⑴ 制药废水的盐是什么盐
制药废水中的盐类主要为氯化钙、氯化铵、氯化钠等氯盐。制药废水本身可生化性较差,水中大量的氯离子不仅对微生物的生存生长具有抑制作用,对废水处理过程中所接触的金属物质、混凝土结构均会造成腐蚀。制药废水中的盐类主要来源于发酵及抗生素类药物的生产过程,这类废水带有一些未反应的制药原料和合成此材料中间体,要控制制药废水中的盐类累积,要从废水的源头抓起,采取对原料与中间体进行回收或再利用、使用更环保的工艺等,都是能够有效降低废水盐分的好方法。
⑵ 国外是怎么处理抗生素生产废水的
抗生素生产废水成份复杂,有机物浓度高,溶解性和胶体性固体浓度高,PH值经常变化,温度较高,带有颜色与气味,悬浮物含量高,含有难降解物质和有抑菌性作用的抗生素,并且有生物毒性。其具体特征如下:
处理方法:
1、混凝预处理
抗生素废水的浊度和悬浮物浓度较高,因而在水质预处理部分采用混凝法预处理,去除高悬浮物和浊度,以便使水质史适宜进行后续生物处理。
混凝的基本原理
混凝澄清是给水和废水处理实践中的一种常用的单元操作它是指在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚为絮凝体,然后予.以分离除去的水处理方法。胶体溶液或悬浮液稳定的原因是:固体微粒的粒度太细,同时带有同性电荷形成布朗运动;另外,溶液中还有一种亲水的胶体,它是可溶性的大分子,如蛋白质、淀粉和腐植酸等,它们的分子上都带有亲水的极性基团如一OH、一COOH、一NH3等对水具有较强的亲和力,在分了的周围保持较厚的水层,能发生膨胀,有形成真溶液的倾向。胶体或悬浮液形成分散体系就是依靠细微粒度,荷同性电荷以及在水中的溶解作用而形成稳定状态的,因而必须投加混凝剂来破坏他们的稳定性,使其相互聚集为数百微米以至数毫米的絮凝体,才能予以除去。混凝就是在混凝剂的离解和水解产物的作用下,使水中胶体污染物质和细微悬浮物脱稳并聚集为具有可分离性的絮凝体的过程,其中包括凝聚和絮凝两个过程,统称为混凝。
混凝的作用机理
在混凝处理中,主要是通过压缩双电层和电性中和机理起作用的。
凝聚作用:
凝聚作用是指加入无机电解质,通过电性中和作用,压缩双电层,降价了ζ电位,减少微粒间的排斥能,解除布朗运动,使微粒能够靠近接触而聚集在一起的作用。
混凝预处理对原水中的COD及硫酸盐浓度的影响
在进行混凝预处理时,除了希望通过混凝预处理去除较高的SS外,还希望能够同时去除水中的高浓度COD及某些生物抑制性物质,如硫酸盐。由于在进行水质保存时,引入了硫酸根离子,根据前述内容可知,抗生素制药废水中主要的生物抑制性物质就是硫酸盐。因而,在预处理部分,混凝预处理过程对COD及硫酸盐浓度变化的影响。随沉降时间的延长,COD及硫酸盐的去除率均会逐渐地增大,这主要是因为随着沉降时间的延长,不溶性的COD附着在絮凝体上而不断下沉,最终被除去的缘故。硫酸盐的去除为下一步的厌氧生物处理提供了便利,降低硫酸盐浓度,从而减少硫酸盐还原菌作用后生成的硫化氢不能及时地外排而造成对厌氧微生物的毒害作用。
抗生素废水的生化处理
2、废水的好氧生物处理
废水的好养生物处理原理
好氧生物处理是在提供游离氧的前提下,以好氧微生物为主,使有机物降解,稳定的无害化处理方法。废水中存在的各种有机污染物,以胶体状、溶解状的有机物为主,作为微生物的营养源。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来。有机物被微生物摄取后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化,合成为新的原生质的组成部分,即微生物自身生长繁殖。这一部分就是废水生物处理中的活性污泥或生物膜的增长部分,通常称为剩余活性污泥。
活性污泥法的基本流程
活性污泥法是一种应用最广的废水好氧生物处理技术,它是指将空气连续鼓入大量溶解有机污染物的废水中,经过一段时间,水中即形成生物絮凝体一活性污泥,在活性污泥上栖息、生活着大量的好氧微生物,这种微生物以溶解有机物为食料,获得能量,并不断增长,使废水得到净化。它由曝气池、二次沉淀池、曝气系统及污泥回流系统等组成。由初次沉淀池流出的废水与二次沉淀池底部回流的活性污泥同时进入曝气池,在曝气池的作用下,混合液得到足够的溶解氧并使活性污泥和废水充分接触,废水中的可溶性有机污染物为活性污泥所吸附并为存活在活性污泥上的微生物群体所分解,使废水得到净化。
