导航:首页 > 污水知识 > 电镀废水中的活性剂检测

电镀废水中的活性剂检测

发布时间:2024-10-30 01:49:41

1. 电镀废水中COD来源有哪些

1、电镀前处理废水中COD的产生:电镀前处理是采用除油脱脂、侵蚀等工艺过程去除镀件表面氧化皮和油污。组成废水COD的主要有机污染物是阴、非离子型表面活性剂和其他助剂,蜡油及矿物油类等。此时工作母液的COD可以达到20000~50000mg/L。此外,在铝合金镀件以及塑料电镀前处理过程中会产生一定量的亚硝酸盐、硫化物,也会造成废水COD偏高。镀前处理过程最后产生的清洗废水COD在300~800mg/L之间,这部分废水的COD较高,占电镀废水总排放量的60%~70%,加上负荷状态不稳定的性,该部分废水处理难度较大。
2、电镀工艺过程中COD的产生:电镀工艺过程中的COD主要来源于电镀液中添加的各种添加剂和部分镀种含有的有机络合剂。这些添加剂主要是多组分的高低碳链有机类化合物。一部分在电镀过程中被工件消耗,一部分被分解进入镀层,一部分残留在镀液中,剩余部分被工件带出后进入清洗水中。此外,某些工艺用的亚硫酸盐,化学镀所用的次磷酸钠等还原剂也会影响废水中的COD值。电镀过程排放的清洗水COD在40~60mg/L之间,占废水总排放量的20%~25%,该部分废水COD相对较稳定。
3、电镀后处理工艺废水中COD的产生:电镀后处理是指工件经过电镀处理镀上金属层后对镀层进行的一系列清洁、干燥、钝化、光泽处理、浸表面活性剂脱水处理或者为满足特殊功能如防腐性而采取的化学抗腐蚀处理。再加上硝酸除光引入的还原性物质,此时的工作母液COD值可能达2000~3000mg/L,但正常清洗水的COD值在50~150mg/L之间,占电镀废水总排放量的10%~15%。

2. 电镀厂里的废水有机污染物来源是哪里

电镀前处理中有机物的产生 电镀镀前处理其目的是为了在后面的电镀中得到良好的 镀层而进行表面整平、除油脱脂、侵蚀等工艺过程。其产生的污染物为非离子型表面活性剂、阴离子型表面活性剂及其它部分助剂(如缓蚀剂等)、矿物油及蜡油类 等有机物类污染物,其水质为酸性或碱性。表面整平过程冲刷的污水中主要的污染物包括悬浮物及少量重金属离子、总氮及COD。除油脱脂过程主要是去除工件上 附着的动植物油和矿物油。其主要的方法包括有机溶剂除油、化学除油、电化学除油等[5]。有机溶剂除油过程中常用的有机溶剂包括汽油、煤油、苯、二甲苯、 丙酮、三氯乙烯、四氯乙烯、四氯化碳及酒精等。化学除油是普遍使用的除油方法,它是指利用油污中的动植物油的皂化作用及乳化作用将其从零件上除去的过程。 皂化反应就是油脂与除油液中的碱发生化学反应生成成肥皂的过程。矿物油是靠乳化作用而除去的,乳化剂是一种表面活性物质。电化学除油,是在碱性溶液中零件 为阳极或阴极,在直流电的作用下将零件表面的油脂除去。依靠电解的作用可以强化除油效果,能使油脂彻底除净。侵蚀分为一般侵蚀和弱侵蚀两种,前者主要用于 去除零件表面油和锈蚀产物,而后者主要去除金属工件表面的薄层氧化物。侵蚀过程中带来了少量的COD及总氮污染物,且对废水的pH值具有较大的影响。 1.2 电镀过程中有机物的产生 电镀过程中产生有机物的废水主要来于电镀工序的清洗 水,主要含有浓度较高的各种金属离子,而其中的有机物则主要是电镀液中添加的各种光亮剂,这些光亮剂一般均为多组分混合高分子有机化合物。由于所镀物质的 不同,采用的电镀液也不一样,下面介绍常见的电镀液中的有机物含量及种类。 氰化镀铜工艺是以氰化物作为络合剂,镀液为强碱性, 其中主要有氰化亚铜、氰
