷的速率、垃圾中污染物溶出及有机物的分解。其次,通过循环不仅可降低渗滤液的污染物浓度,还可以因喷洒过程中挥发等作用而减少渗滤液的产生量,对水量和水质起到稳定化的作用,有利于废水处理系统的运行,节省费用。将渗滤液收集并通过回灌使之回到填埋场,除有上述作用外,还可以加速垃圾中有机物的分解,缩短填埋垃圾的稳定化进程(使原需15 年~20 年的稳定过程缩短至2 年~3 年)。这种方式对于敦化市这样的北方地区尤其适宜。北方地区干旱少雨,而且冬季寒冷,气候条件不利于垃圾发酵降解菌类存活,垃圾稳定化过程更为缓慢。2.4 处理工艺流程本方案处理工艺流程如下:
工艺设计3.1 单元处理构筑物设计1.原水调节池原水调节池根据甲方实际情况,采用未使用的垃圾填埋坑。调节时间确定为7d,有效容积2070m3。原水调节池内设污水提升泵两台(一用一备),用来提升污水至氨气吹脱塔。水泵型号为WQR15-20-2.2A。2. 氨气吹池氨吹脱池为不锈钢结构,内部防腐,水力停留时间5h,有效容积62.5m3,有效水深5m,内径为4m。投加石灰调节pH 值至10.5 左右。采用穿孔管曝气,气水比2000:1,采用两台罗茨鼓风机曝气,型号为RT-300。3. A2/O 反应池反应池分为厌氧池、缺氧池和好氧池3 部分,为三座不锈钢结构。总体停留时间为14h,停留时间比为2:2:3。反应池有效容积为175m3,有效水深5m。厌氧池内径为3.6m,高度5.5m,入口处有污水进水管和污泥回流管各一,管径为DN200。缺氧池内径为3.6m,高度5.5m,入口处设硝化液循环管,内循环比为200%,管径DN300。池内设循环回流潜水泵两台(一用一备),型号WQR17-6-1A。厌氧池和缺氧池内各设水下搅拌机1 台,功率为125W。好氧池内径为5m,高度5.5m,采用穿孔管曝气。采用一台RT-300 罗茨鼓风机鼓风曝气。厌氧、缺氧、好氧池内填充软性填料,以增加接触面积,促进生化反应。以上是中达咨询整理的内容
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
㈧ 垃圾填埋场渗滤液能进污水处理厂吗
能进污水处理厂处理,但水量不要超过城镇污水处理厂处理能力的3%。垃圾渗滤版液属于难处权理污水,通过加入城镇污水处理厂是一种比较好的方法,但运输费用比较高,加上水质特点,接收处理的污水厂需要较高的脱氮工艺。