活性污泥处理系统有效运行的基本条件是:
(l)废水中含有足够的可溶性易降解有机物,作为微生物生理活动所必需的营养物质:(2)混合液含有足够的溶解氧:(3)活性污泥在池内呈悬浮状态,能够充分地与废水相接触:(4)活性污泥连续回流,及时地排除剩余污泥,使混合液保持一定浓度的活性污泥:(5)没有对微生物有毒害作用的物质进入。
活性污泥法的净化过程
在正常发育的活性污泥的微生物体内,存在着由蛋白质、碳水化合物和核酸组成的生物聚合物,这些生物聚合物是带有电荷的电介质。因此,由这种微生物形成的生物絮凝体,都具有生理、物理、化学吸附作用和凝聚、沉淀作用,在其与废水中呈悬浮状和胶休状的有机污染物接触后,能够使后者失稳、凝聚,并被吸附在活性污泥表面。
活性污泥具有很大的表面积,能够与混合液广泛接触,在较短的时间内,通过吸附作用,就能够除去废水中大量的呈悬浮和胶体状的有机污染物,使废水的COD值大辐度地下降。
小分子有机物能够直接在透膜酶的催化作用下,透过细胞壁被摄入细菌体内,但大分子有机物则首先被吸附在细胞表面,在水解酶的作用下,水解成小分子后再被摄入到细胞体内。一部分被吸附的有机物可能通过污泥排放被去除。
3、废水的厌氧处理
废水的厌氧处理原理
废水的厌氧处理是在没有游离氧的情况下,以厌氧微生物为主对有机物进行降解,稳定的一种无害化处理方法[。在厌氧生物处理过程中,复杂的有机化合物被降解,转化为简单、稳定的化合物,同时释放能量。其中,大部分能量以CH4的形式出现,可回收利用。同时,仅少量有机物被转化,合成新的细胞组成部分。
第一阶段,可称为水解、发酵阶段。复杂有机物在微生物的作用下进行水解发酵。水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用,因此它们在第一阶段被细胞外酶分解为小分子。如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶水解为麦芽糖和葡萄糖,这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。而后,这些物质在发酵细菌的细胞内转化为更简单的化合物并被分泌到细胞外。发酵是有机化合物既作为电子受体也是电子供体的生物降解过程,在此过程中,溶解性有机物被转化为以挥发性脂肪酸为主的末端产物。这一阶段的主要产物有挥发性脂肪酸、酸类、乳酸、CO2、H2、H2S、甲胺等。与此同时,酸化菌也利用部分物质合成新的细胞物质。
酸化过程是由大量的、多种多样的发酵细菌完成的。其中重要的类群有权梭状芽孢杆菌和拟杆菌。它们大多是严格厌氧的,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够保护严格厌氧菌免受氧的损害与抑制。
第二阶段,称为产氢、产乙酸阶段,是由一类专门的细菌,称为产氢产乙酸菌,将丙酸、丁一酸等脂肪酸和乙醇等转化为乙酸、C02、HZ。
在标准条件卜,乙醇、丁酸和丙酸不会被降解,因为在这些反应中不产生能。但氢浓度的降低可使这些反应导向产物方向。在运转良好的反应器中,氢的分压一般不高于lOPa,平均值约为0. 1 Pa。当作为反应产物之一的氢的分压如此之低时,乙醇、丁酸和丙酸的降解则可以产生能,即反应的实际自由能成为负值。
在由氢和二氧化碳形成甲烷时,只有在产乙酸产生的氢被产甲烷菌有效利用时,系统中氢才能维持在很低的分压。根据平均氢分压可以计算出反应器里一个氢分子平均在0. 5s以内被消耗,这意味着氢分子在其产生后仅仅能移动0. 1 mm的距离。也说明这种生化反应需要密切的共生关系存在于菌种之间。这种现象称为“种间氢传递”。不仅存在着氢的传递,有迹象证明“种间甲酸传递”也是相当重要的。
第三阶段,称为产甲烷阶段。由产甲烷菌利用乙酸、H2、C02,产生CH4。
在厌氧反应器中,所产甲烷的大约70%由乙酸歧化菌产生。在反应中,乙酸中的羧基从乙酸分子中分离,甲基最终转化为甲烷,羧基转化为二氧化碳,在中性溶液中,二氧化碳以碳酸氢盐的形式存在。