化钠、酒石酸钾钠、硫氰酸钾及少量的氢氧化钠、碳酸钠及硫酸锰等,主要有机物为酒石酸钾钠。全光亮酸性镀铜是一种具有高整平全光亮 的强酸性镀铜工艺。镀液主要成分由硫酸铜和硫酸组成。所用的有机添加剂可分为光亮剂和表面活性剂两类。焦磷酸盐镀铜是一种以焦磷酸钾为络合剂的弱碱性镀铜 工艺,其镀液的主要成分为焦磷酸铜盐和焦磷酸钾盐的络合剂。化学镀铜主要用于非导体材料的金属化处理。化学镀铜经常采用甲醛作为还原剂,其镀液中的其他成 分还包括硫酸铜、酒石酸钾钠、EDTA钠盐、氢氧化钠、甲醇及亚铁氰化钾等。另外,数年前国内开发了HEDP、柠檬酸一酒石酸以及三乙醇胺镀铜,其中 HEDP镀铜适于钢铁件的直接镀铜,而一般的焦磷酸盐镀铜液则不适用。 电镀镍漂洗废水中的有机污染物主要来源于电镀液中添加的各种光亮剂、整平剂以及其他功能的添加剂这些有机添加剂不仅是环境污染物,还会给后续的废水回用和金属回收工艺带来不良影响。 镀铬的电镀液中有机物种类较少,主要为醋酸以及醋酸盐类物质。 印刷线路板电镀过程中添加的药剂包括各种酸碱及甲醛、酒石酸钾钠、EDTA二钠及各种光亮剂、添加剂等。其水中的污染物除浓度极高的重金属离子(主要是铜离子)外还有浓度较高的氨氮及一部分COD和磷酸盐等。 除此之外,很多合金电镀及贵重金属电镀工艺,其电镀 工艺五花八门,废水中也包含了大量的重金属离子及络合有机物、光亮剂等。不过,总的说来电镀过程产生的漂洗水的COD值并不高,但又由于其成分比较复杂, 不同的工艺采用的电镀液也不相同,给特征污染物的确定带来了难度,进而给生化带来了一定的影响。 1.3 电镀后处理中有机物的产生 电镀后处理过程是指工件在镀上金属镀层之后对其进行 的清洁、干燥、包装、
抛光、钝化、光泽处理、浸表面活性剂脱水处理或者为增加防腐性而采取的化学抗腐蚀处理。有时为了镀件表面的稳定,也常涂抹一层抗暗或 抗蚀的有机膜。这部分废水有机物浓度不高,而且这部分废水占电镀废水的比例很低,因此电镀后处理废水中有机物并不是电镀废水有机物中关注的重点。
更多问题可以网络我的名字咨询

3. 电镀废水处理后取样总磷与COD浓度超标,什么原因,怎样降低

根据国家环保部门提供的检测数据,我国在三废治理方面有两项不达标:一是大气中的二氧化硫,二是废水中的COD。近年来,笔者作为行业专家参加了省环保厅组织的对电镀厂家和PCB 厂家清洁生产审核验收工作,发现他们大都是因为废水处理COD 不达标,而不得不在废水处理时增加生物处理措施。诚然,生物处理对降低废水中的COD是有效的,但生物处理属于末端治理,存在以下的问题:一、设备投资大;二、电镀废水中#化物和铜等重金属对微生物有毒化作用。因此,采用生物处理前,要求电镀废水必须先进行非常严格的化学处理,以除去#化物(允许含量为0.5 mg/L)和六价铬(允许含量为零,即不得含有)、铜离子(允许含量为0.5 mg/L)等重金属,废水处理成本较高。
清洁生产将整体预防的环境战略持续应用于生产过程、产品和服务中,提倡通过工艺改革、设备更新等途径实现节能减排。根据清洁生产理念,解决电镀废水COD 超标应该首先通过工艺改造和设备更新,实现电镀废水COD 的减排。
