导航:首页 > 污水知识 > 高氨废水

高氨废水

发布时间:2024-11-03 21:47:09

A. 工业废水如何有效去除氨氮超标

1 高浓度氨氮废水处理技术

高浓度氨氮废水是指氨氮质量浓度大于500mg/L
的废水。伴随石油、化工、冶金、食品和制药等工业的发展,以及人民生活水平的不断提高,工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排放量大,并且排放的浓度增大的特点〔2〕。目前针对高氨氮废水的处理技术主要使用吹脱法、化学沉淀法等。

1.1 吹脱法

将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图 1。


图 2 生物脱氮的途径

用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物法成功的关键之一。

生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,其缺点为占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。此外,高浓度的氨氮对生物法硝化过程具有抑制作用,因此当处理氨氮废水的初始质量浓度<300
mg/L 时,采用生物法效果较好。

J. Kim 等〔24〕采用小球藻处理美国俄亥俄州辛辛那提磨溪污水处理厂废水中的氨氮,实验结果表明,小球藻在经历24 h 的迟缓期后,在48 h 内氨氮去除率可达50%。

2.3.1 传统生物硝化反硝化技术

传统生物硝化反硝化脱氮处理过程包括硝化和反硝化两个阶段。硝化过程是指在好氧条件下,在硝酸盐和亚硝酸盐菌的作用下,氨氮可被氧化成硝酸盐氮和亚硝酸盐氮;再通过缺氧条件,反硝化菌将硝酸盐氮和亚硝酸盐氮还原成氮气,从而达到脱氮的目的。

传统生物硝化反硝化法中,较成熟的方法有A/O 法、A2/O 法、SBR
序批式处理法、接触氧化法等。它们具有效果稳定、操作简单、不产生二次污染、成本较低等优点。但该法也存在一些弊端,如必须补充相应的碳源来配合实现氨氮的脱除,使运行费用增加;碳氮比较小时,需要进行消化液回流,增加了反应池容积和动力消耗;硝化细菌浓度低,系统投碱量大等。

杨小俊等〔25〕通过A/O 膜生物反应器处理某炼油厂气浮池出水中的氨氮,实验结果表明,当氨氮和COD 容积负荷分别在0.04~0.08、0.30~0.84 kg/(m3·d)时,处理后水中氨氮质量浓度小于5 mg/L。

2.3.2 新型生物脱氮技术

(1)短程硝化反硝化技术。短程硝化反硝化是在同一个反应器中,先在有氧的条件下,利用氨氧化细菌将氨氧化成亚硝酸盐,阻止亚硝酸盐进一步氧化,然后直接在缺氧的条件下,以有机物或外加碳源作为电子供体,将亚硝酸盐进行反硝化生成氮气。

短程硝化反硝化与传统生物脱氮相比具有以下优点:对于活性污泥法,可节省25%的供氧量,降低能耗;节省碳源,一定情况下可提高总氮的去除率;提高了反应速率,缩短了反应时间,减少反应器容积。但由于亚硝化细菌和硝化细菌之间关系紧密,每个影响因素的变化都同时影响到两类细菌,而且各个因素之间也存在着相互影响的关系,这使得短程硝化反硝化的条件难以控制。目前短程硝化反硝化技术仍处在人工配水实验阶段,对此现象的理论解释还不充分。

(2)同时硝化反硝化技术。当硝化与反硝化在同一个反应器中同时进行时,即为同时硝化反硝化(SND)。废水中溶解氧受扩散速度限制,在微生物絮体或者生物膜的表面,溶解氧浓度较高,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,形成缺氧区,反硝化细菌占优势,从而形成同时硝化反硝化过程。

邹联沛等〔26〕对膜生物反应器系统中的同时硝化反硝化现象进行了研究,实验结果表明,当DO 为1mg/L,C/N=30,pH=7.2
时,COD、NH4+-N、TN 去除率分别为96%、95%、92%,并发现在一定的范围内,升高或降低反应器内DO 浓度后,TN 去除率都会下降。

同时硝化反硝化法节省反应器,缩短了反应时间,且能耗低、投资省。但目前对于同步硝化反硝化的研究尚处于实验室阶段,其作用机理及动力学模型需做进一步的研究,其工业化运用尚难实现。

(3)厌氧氨氧化技术。厌氧氨氧化是指在缺氧或厌氧条件下,微生物以NH4+ 为电子受体,以NO2- 或NO3- 为电子供体进行的NH4+、NO2- 或NO3- 转化成N2的过程〔27〕。