已知利用乙酸的产甲烷菌是索氏甲烷丝菌和巴氏甲烷八叠球菌。两者的生长速率有较大的区别。当乙酸浓度较低时,索氏甲烷丝菌较巴氏甲烷八叠球菌优势生长。由于索氏甲烷丝菌对底物有更高的亲和力,在废水处理中可能取得较高的有机物去除率,且索氏甲烷丝菌的生长有利于形成品质良好的颗粒污泥。因此这种优势生长对系统运行是非常有利的。
厌氧消化微生物
1、发酵细菌(产酸细菌)
主要包括梭菌属、拟杆菌属、丁酸弧菌属、真菌属和双歧杆菌属等。
这类细菌的书要功能是先通过胞外酶的作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸、醇类等。研究表明,该类细菌对有机物的水解过程相当缓慢,pH和细胞平均停留时间等因素对水解速率的影响很大。不同的有机物的水解速率不同,如类脂的水解就很困难。因此当处理的废水中含有大量类脂时,水解就会成为厌氧消化过程的限速步骤。但产酸的反应速率较快,并远高于产甲烷反应。
发酵细菌大多数为专性厌氧菌,按其代谢功能,发酵细菌可分为纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋自质分解菌和脂肪分解菌。
2、产氢产乙酸细菌
产氢产乙酸菌包括互营单胞菌、互营杆菌属、梭菌属和暗杆菌属等。这类细菌能把各种挥发性脂肪酸降解为乙酸和H2。
3、产甲烷细菌
产甲烷菌分为两类:一类主要利用乙酸产生甲烷,另一类数量较少,利用氢和二氧化碳的合成生成甲烷。
厌氧反应中的硫酸盐还原
在处理含硫酸盐或亚硫酸盐废水的厌氧反应器中,这些含硫化合物会被细菌还原。硫酸盐和亚硫酸盐会被硫酸盐还原菌(SRB)在其氧化有机污染物的过程中作为电子受体而加以利用。SRB将硫酸盐和亚硫酸盐还原为硫化氢,会使甲烷产量减少。
根据所利用底物的不同,SRB可被分为三类:
氧化氢的硫酸盐还原菌(HSRB);
氧化乙酸的硫酸盐还原菌(ASRB);
氧化较高级脂肪酸的硫酸盐还原菌(FASRB)。
有机物的降解中少量硫酸盐的存在不会影响处理过程,但与甲烷相比,硫化氢在水中的溶解度要大得多,每克以硫化氢形式存在的硫相当于2克COD,因而在处理含硫废水时,尽管有机物的氧化已相当不错,COD的去除率却不令人满意。
4、抗生素废水的活性炭吸附
活性炭水处理的特点
活性炭吸附技术用于医药、化工及食品工业等方面,在国内外有多年的历史。活性炭水处理的特点为:
1、活性炭对水中有机物有卓越的吸附特性
由于活性炭具有发达的细孔结构和巨大的比表面积,因此对水中溶解的有机污染物,如苯类化合物、酚类化合物、石油及石油产品等具有较强的吸附能力,而且对用生物法和其它化学法难以去除的有机污染物,如色度、异臭、亚甲蓝表面活性物质、除草剂、杀虫剂、农药、合成洗涤剂、合成染料、胺类化合物及许多人工合成的有机化合物等都有较好的去除效果。
2、活性炭对水质、水温及水量的变化有较强的适应能力,对同一种有机物污染物的污水,活性炭在高浓度或低浓度时都有较好的去除效果。
3、活性炭对某些重金属化合物也有较强的吸附能力,如汞、铅、铁、镍、铬、锌、钻等,因此,活性炭用于电镀废水、冶炼废水处理上也有很好的效果。
4、活性炭水处理装置占地面积小,易于自动控制,运行管理简单。
5、饱和炭可经再生后重复使用,不产生二次污染。
6、可回收有用物质,如处理高浓度含酚废水,用碱再生后可回收酚钠盐。
活性炭吸附的基础理论
固体表面由于存在着未平衡的分子引力或化学键力,而使所接触的气体或溶质被吸引并保持在固休表面上,这种表面现象称为吸附。固体都有一定的吸附作用,但具有实用价值的吸附剂是比表面积较大的多孔性固体。活性炭就因为具有较大的比表面积而具有较高的吸附能力,可用作吸附剂。
吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附的,称为物理吸附;吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附的,称为化学吸附离子交换吸附是指一种吸附质的离子,由于静电引力,被吸附在吸附剂表面的带电点上。
活性炭的吸附速度
吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。在废水中,吸附速度决定了废水和吸附剂的接触时间。吸附速度越快,所需的接触时间越短,吸附设备容积也越小。
