Ⅰ 厌氧生物处理适用于什么场合
废水的厌氧生物处理法
厌氧生物处理是在无氧的情况下,利用兼性菌和厌氧菌的代谢作用,分解有机物的一种生物处理法。是一种低成本的废水处理技术,它能在处理废水过程中回收能源。厌氧生化法不仅可用于处理有机污泥和高浓度有机废水,也用于处理中、低浓度有机废水,包括城市污水。
厌氧生化法与好氧生化法相比具有下列优点。
(1)应用范围广 好氧法因供氧限制一般只适用于中、低浓度有机废水的处理,而厌氧法既适用于高浓度有机废水,又适用于中、低浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的、如固体有机物、着色剂蒽酿和某些偶氮染料等。
(2)能耗低 好氧法需要消耗大量能量供氧,曝气费用随着有机物浓度的增加而增大,而厌氧法不需要允氧,而且产生的沼气可作为能源。废水有机物达一定浓度后,沼气能量可以抵偿消耗能量。当原水BOD5达到1500mg/L时,采用厌氧处理即有能量剩余。有机物浓度愈高,剩余能量愈多。—般厌氧法的动力消耗约为活性污泥法的1/10。
(3)负荷高 通常好氧法的有机容积负荷为2~4kgBOD/m3.d,而厌氧法为2~10kg COD/m3.d,高的可达50kgCOD/m3.d。
(4)剩余污泥量少,且其浓缩性、脱水性良好 好氧法每去除1kg COD将产生0.4~0.6 kg生物量,而厌氧法去除1kg COD只产生0.02~0.1kg 生物量,其剩余污泥量只有好氧法的5%~20%。同时,消化污泥在卫生学上和化学上都是稳定的。因此,剩余污泥处理和处置简单、运行费用低,甚至可作为肥料、饲料或饵料利用。
(5)氮、磷营养需要量较少 好氧法一般要求BOD:N:P为100:5:1,而厌氧法的BOD:N:P为100:2.5:0.5,对氮、磷缺乏的工业废水所需投加的营养盐量较少。
(6)厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫卵、病毒等。
(7)厌氧活性污泥可以长期贮存,厌氧反应器可以季节性或间歇性运转。与好氧反应器相比,在停止运行一段时间后,能较迅速启动。
但是,厌氧生物处理法也存在下列缺点:
(1)厌氧微生物增殖缓慢,因而厌氧设备启动和处理时间比好氧设备长。
(2)处理后的出水水质差,往往需进一步处理才能达标排放。
1. 厌氧消化原理
复杂有机物的厌氧消化过程要经历数个阶段,由不同的细菌群接替完成。根据复杂有机物在此过程中的物态及物性变化,可分为以下三个阶段。
第一阶段为水解阶段。废水中的不溶性大分子有机物(如蛋白质、多糖类、脂类等)经发酵细菌水解后,分别转化为氨基酸、葡萄糖和甘油等水溶性的小分子有机物。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。
由于简单碳水化合物的分解产酸作用,要比含氮有机物的分解产氨作用迅速,故蛋白质的分解在碳水化合物分解后产生。
含氮有机物分解产生的NH3除了提供合成细胞物质的氮源外,在水中部分电离,形成NH4HCO3,具有缓冲消化液pH值的作用,故有时也把继碳水化合物分解后的蛋白质分解产氨过程称为酸性减退期,反应为:
第二阶段为产氢产乙酸阶段。在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2,如:
第三阶段为产甲烷阶段。产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化为甲烷。此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲院,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3,反应为:
上述三个阶段的反应速度依废水性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般的蛋白质均能被微生物迅速分解,对含这类有机物为主的废水,产甲烷易成为限速阶段。
虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡,这种动态平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,其至会导致整个厌氧消化过程停滞。
2. 影响厌氧处理的因素