电镀厂家的高COD 废水主要来源于前处理除蜡、化学除油、电解除油的漂洗水和废液,而影响前处理漂洗水和废液COD 含量的主要因素有:(1)漂洗水和废液中被皂化、乳化或悬浮于液面的油污、蜡油,以及沉淀于槽底的蜡垢;(2)除蜡水、化学除油粉、电解除油粉中的表面活性剂、有机缓蚀剂和有机配位剂。而第一点最为重要。

4. 阴离子表面活性剂的举例

阴离子聚丙烯酰胺(APAM)是水溶性的高分子聚合物, 主要用于各种工业废水的絮凝沉降,沉淀澄清处理,如钢铁厂废水,电镀厂废水,冶金废水,洗煤废水等污水处理、污泥脱水等。还可用于饮用水澄清和净化处理。由于其分子链中含有一定数量的极性基团,它能通过吸附水中悬浮的固体粒子,使粒子间架桥或通过电荷中和使粒子凝聚形成大的絮凝物,故可加速悬浮液中粒子的沉降,有非常明显的加快溶液澄清,促进过滤等效果。
功能特点
阴离子聚丙烯酰胺,由于它具有:
1、 澄清净化作用;
2、 沉降促进作用;
3、 过滤促进作用;
4、 增稠作用及其它作用。
在废液处理、污泥浓缩脱水、选矿、洗煤、造纸等方面,能够充分满足各种领域的要求。
洗煤废水处理方案:选煤厂对煤泥水的处理一般情况下采用“旋流器-浓缩机-压滤机(煤泥沉淀池)”处理工艺。一般情况下都是采购机高分子絮凝剂(聚丙烯酰胺)。高分子絮凝剂与煤泥微粒或煤泥胶体接触作用,中和了煤泥表面的电性,降低表面能,使煤泥微粒凝聚沉淀。聚丙烯酰胺的分子量一般在百万之间,不同粒度组成的煤泥水要选用不同分子量的絮凝剂。聚丙烯酰胺可以分为阴离子型聚丙烯酰胺,阳离子聚丙烯酰胺和非离子型聚丙烯酰胺三种类型。在使用聚丙烯酰胺进行水处理的时候,要保证类型与煤泥水的pH值相吻合,阴离子聚丙烯酰胺的适于偏碱性煤泥水,阳离子聚丙烯酰胺的适于偏酸性煤泥水,阴离子型和阳离子型聚丙烯酰胺混合使用,煤泥水絮凝沉淀效果更好。
特点:
1、 水溶性好,在冷水中也能完全溶解。
2、 添加少量本阴离子聚丙烯酰胺产品,即可收到极大的絮凝效果。一般只需添加0.01~10ppm(0.01~10g/m3),即可充分发挥作用。
3、 同时使用阴离子聚丙烯酰胺产品和无机絮凝剂(聚合硫酸铁,聚合氯化铝,铁盐等),可显示出更大的效果。
用途
1)用于污泥脱水根据污泥性质可选用本产品的相应型号,可有效在污泥进入压滤之前进行污泥脱水,脱水时,产生絮团大,不粘滤布,压滤时不散,流泥饼较厚,脱水效率高,泥饼含水率在80%以下。
2)用于生活污水和有机废水的处理,本产品在酸性或碱性介质中均呈现阳电性,这样对污水中悬浮颗粒带阴电荷的污水进行絮凝沉淀,澄清很有效。如生产粮食酒精废水,造纸废水,城市污水处理厂的废水,啤酒废水,味精厂废水,制糖废水,有机含量高 废水、饲料废水,纺织印染废水等,用阳离子聚丙烯酰胺要比用阴离子、非离子聚丙烯酰胺或无机盐类效果要高数倍或数十倍,因为这类废水普遍带阴电荷。
3)用于以江河水作水源的自来水的处理絮凝剂,用量少,效果好,成本低,特别是和无机絮凝剂复合使用效果更好,它将成为治长江、黄河及其它流域的自来水厂的高效絮凝剂。
4)造纸用增强剂及其它助剂。提高填料、颜料等存留率、纸张的强度。
5)用于油田经学助剂,如粘土防膨剂,油田酸化用稠化剂。
6)用于纺织上浆剂、浆液性能稳定、落浆少、织物断头率低、布面光洁。
包装与贮存
阴离子聚丙烯酰胺包装、贮运及注意事项:
采用25Kg衬塑编织袋或纸塑复合袋包装,也可根据用户要求包装。贮运时,注意防热、防潮,防止包装破损,干粉产品长期露置会吸潮结块。堆码层数不得超过20层。有效储存期为2年。本产品粒度为20-80目,亦可根据用户要求生产。 综述
是亲水基为羧基的阴离子表面活性剂,包括高级脂肪酸的钾、钠、铵盐以及三乙醇铵盐。在水中电离后起表面活性作用的部分是脂肪酸根阴离子。如:
电离
RCOONa ——>RCOO-+Na+
脂肪酸盐表面活性剂是历史上开发最早的阴离子表面活性剂,也是重要的洗涤剂,目前仍是皮肤清洁剂的重要品种。
主要特性
⑴肥皂是最常见的脂肪酸盐阴离子表面活性剂 肥皂的主要性能特点是它的水溶液的pH在9.0~9.8,呈弱碱性,它有良好的润湿、发泡、去污等作用而被广泛用作洗涤剂。
肥皂的缺点是耐硬水性能差,在硬水中使用肥皂不仅洗涤力差,同时生成的钙皂污垢在 酸水中悬浮并且粘附在衣物上很难去除。肥皂与硬水中的钙、镁等离子反应生成皂垢,不但增加肥皂的耗费,而且粘结在衣物上产生的斑点会使衣物发硬。含有皂垢的布在印染加工时会造造成染色不匀。
肥皂在pH低于7的酸性介质中会转变成不溶于水的游离脂肪酸,会使皂液变混浊并粘附在衣物上不易被除去。因此肥皂只能在中性和碱性介质中使用。通常使用肥皂时常配合加入适量纯碱以保持皂液pH在10左右,其目的为防止肥皂水解和提高洗涤效果。注意在去除酸性污垢或在酸性媒液中不能使用肥皂。
软脂酸盐和硬脂酸盐水溶性差,要充分发挥它们的洗涤能力往往需要在较高温度条件下使用,而含有不饱和键的油酸盐比较适合在较低温度的洗涤场合。以上的高碳脂肪酸盐 隘由于在水中溶解度太低,但油溶性好,所以适合作掺水干洗溶剂中的表面活性剂(变性皂),脂肪酸的有机胺盐和二乙醇胺、三乙醇胺盐大多表现为油溶性的,常用作乳化剂、润湿剂,如三乙醇胺肥皂常在有机溶剂中作乳化剂。
⑵亲油基通过牛间键与羧基相连的羧酸盐(雷米邦A) 脂肪酸盐除了常见的肥皂外,还有这种形式的羧酸盐,如用多肽混合物与脂肪酰氯发生缩合反应制成的N—烷酰基多肽。其中用油酰氯与脱脂皮屑等废蛋白的水解产物缩合制成的表面活性剂,商品名为雷米邦A (Lamepon A),国内商品名为613洗涤剂,化学名称为N—油酰基多缩氨基酸钠(或N—油酰基多肽)。其合成反应式为:
产品介绍
油酰氯 多缩氨基酸钠 雷米邦A
(其中R'、R”是含有1~6个碳原子的烃基)
雷米邦A在毛纺、丝绸、合成纤维及印染工业等纺织部门常做洗涤剂、乳化剂、扩散剂,也可做金属清洗剂和皮肤清洁剂,由于它结构中的多肽部分化学结构与蛋白质相似,对皮肤刺 、激性低,可形成良好的保护胶体,因此也适用于头发用品和香波中或用于护肤香脂中。用它洗涤丝、毛等蛋白质类纤维织品,有洗后柔软、富有光泽、弹性的优点。它有很强的乳化力,如22份雷米邦A可乳化1000份植物油。并且它对钙皂有很强的分散力。它在中性和碱性介质中稳定,在碱性介质中去污力更佳。但在pH值小于5的介质中会以沉淀形式析出。由于它的吸湿力强,通常不制成粉状产品,商售为黄棕色粘稠状液体产品,活性物含量为32%~40%。
制造雷米邦A的多肤部分的原料来自皮屑、蚕蛹、猪毛、鸡毛、骨胶、豆饼、菜籽饼等蛋白质下脚料,经水解后得到水解蛋白液。油酰氯与水解蛋白液中的多缩氨基酸钠缩合即得到雷米邦A。 介绍
把在水中电离后生成起表面活性作用阴离子为磺酸根(R--S03)者称为磺酸盐型阴离子表面活性剂,包括烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐、α-磺基单羧酸酯、脂肪酸磺烷基酯、琥珀酸酯磺酸盐、烷基萘磺酸盐、石油磺酸盐、木质素磺酸盐、烷基甘油醚磺酸盐等多种类型,其中比较重要和常用作洗涤剂的有下列几种。