吸附速度决定于吸附剂对吸附质的吸附过程。多孔吸附剂对溶液中吸附质吸附过程基本上可分为三个连续阶段:第一阶段称为颗粒外部扩散阶段,吸附质从溶液中扩散到吸附剂表面:第二阶段称为颗粒孔隙扩一散阶段,吸附质在吸附剂孔隙中继续向吸附点扩散:第三阶段称为吸附反应阶段,吸附质被吸附在吸附剂孔隙内的表面上。一般而言,吸附速度主要由膜扩散速度或孔隙扩散速度来控制。
由实验得知,颗粒外部膜扩散速度与溶液浓度成正比。对一定重量的吸附剂,膜扩散速度还与吸附剂的表面积的大小成正比。因为表面积与颗粒直径成反比,所以颗粒直径越小,膜韦、一散速度就越大。另外,增加溶液和颗粒之间的相对运动速度,会使液膜变薄,可以提高膜扩散速度。
孔隙扩散速度与吸附剂孔隙的大小及结构、吸附质颗粒大小及结构等因素有关。一般来说,吸附剂颗粒越小,孔隙扩散速度越快,即扩散速度与颗粒直径的的较高次方成反比。因此,采用粉状吸附剂比粒状吸附剂有利。其次,吸附剂内孔径大可使孔隙扩散速度加快,但会降低吸附量。
影响活性炭吸附的因素
1、吸附剂的理化性质
吸附剂的种类不同,吸附效果也不一样。一般是极性分子(或离子)型的吸附剂容易吸附极性分了(或离子)型的吸附质,非极性分子型的吸附剂容易吸附非极性分子型的吸附质。由于吸附作用是发生在吸附剂的内外表面上,所以吸附剂的比表面积越大,吸附能力就越强。另外,吸附剂的颗粒大小、孔隙构造和分布情况,以及表面化学特性等,对吸附也有很大的影响。
2、吸附质的物理化学性质
吸附质在废水的溶解度对吸附有较大的影响。一般来说,吸附质的溶解度越低,越容易吸附。吸附质的浓度增加,吸附量也是随之增加:但浓度增加到一定程度后,吸附量增加很慢。如果吸附质是有机物,其分子尺寸越小,吸附反应就进行得越快。
3、废水的pH值
pH值对吸附质在废水中的存在形态(分子、离子、络合物等)和溶解度均有影响,因而其吸附效果也就相应地有影响。废水pH值对吸附的影响还与吸附剂性质有关。例如,活性炭一般是在酸性溶液中比在碱性溶液中有较高的吸附率。
4、温度
吸附反应通常是放热的,因此温度越低对吸附越有利。但在废水处理中,一般温度变化不大,因而温度对吸附过程影响很小,实践中通常在常温下进行吸附操作。
5、共存物的影响
共存物质对主要吸附质的影响比较复杂。有的能相互诱发吸附,有的能相当独立地被吸附,有的则能相互起千扰作用。但许多资料指出,某种溶质都以某种方式与其他溶质争相吸附。因此,当多种吸附质共存时,吸附剂对某一种吸附质的吸附能力要比只含这种吸附质时的吸附能力低。悬浮物会阻塞吸附剂的孔隙,油类物质会浓集于吸附剂的表面形成油膜,它们均对接触时间吸附有很大影响。因此在吸附操作之前,必须将它们除去。
6、接触时间
吸附质与吸附剂要有足够的接触时间,才能达到吸附平衡。吸附平衡所需时间取决于吸附速度,吸附速度越快,达到平衡所需时间越短。
四、研究结果(废水处理试验结论)
1、针对此种废水,其混凝处理的最佳条件为:混凝剂品种为三氯化铁,质量百分比浓度为10%,每lL废水中需投加此种混凝剂0.2ml,其最适pH值为7
2、进行废水的生化处理,可知废水中含有大量的隋性物质、难降解物质。
3、在T=33士1℃的条件下,确定其厌氧水解常数
4、由于废水中含有多种有机化合物,在用活性炭进行吸附试验时,表现了一定的竞争作用,活性炭总吸附量不高。
5、对于厌氧处理中的硫酸盐,它的去除与废水中所含的COD有一定的关系。详细资料摘自:http://wenku..com/link?url=-rZYzotwVqhEibE74YEzhcMF_gxdXU3ZhB0sJEQVO8NtKcdqDwSeh_m6m-fjJY7ooOxeuuSJvT_2rnAuTtVNHi4TdsfeE3r-0esoZroDqEm www.juheliusuantie.com.cn 详情请到网络文库了解
⑶ 山东鲁抗被曝偷排抗生素污水 浓度超自然水体万倍
不言而喻,水中含有抗生素,尤其是自来水中,长期饮用的话,对人体健康会带来一定的影响。那么,水中的抗生素主要来源于哪里呢?记者在对全国几大抗生素基地的生产污水以及周边水域的水样分析后发现,抗生素含量惊人,尤其是山东鲁抗医药股份公司的外排污水中抗生素含量达到了53000多纳克每升,那么这家企业为何会排出如此高浓度的含有抗生素的污水呢?
