导航:首页 > 污水知识 > 模拟废水中硝酸盐氮有吗

模拟废水中硝酸盐氮有吗

发布时间:2024-11-08 17:47:22

1. 高浓度氨氮废水的处理方法有哪些呀!急!!

新型生物脱氮法
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。
1 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。Ruiza等[16]用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。当DO=0.7 mg/L时,可以实现65%的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。DO<0.5 mg/L时发生氨氮积累,DO>1.7 mg/L时全部硝化生成硝酸盐。刘俊新等[17]对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
刘超翔等[18]短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4 mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。
2 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。ANAMMOX的生化反应式为:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是专性厌氧自养菌,因而非常适合处理含NO2-、低C/N的氨氮废水。与传统工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。厌氧氨氧化的应用主要有两种:CANON工艺和与中温亚硝化(SHARON)结合,构成SHARON-ANAMMOX联合工艺。
CANON工艺是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是SHARON和ANAMMOX工艺的结合,在同一个反应器中进行。孟了等[19]发现深圳市下坪固体废弃物填埋场渗滤液处理厂,溶解氧控制在1 mg/L左右,进水氨氮<800 mg/L,氨氮负荷<0.46 kgNH4+/(m3•d)的条件下,可以利用SBR反应器实现CANON工艺,氨氮的去除率>95%,总氮的去除率>90%。
Sliekers等[20]的研究表明ANAMMOX和CANON过程都可以在气提式反应器中运转良好,并且达到很高的氮转化速率。控制溶解氧在0.5mg/L左右,在气提式反应器中,ANAMMOX过程的脱氮速率达到8.9 kgN/(m3•d),而CANON过程可以达到1.5 kgN/(m3•d)。
3 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
贾剑晖等[21]用序批式反应器处理氨氮废水,试验结果验证了好氧反硝化的存在,好氧反硝化脱氮能力随混合液溶解氧浓度的提高而降低,当溶解氧浓度为0.5 mg/L时,总氮去除率可达到66.0%。
赵宗胜等[22]连续动态试验研究表明,对于高浓度氨氮渗滤液,普通活性污泥达的好氧反硝化工艺的总氮去除串可达10%以上。硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升。硝化及反硝化的动力学分析表明,在溶解氧为0.14 mg/L左右时会出现硝化速率和反硝化速率相等的同步硝化反硝化现象。其速率为4.7mg/(L•h),硝化反应KN=0.37 mg/L;反硝化反应KD=0.48 mg/L。
在反硝化过程中会产生N2O是一种温室气体,产生新的污染,其相关机制研究还不够深入,许多工艺仍在实验室阶段,需要进一步研究才能有效地应用于实际工程中。另外,还有诸如全程自养脱氮工艺、同步硝化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。

2. 亚硝酸盐超标如何处理

行业处罚:食品亚硝酸盐标准超标,如果违法生产经营的食品、食品添加剂货值金额不足一万元的,并处五万元以上十万元以下罚款;货值金额一万元以上的,并处货值金额十倍以上二十倍以下罚款;情节严重的,吊销许可证。

3. 请问现在污水处理软件主流的有哪些,我们想做污水厂全厂模拟,不要那种小软件,GPS-X 和Biowin 有啥区别啊

为什么选择GPS-X模拟抄软件?

GPS-X是第一个商业化的污水处理厂动态模拟软件,仍然是今天首选的解决方案。

它的最主要的一个优势是可以实现在线模拟。

GPS-X的优点

·污水进水特征顾问:在进行模拟以前验证你的进水数据的精度和一致性。

·快速显示区域:你需要的工程参数可以自动的总结并显示,实时的更新,只要简单的一个点击就可输出到Excel文件。

·动态模拟:GPS-X提供污水处理模拟领域最快速的动态模拟,能快速的完成其它模拟软件需要长时间才能完成的模拟工作。

·用户界面:直观,友好。

·综合的污水处理厂单元工艺模型库(下图):提供给用户设计和优化各种污水处理工艺的建模工具,包括MBR, IFAS, UASB,反消化滤池,污泥预处理,厌氧消化,以及先进的侧流工艺的全污水处理厂的工艺模型以及先进的侧流工艺的全污水处理厂的工艺模型。