重要产品
⑴烷基苯磺酸钠(LAS或ABS) 烷基苯磺酸钠通常是一种黄色油状液体,通式为CnH2n+1HC6H4SO3Na,其疏水基为烷基苯基,亲水基为磺酸基。
其早期产品为四聚丙烯苯磺酸钠(ABS),曲于烷基部分带有支链,所以生物降解性差,60年代各国相继改为生产以正构烷烃为原料的直链烷基苯磺酸钠(LAS)。烷基苯磺酸盐不是纯化合物;烷基组成部分不完全相同,因此烷基苯磺酸盐性质受烷基部分碳原子数、烷基链支化度、苯环在烷基链的位置、磺酸基在苯环上的位置及数目以及磺酸盐反离子种类影响而发生很大变化。
烷基苯磺酸盐是阴离子表面活性剂中最重要的一种品种,也是中国合成洗涤剂的主要活性成分。烷基苯磺酸钠去污力强、起泡力和泡沫稳定性以及化学稳定性好、而且原料来源充足、生产成本低,在民用和工业用清洗剂中有着广泛的用途。
①支链烷基苯磺酸盐(ABS) 当高级烯烃(如十二碳烯)与苯发生反应时,生成支链烷基苯,再与浓硫酸发生磺化反应,得到支链型烷基苯磺酸,与碱(NaOH)中和后得到支链型烷基苯磺酸钠盐,其中十二烷基苯磺酸钠是最常见的产品。
作用原理
十二烷基苯磺酸钠是一种性能优良的合成阴离子表面活性剂,它比肥皂更易溶于水,是一种黄色油状液体。易起泡由于它的泡沫粘度低所以泡沫易于消失。它有很好的脱脂能力并有很好的降低水的表面张力和润湿、渗透和乳化的性能。它的化学性质稳定,在酸性或碱性介质中以及加热条件下都不会分解。与次氯酸钠过氧化物等氧化剂混合使用也不会分解。它可以用烷基苯经过磺化反应制备,原料来源充足,成本低,制造工艺成熟,产品纯度高。因此自1936年由美国国家苯胺公司开始生产烷基苯磺酸钠以来,迄今历经60多年一直受到使用者的欢迎和生产者的重视,成为消费量最大的民用洗涤剂,在工业清洗中也得到广泛应用。
其不足之处是用它洗过的纤维手感不好。皮肤与它长时间接触会受到刺激。它易在洗涤物体表面形成吸附膜残留在物体上,这种吸附膜在低温下不易被水冲洗去除。它起泡性好,因此在不希望产生泡沫的情况下又是不受欢迎的。
十二烷基苯磺酸钠特别容易与其他物质产生协同作用(把两种物质混合后能产生比原来各自性能更好的使用效果叫协同作用),因此它常与非离子表面活性剂和无机助洗剂复配使用,以提高去污效果。
它在硬水中不会像肥皂那样生成钙皂沉淀,但生成的烷基苯磺酸钙不易溶于水,只能分散在水中使它的洗涤能力降低。使用时如果与三聚磷酸钠等络合剂复配,把钙、镁离子络合,就可以在硬水中使用而不影响它的洗涤效果。
支链结构的烷基苯磺酸钠由于难被微生物降解,对环境污染严重,所以从60年代中期,逐渐被直链烷基苯磺酸钠代替。
②直链烷基苯磺酸钠(LAS) 直链烷基苯磺酸盐是由直链烷烃与苯在特殊催化剂作用下合成直链烷基苯,再经过磺化,中和反应制得的。典型代表结构为(对位)直链十二烷基苯磺酸钠,它的性能与支链烷基苯磺酸钠相同,其优点是易于被微生物降解,从环境保护角度看是性能更优良的产品。目前使用的烷基苯磺酸钠已全部是直链烷基结构的了。