当地居民:抗生素企业偷排有毒废水
根据山东济宁市当地居民的举报,称在老运河附近总是有浓重的药味,怀疑有附近的企业偷排或超标排放有毒废水。
居民反映的线索直接指向了老运河附近的山东鲁抗医药股份公司,它是全国四大抗生素厂之一。居民称鲁抗涉嫌用大罐车违法转运高浓度的抗生素废水,同时还向记者提供了运输污水的罐车车号:鲁R。K621。要了解抗生素污水的来源和去向记者就必须找到转运污水的那辆罐车,才能进入厂区进行调查。
记者在济宁市蹲守了6天,转遍了整个城区,终于在第八天的夜里,居民举报的那辆罐车出现了。
很明显,这里是一个大车集中的地点,还没等记者进去看个仔细,又有一辆相同的大罐车从里往外开了出来。记者决定紧紧跟上,没走多远,大罐车司机选择了一家面馆下车吃饭,记者也走进了这家面馆,并与这位司机攀谈起来,司机说车里拉的是污水。
鲁抗涉嫌违法转运高浓度含抗废水
记者调查发现运送污水的罐车还不止一辆,根据司机提供的线索,鲁抗污水处理中心存在违法转运高浓度废水的重大嫌疑。
为了及时获取鲁抗外排废水的水样,记者找到济宁市环保局并连夜进入鲁抗污水处理中心进行调查。巧的是,一进厂区就看见一辆与前一夜追踪的同样大小的罐车停在污水池旁边。鲁抗负责人表示这是运原料的,然而运原料的车为何要停在污水处理中心呢?在记者再三追问之下,企业环保人员终于承认这是运污水的。
在企业的电脑记录中,记者发现,有多家化工厂以及鲁抗的分公司向鲁抗污水处理中心运输高浓度污水,在这份台账中每天都记录有外来污水的企业名称、结算价格和距离。
含抗生素废水最终进入京杭大运河济宁段
按照我国环保法规的要求,企业污水不得外运,必须就地处理,很明显,鲁抗接收外来企业污水的行为已经涉嫌违法。
记者得到的这份鲁抗公司内部资料显示:鲁抗接收外来污水占到整个处理中心污水量近1/3左右,接纳外来的高浓度废水还被作为一个重要的盈利点,写入到鲁抗公司的年度总结中。然而这么多不同类型的高浓度污水混到一起,鲁抗能处理好吗?
在鲁抗污水处理中心,记者对企业处理后的外排污水进行了取样分析。经检测,四环素类抗生素的浓度为53.688微克每升,是此次检测自然水体中抗生素浓度的上万倍。
据了解,山东鲁抗医药股份公司含有大量抗生素的废水将进入济宁市城市污水处理厂,专家介绍,我国的城市污水处理厂对抗生素没有有效的处理措施。也就是说,这些含有抗生素的水经污水处理厂、老运河、溼地、最终进入到京杭大运河济宁段。
排放数据由第三方运营公司代造假
在鲁抗调查时,一本内部人员详细记录污水处理细节的“工作笔记”引起了记者的注意。在山东鲁抗医药股份公司环保站负责人陶小红的一本工作笔记上,记者看到近几天有多处COD数值超过400毫克每升的记录,由于鲁抗是国家重点监控企业,所有排放的数据都会实时传送到济宁市环保局。然而当记者打开济宁市环保局的环境监测数据平台,却发现这些数据无一例外地仅显示100多毫克每升,这是怎么回事呢?
