⑴ 污水氨氮超标原因及去除方法有哪些
1. 自身生产活动导致氨氮超标的原因:在污水处理、食品加工、化学制造、电镀、造纸、印染等行业中,由于生产过程中产生的副产品或使用的还原性物质,氨氮的生成是持续且难以避免的。
2. 污水处理工艺的缺陷:
a. 生化处理温度不当:如果水温过低,微生物的活性会降低,进而影响对氨氮的分解能力。
b. 废水流量突然增加:当废水流量突然增大,超出原有处理能力时,系统可能无法承受,导致氨氮处理效率下降。
c. 废水浓度异常升高:在高浓度废水的冲击下,如果现场处理能力没有相应提升,出水中的氨氮浓度容易超出标准。
对于因工艺缺陷导致的氨氮超标问题,可以考虑对现有项目进行改建。目前,生物法是处理氨氮最为经济有效的方法之一。采用HNF-MP高效硝化工艺,可以在不调整原有池体的情况下,显著提升处理效率1至2倍。
⑵ 氨氮超标,快速去除废水中的氨氮
生物脱氮是目前常用的脱氮方法之一,适用于处理低浓度氨氮废水,并且处理效果稳定可靠,生物脱氮最大的优点在于他彻底消除了,水中的氮污染,没有二次污染。但缺点是,微生物的培养及工艺条件的控制。升级改造现有工艺,提升工艺的负荷,在原有生化工艺的基础上进行项目改造,新增HNF-MP工艺,抗冲击性能强,高浓度菌种可以抵抗冲击,自旋转填料+多级回流分离器,不改变原有池体的基础上,实现池体氨氮去除效率提升1-2倍。
⑶ 废水中氨氮去除,用哪种药剂较好
是向氨氮污水中抄投加含Mg2+和PO43-的药剂,使污水中的氨氮和磷以鸟粪石(磷酸铵镁)的形式沉淀出来,同时回收污水中的氮和磷。
其工艺设计操作相对简单,反应稳定,受外界环境影响小,抗冲击能力强,脱氮率高效果明显,生成的磷酸铵镁可作为无机复合肥使用,因此解决了氮的回收和二次污染的问题,具有良好的经济和环境效益。磷酸铵镁沉淀法适用于处理氨氮浓度较高的工业废水磷酸铵镁沉淀法处理氨氮废水的适宜条件是:pH约为9.0,n(P)∶n(N)∶n(Mg)在1∶1∶1.2左右,磷酸铵镁沉淀法的脱氮率能维持在较高水平,普遍能够达到90 %以上
⑷ 化学镀的废水怎么处理
化学镀的废水怎么处理
化学镀是一种新型的金属表面处理技术,该技术以其工艺简便、节能、环保日益受到人们的关注。化学镀使用范围很广,镀金层均匀、装饰性好。在防护性能方面,能提高产品的耐蚀性和使用寿命;在功能性方面,能提高加工件的耐磨导电性、润滑性能等特殊功能,因而成为全世界表面处理技术的一个发展。
⑸ 废水中氨氮去除,用什么方法
1)折点氯化法:
该方法通过投加过量氯或次氯酸钠,使废水中的氨氧化为N2。折点氯化内法对氨氮的去除率高容,处理效果稳点,且不受水温的影响,不过在处理过程中,运行费用较高。
2)空气吹脱法:
在碱性条件下,氨氮主要以NH3的形式存在,让废水与空气充分接触,水中挥发性NH3将由液相向气向转移。其受废水的PH、温度、水力负荷、结垢控制等因素的影响。
⑹ 污水氨氮超标原因及去除方法有哪些
可能是以下几种原因
1、供气量不足或硝化菌不够;
2、工艺设计的设施规模过小,处理负荷太小;
3、没有控制好水力停留时间;
4、营养成分比例达不到设计标准,需要外加营养投加系统;
5、曝气系统设计不负荷规范,偏小;
6、硝化反应没有控制好,要控制好PH值、温度、溶解氧、C/N比等条件。
去除方法:采用生物法,新型HNF-MP高效硝化工艺采用高效硝化菌种,接种抗逆性较好的菌种的同时强化反应器内微生物的数量,大大提高了反应速率。
⑺ 氨氮废水高cod高怎么处理好
水体污染主要是人类活动造成,其包括工农业作业及人类生活等活动产生的废水。其中氨氮、COD是比较常见的污染物之一,它们存在范围广,对水环境的影响大。氨氮与COD废水处理有以下方法:
氨氮污水处理:
氮在污水中总以分子态氮、有机态氮、氨泰氮、硝态氮、亚硝态氮等多种形式存在,氨氮是最主要的存在形式之一。氨氮超标废水排入水体,易造成水体富营养化、影响生态平衡等危害。其存在于线路板、电镀、制药、化工、制药等行业,其处理有方法生物法、物化法等。其中生物法包括生物硝化与反硝化、A/O工艺、A2/O工艺等;物化法包括吹脱法、气提法、化学沉淀法、离子交换法等。