何岩等〔28〕研究了SHARON
工艺与厌氧氨氧化工艺联用技术处理“中老龄”垃圾渗滤液的效果,实验结果表明,厌氧氨氧化反应器可在具有硝化活性的污泥中实现启动;
在进水氨氮和亚硝酸氮质量浓度不超过250 mg/L 的条件下,氨氮和亚硝酸氮的去除率分别可达到80%和90%。目前,SHARON
与厌氧氨氧化联合工艺的研究仍处于实验室阶段,还需要进一步调整和优化工艺条件,以提高联合工艺去除实际高氨氮废水中的总氮的效能。

厌氧氨氧化技术可以大幅度地降低硝化反应的充氧能耗,免去反硝化反应的外源电子供体,可节省传统硝化反硝化过程中所需的中和试剂,产生的污泥量少。但目前为止,其反应机理、参与菌种和各项操作参数均不明确。

2.4 膜技术

2.4.1 反渗透技术

反渗透技术是在高于溶液渗透压的压力作用下,借助于半透膜对溶质的选择截留作用,将溶质与溶剂分离的技术,具有能耗低、无污染、工艺先进、操作维护简便等优点。

利用反渗透技术处理氨氮废水的过程中,设备给予足够的压力,水通过选择性膜析出,可用作工业纯水,而膜另一侧氨氮溶液的浓度则相应增高,成为可以被再次处理和利用的浓缩液。在实际操作中,施加的反渗透压力与溶液的浓度成正比,随着氨氮浓度的升高,反渗透装置所需的能耗就越高,而效率却是在下降〔29〕。

徐永平等〔30〕以兖矿鲁南化肥厂碳酸钾生产车间含NH4Cl 的废水为研究对象,利用反渗透法对NH4Cl
废水的处理过程进行了研究,实验装置采用反渗透膜(NTR-70SWCS4)过滤机。结果表明,在用反渗透膜技术处理氨氮废水的过程中,氯化铵质量浓度适宜在60
g/L 以下,在该浓度条件下,设备脱氨氮效率较高,一般大于97%,各项技术指标合格,可以用于实际生产操作。

2.4.2 电渗析法

电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从电解质溶液中分离出来的过程。电渗析法可高效地分离废水中的氨氮,并且该方法前期投入小,能量和药剂消耗低,操作简单,水的利用率高,无二次污染副产物。

唐艳等〔31〕采用自制电渗析设备对进水电导率为2 920 μS/cm,氨氮质量浓度为534.59 mg/L
的氨氮废水进行处理,通过实验得到在电渗析电压为55 V,进水流量为24 L/h
这一最佳工艺参数条件下,可对实验用水有效脱氮的结论,出水氨氮质量浓度为13 mg/L。

3 不同浓度工业含氨氮废水的处理方法比较

不同氨氮废水处理方法优缺点比较见表 4。

通过对以上几种不同方法的论述,可以看出目前针对工业废水中高浓度氨氮的处理方法主要使用物理化学方法做预处理,再选择其他方法进行后续处理,虽能取得较好的处理效果,但仍存在结垢、二次污染的问题。对低浓度的氨氮废水较常用的方法为化学法和传统生物法,其中化学法的一些处理技术还不成熟,未在实际生产中应用,因此还无法满足工业对低浓度氨氮废水深度处理的要求;
生物法能较好地解决二次污染问题,且能达到工业对低浓度氨氮废水深度处理的要求,但目前对微生物的选种和驯化还不完全成熟。

B. 什么是高氨氮废水

废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件
下废水中的氨氮主要由于无机氨所导致。

对于高氨氮的废水氨氮脱出形式,主要有两种,一种是以氨水的形式回收氨氮,主要是蒸馏和吹脱两种。这时候氨氮以氨水的形式脱出。
在这个过程中,废水需要加热,需要吹风,但是最主要的前提条件是氨氮需要加入液碱或者石灰水,蒸馏法需要加入液碱,吹脱法多用石灰水。 在大多数的氨氮的废水中,有氨水和无机氨共同存在,主要是ph大于中性的条件下,这样就需要加入酸,控制ph在偏酸性条件,使氨水形成的氨氮向无机氨形成的氨氮的形式转换,最后,利用多效蒸发等手段将固体结晶出来。
对于氨氮主要以氨水的形成存在的废水,用蒸馏的形式是可以很好的回收氨水的。此时不需要加入液碱等,或者加入的很少的液碱,就可以回收氨水,去除氨氮等。对于以无机氨形成的氨氮废水,此时就要考虑,是否把氨氮以氨水的形式脱出,还是以结晶的形式脱出。主要是看废水的氨氮的多少和氨氮的去除费用等等的问题了