同样在这本工作笔记中,记者发现了其中的玄机:“运营公司把上限给封死”,原来,是负责向环保部门传送数据的第三方运营公司替污水处理中心修改了数据的上限。无论鲁抗实际处理数值是多少,传给环保部门的数据都不会超标!比如在记录中显示:氨氮的实际数据已经超过了50毫克每升,而第三方运营公司却把数据的上限封到了15毫克每升。
据了解,第三方运营公司这样替企业编造虚假数据已经不是一天两天的事情了,这种猫鼠游戏的配合已经持续几年的时间了。被鲁抗认为与之合作不错的这家第三方运营公司叫同太环保科技服务中心,是济宁市环保局的下属企业。像这样公然替企业去造假的行为已经明显涉嫌违法。
在陶小红的工作笔记中,记者还看到有这样的记录:“因环保局检查气味,昨天晚上18点半开始停车,等通知再开车”,“任城区环保局来检查,渣子不能外出”。原来环保局要来检查,企业都会事先知道并做好准备。
正是因为缺乏监管,记者在鲁抗抽取的三瓶水样中,除化学需氧量COD和氨氮严重超标外,四环素类抗生素残留的数据分别为:14684纳克每升,53688纳克每升,33712纳克每升。
相关新闻
地表水取样检测抗生素含量惊人
最近,记者联合水环境国家模拟重点实验室、北京师范大学水科院的研究人员对我国部分地表水取样检测时发现,抗生素含量惊人,甚至在南京居民家中的自来水也有抗生素检出。
今年10月底到11月初,记者和研究人员分赴我国的东北、华北和华东等地,在一些饮用水源地、排水明渠、制药企业、畜禽养殖场等区域周边采集水样。通过实验室检测,这些水样中都有抗生素被检出,其中在沈阳抗生素厂附近的排水沟,6-氨基青霉烷酸的数值高达178纳克每升,另两种抗生素氨苄西林和阿莫西林的数值也在100纳克每升以上。
北京师范大学水科学研究院副院长王金生介绍,全国的主要河流——海河、长江入海口、黄浦江、珠江、辽河等河流的部分点位中都检出了抗生素,其中,珠江广州段受到抗生素药物的污染非常严重,脱水红霉素、磺胺嘧啶、磺胺二甲基嘧啶等典型抗生素的含量分别为460、209和184纳克每升,远远高出了欧美发达国家河流中100纳克每升以下的含量。由于很多江河是城市的饮用水源地,居民家中的饮用水里也有抗生素被检出。
在南京市鼓楼区,记者对居民的自来水进行取样分析,结果发现,阿莫西林含量为8纳克每升,6-氨基青霉烷酸为19纳克每升。事实上,自来水中检测出抗生素并非首次。安徽农业大学资源与环境学院此前曾对安徽省滁州、安庆、阜阳、铜陵、蚌埠等城市部分水体进行过调查,除了地表水、地下水中被检出8种抗生素外,在居民饮用的自来水中还检出了四环素、土霉素、金霉素、强力霉素、磺胺二甲基嘧啶、磺胺甲恶唑6种抗生素,含量高的达到了10.82纳克每升,低的也有3.86纳克每升。
⑷ 制药废水特点
制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。其废水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放,属难处理的工业废水。随着我国医药工业的发展,制药废水已逐渐成为重要的污染源之一,如何处理该类废水是当今环境保护的一个难题。
1 制药废水的处理方法
制药废水的处理方法可归纳为以下几种:物化处理、化学处理 、生化处理 以及多种方法的组合处理等,各种处理方法具有各自的优势及不足。
1.1 物化处理
根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。
1.1.1 混凝法
该技术是目前国内外普遍采用的一种水质处理方法,它被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。刘明华等以其研制的一种高效复合型絮凝剂F-1处理急支糖浆生产废水,在 pH为6.5, 絮凝剂用量为300 mg/L时,废液的COD、SS和色度的去除率分别达到69.7%、96.4%和87.5%,其性能明显优于PAC(粉末活性炭)、聚丙烯酰胺(PAM)等单一絮凝剂。
1.1.2 气浮法
气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。
1.1.3 吸附法
常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示, 吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。
1.1.4 膜分离法
膜技术包括反渗透、纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。朱安娜等采用纳滤膜对洁霉素废水进行分离实验,发现既减少了废水中洁霉素对微生物的抑制作用,又可回收洁霉素。
1.1.5 电解法
该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。李颖采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。
1.2 化学处理应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。