生物法和物化方法在处理氨氮污水,一定程度上可以解决污水超标问题,但有时因为水温、出水波动等因素,污水处理不达标,这时候建议投加化学药剂,即氨氮处理药剂处理。对此不仅可以减少操作上的繁琐,还可以节省时间。
COD废水处理:
COD是我国水污染总量控制指标之一,COD超标污水排入河流、大海等水体,容易破坏环境和生物群落的生态平衡,引起水质恶化、水体变黑发臭等。其处理方法有大孔树脂吸附法、气浮法、混凝法、电化学法、好氧生物法、厌氧生物法等。
以上的污水处理方法可以达到降低COD的目的,但有时候由于一些外在因素,处理结果达不到要求,需要添加COD 处理药剂处理,COD处理药剂是一种很好的辅助性功能药剂,可以快速降低污水中的COD,达到排放标准以下, cod或氨氮去除剂资料至http://www.cl39.com/proct/andanquchuji.html望采纳。
⑻ 污水中氨氮含量高 怎么去除
氨氮/COD的去除在污水处理中多采用生物法,是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。
氨氮/COD超标主要是硝化反应控制不好所致。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:亚硝化:
2NH4++3O2→2NO2-+2H2O+4H+
硝化
:
2NO2-+O2→2NO3-
解决措施:控制好PH与温度。硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS?d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。为了能使微生物正常生长,必须增加回流比来稀释原废水;硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。
⑼ 氨氮超标该怎么解决
污水中氨氮的去除主要是在传统活性污泥法工艺基础上采用硝化工艺,即采用延时曝气,降低系统负荷。氨氮不达标一般是溶解氧不够或者污泥浓度过低,只需要提高溶解氧和提高污泥浓度就可以解决,也可以投加种泥解决。可能导致出水氨氮超标的原因涉及许多方面,主要介绍以下几种:
(1)污泥负荷与污泥龄
生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS·d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,即SRT过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。SRT控制在多少,取决于温度等因素。对于以脱氮为主要目的生物系统,通常SRT可取11~23d。
(2)回流比
生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%。
(3)水力停留时间
生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。
(4)BOD5/TKN
TKN系指水中有机氮与氨氮之和,入流污水中BOD5/TKN是影响硝化效果的一个重要因素。BOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水处理厂的运行实践发现,BOD5/TKN值最佳范围为2~3左右。
(5)硝化速率
生物硝化系统一个专门的工艺参数是硝化速率,系指单位重量的活性污泥每天转化的氨氮量。硝化速率的大小取决于活性污泥中硝化细菌所占的比例,温度等很多因素,典型值为0.02gNH3-N/gMLVSS×d。
(6)溶解氧
硝化细菌为专性好氧菌,无氧时即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。
(7)温度
硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。
(8)pH
硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性最强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。因此,应尽量控制生物硝化系统的混合液pH大于7.0。