(1)温度 温度是影响微生物生命活动最重要的因素之一,其对厌氧微生物及厌氧消化的影响尤为显著。各种微生物都在一定的温度范围内生长,根据微生物生长的温度范围,习惯上将微生物分为三类:(a)嗜冷微生物,生长温度为5~20 ℃;(b)嗜温微生物,生长温度20~42℃;(c)嗜热微生物,生长温度42~75℃。相应地厌氧废水处理也分为低温、中温和高温三类。这三类微生物在相应的适应温度范围内还存在最佳温度范围,当温度高于或低于最佳温度范围时其厌氧消化速率将明显降低。在工程运用中,中温工艺中以30~40 ℃最为常见,其最佳处理温度在35~40℃;高温工艺以50~60 ℃最为常见,最佳温度为55℃。
在上述范围里,温度的微小波动(例如1~3℃)对厌氧工艺不会有明显的影响,但如果温度下降幅度过大,则由于微生物活力下降,反应器的负荷也将降低。
(2)pH值 产甲烷菌对pH值变化适应性很差,其最佳范围为6.8~7.2,超出该范围厌氧消化细菌会受到抑制。
(3)氧化还原电位 绝对的厌氧环境是产甲烷菌进行正常活动的基本条件,产甲烷菌的最适氧化还原电位为-150~-400mV,培养甲烷菌的初期,氧化还原电位不能高于-330mV。
(4)营养 厌氧微生物对碳、氮等营养物质的要求略低于好氧微生物,需要补充专门的营养物质有钾、钠、钙等金属盐类,它们是形成细胞或非细胞的金属络合物所需要的物质,同时也应加入镍、铝、钴、钼等微量金属,以提高若干酶的活性。
(5)有机负荷 在厌氧法中,有机负荷通常指容积有机负荷,简称容积负荷,即消化器单位有效容积每天接受的有机物量(kg COD/m3.d)。对悬浮生长工艺,也有用污泥负荷表达的,即kg COD/(Kg 污泥.d);在污泥消化中,有促负荷习惯上以投配率或进料率表达,即每天所投加的湿污泥体积占消化器有效容积的百分数。由于各种湿污泥的含水率、挥发组分不尽一致,投配率不能反映实际的有机负荷,为此,又引入反应器单位有效容积每天接受的挥发性固体重量这一参数,即kg MLVSS/(m3.d)。
有机负荷是影响厌氧消化效率的一个重要因素,直接影响产气量和处理效率。在一定范围内,随着有机负荷的提高,产气率即单位重量物料的产气量趋向下降,而消化器的容积产气量则增多,反之亦然。对于具体应用场合,进料的有机物浓度是一定的,有机负荷或投配率的提高意味着停留时间缩短,则有机物分解率将下降,势必使单位重量物料的产气量减少。但因反应器相对的处理量增多了,单位容积的产气量将提高。
有机负荷值因工艺类型、运行条件以及废水废物的种类及其浓度而异。在通常的情况下,采用常规厌氧消化工艺,中温处理高浓度工业废水的有机负荷为2~3kg COD/(m3.d),在高温下为4~6kg COD/(m3.d)。上流式厌氧污泥床反应器、厌氧滤池、厌氧流化床等新型厌氧工艺的有机负荷在中温下为5~15 kg COD/(m3.d),可高达30 kg COD/(m3.d)。
(6)有毒物质 有毒物质会对厌氧微生物产生不同程度的抑制,使厌氧消化过程受到影响甚至破坏,常见抑制性物质为硫化物、氨氮、重金属、氰化物及某些人工合成的有机物。
Ⅱ 盐分高的污水应该怎么处理
1、物理法:
由于盐分过高将抑制微生物处理高盐分废水主要污染因子有:PH、SS、COD、NH3-N、TDS,含有高有机物和高盐分物质,废水为混合废水。
2、化学法:
是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。
3、生物法:
利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。
(2)厌氧处理高盐废水扩展阅读:
处理的技术
一级处理:
主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理:
主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准,悬浮物去除率达95%出水效果好。
三级处理:
进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。
参考资料来源:网络-污水处理
Ⅲ 高盐分污水处理方法
高含盐废水处理是很多企业面临的一个难题,依斯倍拥有相关的电渗析处理高盐分专废水技术,电渗析是属电化学过程和渗析扩散过程的结合;在外加直流电场的驱动下,利用离子交换膜的选择透过性(即阳离子可以透过阳离子交换膜,阴离子可以透过阴离子交换膜),阴、阳离子分别向阳极和阴极移动。离子迁移过程中,若膜的固定电荷与离子的电荷相反,则离子可以通过;如果它们的电荷相同,则离子被排斥,从而实现溶液淡化、浓缩、精制或纯化等目的。依斯倍环保采用均相膜EDR技术来对高盐分废水进行盐分分离,项目中高盐废水的TDS去除率高达 80% 以上。