1.2.1 铁炭法
工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。楼茂兴等[9]采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%,最终出水达到国家《污水综合排放标准》(GB8978—1996)一级标准。
1.2.2 Fenton试剂处理法
亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大加强。程沧沧等[10]以TiO2为催化剂,9 W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05 mg/L降至0.41 mg/L。
1.2.3采用该法能提高废水的可生化性,同时对COD有较好的去除率。如Balcioglu等对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。
1.2.4 氧化技术
又称高级氧化技术,它汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果,主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。肖广全等[13]用超声波-好氧生物接触法处理制药废水,在超声波处理60 s,功率200 w的情况下,废水的COD总去除率达96%。
1.3 生化处理
生化处理技术是目前制药废水广泛采用的处理技术,包括好氧生物法、厌氧生物法、好氧-厌氧等组合方法。
1.3.1 好氧生物处理
由于制药废水大多是高浓度有机废水,进行好氧生物处理时一般需对原液进行稀释,因此动力消耗大,且废水可生化性较差,很难直接生化处理后达标排放,所以单独使用好氧处理的不多,一般需进行预处理。常用的好氧生物处理方法包括活性污泥法、深井曝气法、吸附生物降解法(AB法)、接触氧化法、序批式间歇活性污泥法(SBR法)、循环式活性污泥法(CASS法)等。
1.3.2 厌氧生物处理
目前国内外处理高浓度有机废水主要是以厌氧法为主,但经单独的厌氧方法处理后出水COD仍较高,一般需要进行后处理(如好氧生物处理)。目前仍需加强高效厌氧反应器的开发设计及进行深入的运行条件研究。在处理制药废水中应用较成功的有上流式厌氧污泥床(UASB)、厌氧复合床(UBF)、厌氧折流板反应器(ABR)、水解法等。
(2)UBF法买文宁等将UASB和UBF进行了对比试验,结果表明,UBF具有反应液传质和分离效果好、生物量大和生物种类多、处理效率高、运行稳定性强的特征,是实用高效的厌氧生物反应器。
(3)水解酸化法
水解池全称为水解升流式污泥床(HUSB),它是改进的UASB。水解池较之全过程厌氧池有以下优点:不需密闭、搅拌,不设三相分离器,降低了造价并利于维护;可将污水中的大分子、不易生物降解的有机物降解为小分子、易生物降解的有机物,改善原水的可生化性;反应迅速、池子体积小,基建投资少,并能减少污泥量。近年来,水解-好氧工艺在制药废水处理中得到了广泛的应用,如某生物制药厂采用水解酸化-二段式生物接触氧化工艺处理制药废水,运行稳定,有机物去除效果显著,COD、BOD5和SS的去除率分别为90.7%、92.4%和87.6%。
1.3.3 厌氧-好氧及其他组合处理工艺
由于单独的好氧处理或厌氧处理往往不能满足要求,而厌氧-好氧、水解酸化-好氧等组合工艺在改善废水的可生化性、耐冲击性、投资成本、处理效果等方面表现出了明显优于单一处理方法的性能,因而在工程实践中得到了广泛应用。
2 制药废水的处理工艺及选择
制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的SS、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。
预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具体工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理-厌氧-好氧-(后处理)组合工艺。如陈明辉等采用水解吸附—接触氧化—过滤组合工艺处理含人工胰岛素等的综合制药废水,处理后出水水质优于GB8978-1996的一级标准。气浮-水解-接触氧化工艺处理化学制药废水、复合微氧水解-复合好氧-砂滤工艺处理抗生素废水、气浮-UBF-CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。
3 制药废水中有用物质的回收利用
推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。如浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明显经济效益;某高科技制药企业用吹脱法处理甲醛含量极高的生产废水,甲醛气体经回收后可配成福尔马林试剂,亦可作为锅炉热源进行焚烧。通过回收甲醛使资源得到可持续利用,并且4~5年内可将该处理站的投资费用收回[33],实现了环境效益和经济效益的统一。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。