4. 污水处理中氨氮高怎么处理

利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态差纯比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。

全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的清庆销氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。

5. 废水中氨氮应该如何去除

高氨氮废水处理方法:
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。"遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术--超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。

6. 脱硫废水中有机污染物的处理

火电厂脱硫废水来源于湿法脱硫(FGD)工艺产生的废水,脱硫废水污染严重,排水温度在40℃~50℃之间,悬浮物、含盐量、重金属等杂质的含量极高。现有国内电厂脱硫废水的处理基本采用加药处理的物化方法,主要是针对其中的悬浮物以及重金属离子予以去除,处理出水执行标准有《污水综合排放标准》(GB 18466-2005)、《火电厂水质石灰石-石膏湿法脱硫废水水质控制指标》(DL/T 997-2006)。
在实际的运行过程中,因脱硫废水水质成分主要为第一类污染物和第二类污染物,在药剂的物化反应下,脱硫废水中的重金属离子和悬浮物、pH值等指标能达到排放要求,但废水中的有机污染物(COD等)指标因工艺流程未对其进行专门的处理设计,只是在药剂反应过程中随其他污染物排除一部分,其出水参数很不稳定,多数情况下无法达到排放标准,有机污染物难于去除,已成为众多电厂脱硫废水处理排放的一大难题,困扰了很多电厂。
目前,国内环保形势严峻,在节水和节能环保的大形势下,很多电厂顺应国家环保形势对脱硫废水处理提出了零排放处理回用的要求,因此,脱硫废水中的有机污染物COD指标的去除成为了脱硫废水处理必须克服的难题。本论文主要针对脱硫废水中有机污染物的去除进行分析,研究一种应用于脱硫废水有机污染物去除的处理
工艺。
2 脱硫废水的特性
电厂脱硫工艺产生的脱硫废水主要特征是呈现弱酸性,pH值5~6;主要特点是高悬浮物、高浊度、高黏度、高含盐量以及难降解有机物,并含有Hg、Pb、Ni、Hs、As、Cd、Cr等重金属离子和氟化物,有机污染物COD的含量一般为150~400mg/L,其中有机污染物来源于燃煤过程及脱硫过程脱硫剂的一些产物,具有难于降解、处理难度高的特点。基于脱硫废水的高含盐、有机物难降解等特性,并考虑处理过程中系统运行的稳定性,主要考虑采用最利于有机污染物处理的生物处理方法去除脱硫废水中的该指标。
3 生物处理方法
综合分析现有的生物处理方法,适用于脱硫废水特性的生物处理工艺主要有以下五种:
3.1 传统活性污泥法
活性污泥法是以活性污泥为主体的污水处理技术,它采用人工曝气的手段使活性污泥均匀分散并悬浮于反应器中,与废水充分接触,并在有溶解氧的条件下对废水中所含的有机物进行微生物的合成和分解等代谢活动。而脱硫废水盐度对活性污泥法的影响较大,因此,对活性污泥进行驯化培养出具有良好有机物降解性能的耐盐微生物是处理高盐废水的重要前提。
3.2 厌氧处理系统
近几十年来,由于厌氧生物技术发展迅速,出现了一大批高效厌氧反应器,这些反应器中生物固体浓度很高、泥龄很长,处理能力大大的提高,在高浓度的废水中得以大量应用。高浓度的Na+或CL-会对厌氧生物产生抑制作用,但是厌氧或兼氧微生物对盐的适应性和其他离子产生的拮抗作用会减轻盐对微生物的毒害作用,因此厌氧法可应用于高含盐废水处理系统。
3.3 好氧颗粒污泥
好氧颗粒污泥技术是将生物自絮凝原理应用于好氧反应器,使好氧絮状污泥在一定工艺条件下实现好氧颗粒化。好氧颗粒污泥具有沉降性好、抗负荷冲击能力强、持留生物量高以及脱氮除磷效果好等优点,而且它还能集好氧、厌氧和兼氧微生物于一体,因此好氧颗粒污泥能够有效处理各种难降解的废水。
3.4 嗜盐菌
嗜盐菌作为一类新型的、极具应用前景的微生物资源,近年来受到人们的广泛关注,它们具有极为特殊的生理结构和代谢机制,同时还产生了许多具有特殊性质的生物活性物质,因此被广泛地应用于含盐量高的废水处理。
3.5 好氧-厌氧组合工艺
由于单独的好氧和厌氧工艺在处理废水时受到许多限制,单一的系统往往不能将有机污染物彻底去除,尤其是难降解的废水系统,因此为了更好地处理高盐脱硫废水,往往结合好氧以及厌氧的组合工艺,以达到更好的效果。