Ⅳ 高盐废水处理
供参考:
一、前言
台湾腌渍酸菜的过程常伴随着含高盐分的废水,早期因酸菜腌渍桶都设置在农田旁,在经过45 天的腌渍,取出酸菜成品后,农民会直接将含高盐分的酸菜废水倒入农田旁,常会造成土壤严重盐化而导致无法耕作,形成严重的环境污染。
目前处理这些废水,所使用的方式为热处理,就是将废水加热,去除水分,达到减量之目的,但须耗费大量能源,增加处理废水的成本。若能利用厌氧处理,将含盐废水中的有机质转变为可利用的甲烷,再以甲烷做为其加热处理时的燃料,将可降低其处理成本。
但废水中的盐分常会抑制微生物的生长,所以生物处理有其难度。Lefebure (2006)指出,若是缓慢的在废水中增加盐分,让微生物产生适应性,可以使微生物在含盐的废水下具有处理能力,但目前在盐分对于甲烷菌的影响,以及和甲烷产量相关的研究并不多,因此本研究之目的在于:
1. 探讨菌种可承受的最高盐度以及
2. 探讨甲烷产率,有机物去除率和盐度的关系,以作为未来设计含盐废水处理程序的参考。
二、实验设备与方法
(一) 实验设备
本研究中我们采用的是厌氧滤床,而厌氧消化系统的设置,包括厌氧反应槽、进出流设备、菌种产生的气体测量及收集设备、温度控制及填充介质等。为了配合此含盐废水实验,使用海水养虾池之底泥,经过驯养后取出做为处理含盐废水处理之菌种。废水则采用人工废液,经驯养后再进进批次实验,各批次则逐渐增加盐分的浓度,人工废水配置后存于4℃冰箱中避免微生物孳生。
(二) 实验方法
1. 起动测试
实验开始时,先在不加盐的状况下操作,观察菌种的生长情形,并缓慢增加HRT,取样时取出上澄液检测其PH 及COD,记录其气体产量,和甲烷含量等。
第二阶段为盐度测试,在每次进流前,先记录气体产量,之后从气体取样瓶中抽取1c.c.气体,注入气相层析仪(GC8700T-TCD,中国层析,台湾),进行气体分析。完成气体分析后,再进行进出流程序:
(1) 取样:先摇晃反应器使均匀后,取出500 ml 的液体,再经过2 分钟的自然沉淀,取出上澄液,利用量瓶取出当日出流量。
(2) 进流:在取样完之后,加入进流之人工废液,并将过量而余留的上澄液利用泵浦打回反应槽,维持反应槽总体积5 公升。
2. 加盐测试
添加盐分的实验分别进行0.5%,1.0%及3.0%三个批次(图1)。本研究每天取样两次,每个样本分别分析pH、COD 及TDS,在进行含盐废水的试验时,则再加测TS 和盐度。
http://tyh.1.blog.163.com/blog/static/74145910201332243622631/
Ⅳ 处理高浓度废水为什么用厌氧法
高浓度有机废水一般含有的污染物质都较为复杂,极难分离、分解。每种回污染物对微生物本身就有特定的限答制,比如:Ph范围、温度、微生物的特定毒抗性(耐盐、耐高温、特定重金属毒抗性等)、DO、微生物成型的条件、生理周期等,都会限制微生物(尤其是好氧微生物)在实际应用中的范畴和应用效果。
对于高浓度、水质情况复杂的废水是不可能经过一道工序就能处理解决的,而且过程中投资极大,瘦小却不尽人意,所以很多时候厂方应该对废水进行细化分离收集,尽可能降低废水的复杂性,这样有利于对废水进行差别是处理,同时有利于优化后续的出水排放和和综合利用,更可能在收集废水过程中,通过必要的工序对废水中的珍惜、可回收原料进行有目的的回收利用(可是回收原料的品次,划分规格投产,以降低生产成本和不必要的浪费)。高浓度有机废水的处理,一般效果最好的就是采用“物化法”与“生物法”相结合。
其他的,我现在有些急事要处理,等晚些时候综合一份资料再发给你,希望对你有帮助
Ⅵ 废水中含有大量的氯根对污水生化处理有何危害
高盐废水有可能把生化池中的细菌搞死,但是氯离子本身杀菌效果还是很明显的内,对无论对厌氧容菌还是好氧菌,原则上最好控制氯离子含量。最好不要超过3%。细胞容易失水死亡,含盐量超过2000mg/l就出现不适状态了,可通过驯化,能提高微生物的适应能力,可驯化到5%浓度左右,氨氮去除率也响应降低,同时氯根离子过高,对管道、设备等腐蚀比较严重
Ⅶ 含盐废水怎么处理达标
高盐分废水来中主要含有高有机物和高自盐分物质,废水为混合废水,由于盐分过高将抑制微生物处理,所以需要将盐分和有机物进行初步分离。废水从车间排放先经过格栅去除大颗粒悬浮物质后进入调节池,调节水质水量,然后由提升泵打入电渗析进行分离,浓水进入MVR进行蒸发,淡水进入中间水池,然后进入厌氧生物处理和好氧生物处理,后进入沉淀池进行固液分离,上清液进入排放水池,然后经计量排放槽计量排放。关于含盐废水处理详细方法还是建议咨询专业的环保公司