⑵α-烯烃磺酸盐(AOS) 是α-烯烃与SO3在适当条件下反应,然后中和、水解得到的具有表面活性阴离子的混合物,成分较复杂,随工艺条件和投料量不同成分有变化。其主要成分是烯基磺酸盐(R--CH==CH--(CH2)—pSO3Na)、羟烷基磺酸盐(RCH--(CH20)—pSO3Na)和少量二磺酸盐(R'—CH=CH—CH-(CH2)-SO3Na)或R'—CH—(CH2)—xCH—(CH2)—ySO3Na。其商品名为。—烯烃磺酸盐,缩写AOS。
α—烯烃磺酸盐是一种性能优良的洗涤剂,尤其是在硬水中和有肥皂存在时具有很好的起泡力和优良的去污力。由于它的毒性低对皮肤刺激性小以及性能温和的优点,在家庭和工业、清洗中均有广泛的用途。常用作个人保护、卫生用品、手洗餐具清洗剂、重垢衣物洗涤剂、毛羽,毛清洗剂、洗衣用合成皂、液体皂以及家庭用和工业用硬表面清洗剂的主要成分。
⑶烷基磺酸盐(AS和SAS) 烷基磺酸盐的通式为RSO3M(M为碱金属或碱土金属),R为C12~C20范围的烷基,其中以十六烷基磺酸盐性能最好。其中正构烷基在、引发剂作用下与SO2、O2反应得到的磺酸盐,分为伯烷基磺酸盐(AS)和仲烷基磺酸盐(SAS)两类。其中仲烷基磺酸盐结构式为R--CH--R',缩写名称为SAS,国内商品名为601洗涤剂,是一种具,有很好水溶性、润湿力、除油力的洗涤剂。烷基碳原子一般为C14~C18,以C15~C16去污能力最强。其去污能力与直链烷基苯磺酸(LAS)相似,发泡力稍低,是配制重垢液体洗涤剂的主要原料。它的毒性和对皮肤的刺激性都比iLAS低,生物降解性好。使用时常与醇醚硫酸(AES),α—烯基磺酸盐(AOS)复配,以弥补SAS在硬水中泡沫性差的缺点。可做个人卫生盥洗制品、各种洗衣物以及硬表面清洗剂。
⑷α—磺基单羧酸及其衍生物(MES) 它们的结构式为CH2一COOR', (R为长链烃基或金属离子)。α-磺基单羧酸本身不具有表面活性,但通过酯化或酰胺化生成的衍生物具有表面活性,如CH2—C--OC12H25等。其中以脂肪酸甲酯为原料经磺化中和后得到的商品称为α-磺基脂肪酸甲酯,简称MES,通式为R--CH--COOCH3。
MES是近年来开发生产的一种由天然油脂为原料的阴离子表面活性剂。它有良好的生物降解性,有利于环境保护,使用安全而且去污力强。其去污力随水硬度增加下降较少,因此在硬水中有很好的去污力,如在洗衣粉配方中用MES取代蚝LAS则在低浓度高硬度水中的去污力明显高于只用LAS的配方。它还是优良的钙皂分散剂,它与肥皂配合使用可弥补肥皂不耐硬水会形成皂垢的缺点,因此它是液体皂的主要成分。MES起泡能力好。它对碱性蛋白酶、碱性脂肪酶的活性影响小,适合配制加酶洗衣粉。它对油污有很强的加溶能力,而且毒性低安全性好,因此是一种应用前景良好的新品种。但应防止其在碱性介质中水解失效。
⑸脂肪酸磺烷基酯(1geponA)和脂肪酸磺烷基酰胺(1gepon T) 商品名为伊捷邦A(1gepon A,洗净剂210)的阴离子表面活性剂典型代表物是油酰氧基乙磺酸钠
CH3(CH2)7CH=CH--(CH2)7—C—O CH2SO3Na。商品名为伊捷邦f(1gepon T又称FX洗涤剂,胰加漂T,万能皂,洗涤之王,209洗涤剂)的阴离子表面活性剂的典型代表物是N—油酰基N-甲基牛磺酸钠,其分子式为CH3(CH2)7CH-=CH(CH2)7C-CH2CH2SO3N。
Igepon A是由羟乙基磺酸钠与脂肪酸或脂肪酰氯反应生成的:
R一C—Cl+HOCH2CH2— SO3Na——>O CH2CH2SO3Na+HCl 其通式为R1—C--O R2S03M。