本文脱硫废水生物处理工艺将采用好氧-厌氧的组合工艺进行处理,针对废水中的悬浮物、重金属指标的处理不做论述,生物处理所处理的脱硫废水是经预处理系统去除此类指标后的废水。
4 好氧-厌氧的组合工艺处理技术
脱硫废水中的COD等有机污染物主要来自煤(主要成分为有机质)、石灰石以及脱硫反应生成物中的亚硝酸盐、亚硫酸盐等还原性物质,而BOD则主要是污水中的氮氧化物。经过预处理处理后,废水的pH值、悬浮物、重金属离子、氟化物等污染指标被去除,但废水中的COD、硫酸根等指标还未得到去除,需采用生物处理方法进一步处理。而硫酸根、氯根等盐的高含量对废水生化存在一定的抑制作用,使脱硫废水难于生化,因此为提高其可生化性,在生化处理过程,需投加成分均衡的营养物质保证生化处理微生物所需的各类营养指标,而在电厂,基本都有生活污水处理系统,其水量不大,多在5~15t/h之间,这股水进入脱硫废水系统可以很好地解决营养平衡问题,且可以提高水的回收量,将电厂生活区的生活污水引入脱硫废水系统进行综合处理,将同时实现两股水的节水目标,并保证了脱硫废水生物处理的基本营养条件。 脱硫废水生物处理系统采用厌氧+好氧的组合处理工艺,厌氧采用EGSB厌氧系统,而好氧则采用BAF曝气生物滤池好氧系统。EGSB厌氧系统通过培养SRB厌氧细菌病通过其代谢作用去除废水中的SO42-、残余重金属离子及部分COD等,而通过BAF曝气生物滤池的生化作用将COD、氮等进行硝化处理,达到处理要求,经该系统处理后,废水可进入后续除盐或其他指标处理系统,进一步处理而获得高品质回用水,脱硫废水生物处理流程图如图1所示:
EGSB厌氧系统适用于低浓度有机污染物处理系统,运行过程培养适于脱硫废水环境的SRB厌氧细菌来处理污染物,SRB厌氧细菌是一类能通过异化作用进行硫酸盐还原的一类细菌,这种厌氧细菌虽然生长缓慢,但具有极强的生存能力且分布很广泛,SRB厌氧细菌已经成功地应用在了与脱硫废水极类似的多种水处理系统中,它的代谢利用硫酸根作为最终的电子受体,将有机污染物作为细胞合成的碳源和电子供体,同时将硫酸根还原为硫化物,使废水中的硫酸盐得以去除。而产生的溶解态的S2-则与废水中残余的重金属离子反应形成金属硫化物沉淀,可进一步去除重金属离子,此外SRB厌氧细菌在代谢过程中分解有机硫以二氧化碳气体的形式
排出。
经过厌氧反应后,废水中的一些重大生化抑制指标得以去除,废水的可生化性提高,因此,废水进入好氧生物系统进行进一步处理,好氧生物反应系统采用BAF曝气生物滤池处理系统,并接种引入主体处理微生物:嗜盐菌,适应脱硫废水的高含盐环境,曝气生物滤池是固定化生物反应器的一种,近年来被广泛应用于各类高含盐废水的处理。曝气生物滤池能够通过固定化保护微生物,降低其在极端环境中所受的伤害,提高系统对有毒有害物质及环境冲击负荷的耐受力,使系统保持较高的稳定性。研究表明,曝气生物滤池在高含盐环境中能保持较高的有机物去除率。
因脱硫废水中的盐分含量过高,会对微生物的活动带来一定的难度,而曝气生物滤池接种培养的核心处理载体,嗜盐菌是专门在高盐环境下生长的细菌,由于嗜盐菌在高盐环境下能够在细胞内聚集钾离子和小分子极性物质,调节细胞渗透压,维持细胞内外渗透压的平衡,帮助从高盐环境获取微生物活动所需的水,并且这些极性分子可以迅速合成和失去,快速适应外界的环境变化。嗜盐菌的蛋白质中含有过量的酸性氨基酸和非极性的残余物,过量的酸性物质需要阳离子平衡附近的负电荷,所以嗜盐酶只有在高盐环境下才能保持活性。基于嗜盐菌的反应机理,废水中的有机污染物得以去除。
经试验研究,在模拟脱硫废水水质情况下,通过盐度的不断提高和变化,曝气生物滤池的有机污染物去除率绘制成曲线,盐度和COD的去除效果关系如图2所示:
从图2中可看出,在脱硫废水含盐所属的10000~24000mg/L的范围内,COD的去除率可稳定维持在94%~96%之间,在这个脱硫废水的盐度范围内,嗜盐菌能维持其生理代谢的良好活性,对废水中的有机污染物有较强的降解能力。
经曝气生物滤池处理后,废水中的有机污染物等指标得以去除,脱硫废水可进入下一阶段处理流程。
5 结语
脱硫废水中有机污染物的处理是国内外各大火力发电厂普遍面临的难题,要实现脱硫废水系统节水回用,必须对脱硫废水中的有机污染物进行处理,才能进行后续的膜处理或离子交换系统的除盐处理,脱硫废水中有机污染物处理技术的研究成功将成为克服脱硫废水节水回用难点的一个突破,也将成为脱硫废水实现零排放生物指标处理工艺的一种可靠选择。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