C. 高氨氮废水如何处理

高浓度氨氮废水对微生物有一定的抑制作用,但N同时又是微生物生长的一种专不可缺少的营养元素属。
氨氮废水的处理主要有以下的方法:
如果氨氮超高的话,可先加氢氧化钠调节水PH11左右,通过氨氮吹脱塔用空气吹脱,去除率可达80%左右,当然仅仅通过这样的方法无法处理达标,还需后续处理。剩余的氨氮可以通过脱氮的污水处理工艺进行去除:比如说A/O、A/AO、SBR等活性污泥法,以及曝气生物滤池生物转盘的生物膜法进行处理。

D. 高氨氮废水如何处理

高氨氮废水处理方法如下:

1、吹脱法

吹脱法的基本原理是气液相平衡和传质速度理论。将氨氮废水pH 调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。

2、离子交换法

应用离子交换法处理含氨氮废水,为常见的就是以沸石作为交换载体,提高氨氮脱除率。基于历史实践数据可知,每克沸石可以吸附15.5mg的氨氮,且对于粒径在30~60目的沸石其脱除氨氮的效率可以达到78%。但是相比其他处理技术,利用沸石交换脱除工艺操作比较复杂,并且再生液为需要再次处理的高浓度氨氮废水,因此更适用于低浓度氨氮废水处理。

吹脱法处理氨氮技术参数

(1)吹脱法普遍适宜的pH 在11 附近;

(2)考虑经济因素,温度在30~40 ℃附近较为可行,且处理率高;

(3)吹脱时间为3 h左右;

(4)气液比在5 000∶1 左右效果较好,且吹脱温度越高,气液比越小;

(5)吹脱后废水的浓度可降低到中低浓度;

(6)脱氮率基本保持90%以上。尽管吹脱法可以将大部分氨氮脱除, 但处理后的废水中氨氮仍然高达100 mg/L 以上,无法直接排放,还需要后续深度处理。

E. 高氨氮废水如何处理

目前针对高氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、和生物脱氨法等多种方法。那么高氨氮废水该如何选择处理方法呢?
化学沉淀法
化学沉淀法的基本原理是,向高氨氮废水中投加磷化物与镁化物生成磷酸铵镁沉淀 ,从而达到去除氨氮的效果。
生物法
生物法脱氮技术应用非常广泛,但是高氨氮废水中氨氮的浓度会影响微生物活性,需要对原水进行稀释处理。另外,消化过程需要大量的溶解氧,反硝化过程需要大量的碳源。高氨氮废水的生物去除工艺常见的有膜生物反应器法与厌氧氨氧化法。HNF-MP高效硝化反应系统,在传统生物硝化的基础上对反应器结构进行改进,对进水管路做保温措施,若来水水温低于18度时在进水前端蒸汽换热器进行控制,温度维持25-30℃。通过优选菌种,获得耐盐,耐毒性冲击的高活性菌种同时独创的多级沉淀分离技术,最大限度的对硝化菌进行了富集,强化,脱氮效率是传统技术的3倍。
化学氧化法
折点氯化法是投加过量的氯或次氯酸钠,使废水中的氨氮氧化成氮气的化学脱氮工艺。
吹脱法
利用空气通过废水时与水中溶解气体发生氧化反应,使水中溶解性挥发物质由液相转入气相,并进一步吹脱分离的水处理方法。

阅读全文

与高氨废水相关的资料

热点内容
反渗透膜不可过滤物质 浏览:968
云米全家净水器如何使用 浏览:997
可乐饮水机水垢 浏览:531
南通尘螨过敏净化器大概多少钱 浏览:181
一体式纯水机有什么特点 浏览:406
纯水机上面的ppm是什么意思 浏览:907
高盐废水回收 浏览:104
陶瓷膜高温粉尘过滤 浏览:600
软水处理设备参数 浏览:622
亚都双面侠空气净化器s5怎么样 浏览:8
济宁市农村生活污水处理项目地址在哪里 浏览:271
哪个牌子的不插电净水器好用不贵 浏览:734
燃油滤芯用什么材料做的 浏览:171
山西哪里有中水回用 浏览:662
北海污水顶管 浏览:887
净水器不放污水会影响水质吗 浏览:590
史密斯净水器滤芯换后怎么复位 浏览:681
环评项目废水主要成分 浏览:749
如何鉴别树脂热敏标签 浏览:236
污水处理双r工艺 浏览:89