⑸ 制药废水有哪些特点
您好,很高兴为您解答:
制药废水主要表现为:(1)有机污染物浓度高。不完全原材料,包括发酵残余基质和发酵残余基质和养分、溶萃残余液、溶溶萃残余液、印染灌注废液以及印染灌注废水、以及大量副产品、少量成产品将流出水,少量成产品将流出水,导致COD浓度在废水中COD浓度在5000mg/L以上5000mg/L以上;
(2)难生物分解物、有毒有害物多。医药生产废水中残留的抗生素、卤素化合物、醚类、硝类、硫醚、矾类、一些杂环化合物和有机溶剂等药物,大多属于生物难降解物质,当浓度达到一定程度时,对微生物有抑制作用。此外,卤素化合物、硝基化合物、有机氮化合物、分散剂或具有杀菌作用的表面活性剂对微生物有很大的毒性作用,给制药废水的生化处理带来很大的困难;
(3)大冲击载荷。制药厂的废水由于生产工艺要求,一般是间歇排放,温度、污染物浓度和酸碱度均随时间变化较大。此外,大量高浓度、短时间集中排放的废水,如发酵罐倒罐出水,会造成较大的负荷影响;
(4)高铬和高浓重的高铬和重臭和重臭味。医药废水是利用大量的化学剂和动植物组织作为原料生产出来的,这些材料进入废水中会产生更大的气味和更深的铬。并且经一般污水处理流程后难以彻底去除,对环境影响较大。
(5)悬浮固体浓度高。抗生素、中药等药用废水常含有大量的微生物菌丝体或中药残留物,废水ss高。例如青霉素生产废水SS一般为5000~23000mg/L。
⑹ 国外是怎么处理抗生素生产废水的
抗生素制药废水的来源及特点
抗生素生产包括微生物发酵、过滤、萃取结晶、化学方法提取、精制等过程。以粮食或糖蜜为主要原料生产抗生素的废水主要来自分离、提取、精制纯化工艺的高浓度有机废水,如结晶液、废母液等,种子罐、发酵罐的洗涤废水以及发酵罐的冷却水等 。因此,废水有存在生物毒性物质、色度高、ph波动大、间歇排放等特点,是治理难度大的有毒有机废水之一。
抗生素制药废水处理方法
抗生素制药废水处理方法可归纳为以下几种:化学处理方法、物化处理方法、生物处理方法以及多种方法的组合处理等。现分别就各种方法的优势及不足进行分析。
化学处理方法
在抗生素制药废水的化学处理方法中,采用臭氧氧化的方法能提高抗生素废水的BOD,COD 比值,同时对COD 有较好的去除率 ,通过化学反应和传质作用来分离、去除废水中呈溶解、胶体状态的污染物或将其转化为无害物质的废水处理法。以投加硫酸亚铁或聚合硫酸铁等混凝剂产生化学反应为基础的处理单元有混凝、中和、氧化还原。
物化处理方法
由于抗生素生产废水成分复杂、有机物含量高、含有少量的残留抗生素,在采用生化处理时,残留抗生素对微生物的强烈抑制作用可造成废水处理过程复杂、成本高和效果不稳定。因此在抗生素废水的处理过程中,直接采用物化处理方法或作为后续生化处理的预处理方法以降低水中的悬浮物和减少废水中的生物抑制性物质。目前应用的物化处理方法主要包括混凝 、反渗透和膜过滤等。
直接应用好氧法处理抗生素制药废水仍需考虑废水中残留的抗生素对好氧菌存在的毒性,以减少因此引起的好氧菌受抑制、运行成本高及处理效果不甚理想等问题。
厌氧处理方法
由于厌氧处理过程中起主要代谢作用的产酸菌和产甲烷菌具有相对不同的生物学特征,因此可以分别构造适合其生长的不同环境条件,利用产酸菌生长快、对毒物敏感性差的特点将其作为厌氧过程的首段,以提高废水的可生化性,减少废水的复杂成分及毒性对产甲烷菌的抑制作用,提高处理系统的抗冲击负荷能力,进而保证后续复合厌氧处理系统的产甲烷阶段处理效果的稳定性。
经单独的厌氧方法处理后的出水COD仍较高,难以实现出水达标,一般采用好氧处理以进一步去除剩余COD。目前仍需加强高效厌氧反应器的开发设计及作深入的运行条件研究,更多硫酸亚铁与聚合硫酸铁化学混凝剂至http://www.cl39.com/望采纳。
⑺ 有没有人知道生物制药和化学制药的污染特点
制药工业废水抄按产品可分为四大类袭
(1)合成药物生产废水。该类废水的水质、水量变化大,多含生物难以降解的物质和微生物生长抑制剂;化学合成制药废水COD浓度高,含盐量大,主要污染物质为有机物,如脂肪、苯类有机物、醇、酯、石油类、氨氮、硫化物及各种金属离子等。
(2)生物发酵法制药(生产抗生素和维生素)生产废水。分为提取废水、洗涤废水、维C生产废水、和其他废水,其中发酵滤液、提取的萃余液、蒸馏釜残液、吸附废液导管废液等废水的有机物浓度浓度很高,COD可高达5000—80000mg/L;废水中SS浓度可达5000—23000mg/L;废水存在难生物降解和有抑菌作用的抗生素物质,当抗生素浓度大于100mg/L时,会抑制好氧污泥活性。
(3)中成药生产废水。其水质波动性较大,COD可高达6000mg/L,BOD可达2500mg/L,主要含有天然有机物质;
(4)各种药物生产过程的洗涤水和冲洗水。主要来自药剂残液、原料洗涤水和地面冲洗水。
⑻ 生物铁是什么
将配置好的氢氧化铁絮体按质量比铁:污泥MLSS 为5% 加入污泥中, 再驯化14 d, 形成颗粒较大的团聚状生物铁污泥。