7. 氨氮废水怎么处理

高氨氮废水如何处理,我们着重介绍一下其处理方法:

物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理,此法适合于低浓度的氨氮废水处理,氨氮的含量应在10--20mg/L。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的离子氨NH4+,就变为游离氨NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中仍然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为亚硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术——超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。

阅读全文

与模拟废水中硝酸盐氮有吗相关的资料

热点内容
滤纸过滤太慢 浏览:909
屈臣氏蒸馏水含氯吗 浏览:445
饮水机后面漏水是什么水 浏览:315
aal空气净化器是什么 浏览:74
污水图纸n剩以h代表什么 浏览:186
宜兴污水北控办公室 浏览:290
淀粉厂污水处理模板 浏览:531
小米净水器1a能净化多少升 浏览:844
汽车换了滤芯后还有味道怎么办 浏览:740
再生水回用池底钢筋 浏览:77
过滤效率92是什么意思 浏览:245
酚醛树脂反应时间和分子量 浏览:314
反渗透膜怎么增加通量 浏览:112
柠檬酸除垢剂除瓷垢 浏览:723
espa24040反渗透膜 浏览:779
潍坊沃水处理设备有限公司 浏览:373
桂林市的污水都排哪里去了 浏览:210
蒸烤箱要怎么除垢 浏览:739
除垢剂中毒 浏览:129
专用光氧净化器多少钱 浏览:919