Igepon T是由N—甲基牛磺酸钠与脂肪酸或脂肪酰氯反应生成的:
R—C—c1+HN一CH2CH2S03Na—>Rc—CH2CH2SO3Na+HCl 通式为R1c—N—R3SO3M
当改变通式中R1、R2、R3、M四个可变因素时,表面活性剂的乳化、泡沫、润湿、洗涤性能会发生相应改变。
脂肪酸磺烷基酯(1gepon A)和脂肪酸磺烷基酰胺(1gepon T)最初是做纺织助剂使用的,特别是Igepon T系列产品具有对硬水不敏感、有良好去污能力、润湿力和对纤维柔软作用,并可在酸性介质中使用,所以在纺织工业中有广泛用途。其中N—油酰基—N甲基牛磺酸钠是最重要的一种,用于粗羊毛、合成纤维以及染色布料的清洗,而且对纤维有很好的柔软作用。磺烷基酯和磺烷基酰胺两类产品是重垢精细纺织品洗涤剂,手洗、机洗餐具洗涤剂,各种香波、泡沫浴,香皂的重要配方成分。通常用的是椰子油脂肪酸和牛油脂肪酸的磺烷基酯或磺烷基酰胺。其物理性质及表面活性见表7—7和表,7—8。
物理特性
表7-7 脂肪酸磺烷基酯和磺烷基酰胺的物理性质
①在35℃测定。
②克拉夫特点(Krafft Point)。离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某一特定温度时,溶解度急剧陡升,把该温度称为临界溶解温度(又称克拉夫特点)以rk表示。
⑹石油磺酸盐 是由天然石油馏分或化工反应所得高碳烃副产物经磺化、中和得到的,是多种烃磺化产物的混合物。石油磺酸盐主要用作发动机润滑油的清洁分散剂及起分污泥,保持金属部件清洁,降低酸性抑制锈蚀的作用。作这种用途的石油磺酸盐约占总产量60%。石油磺酸盐配制的金属清洗剂可有效地去除金属部件上的油污。
⑺其他磺酸盐型阴离子表面活性剂 包括以下几种。
表7-8 脂肪酸磺烷基酯和磺烷基酰胺的表面活性
① 在35℃测定。
①琥珀酸酯磺酸盐 按结构分为琥珀酸单酯磺酸盐和双酯磺酸盐。
AerosolOT(渗透剂OT)是最早问世的一种琥珀酸双酯磺酸盐,是优良的工业用润湿剂渗透剂。它是由脂肪醇聚氧乙烯醚和脂肪酸单乙醇酰胺与马来酸酐生成的单酯经磺化得到的产品。它性能温和对皮肤、眼睛刺激性低、袍沫性优良,在个人保护用品中应用日益广泛。因原料充分、生产成本低并不产生三废,近年来得到很大发展。
AerosolOT化学名称为琥珀酸二异辛酯磺酸钠。
②烷基萘磺酸盐 典型产品如二丁基萘磺酸钠,俗称拉开粉,是纺织印染行业常用的一种渗透剂、乳化剂。
另有烷基萘磺酸盐的甲醛缩合物,商品名称为分散剂NNO。
③木质素磺酸盐 是造纸工业中亚硫酸法制浆过程中废水的主要化学成分。它的结构相当复杂,一般认为它是含有愈创木基丙基、紫丁香基丙基和对羟苯基丙基的多聚物磺酸盐,相对分子质量200~10000,是以非石油化学制造的表面活性剂中重要的一类。由于价格低,具有低泡性,主要用作固体分散剂、O/W型乳状液的乳化剂,染料、农药、水泥等悬浮液的分散剂,可加在石油钻井泥浆配方中控制钻井泥浆的流动性,还可作矿石浮选剂或水处理剂。
④烷基甘油醚磺酸盐(AGS) 其通式为ROCH2--CH—CH2SO-3M+,它具有良好的水溶性, OH对酸碱稳定是有效的润湿剂,泡沫剂和分散剂,但由于价格高,使应用和发展受到限制。
另外,磺酸盐型阴离子表面活性剂还有,净洗剂LS(净洗剂MA),化学名称为对甲氧基脂肪酰胺基苯磺酸钠,结构为 是一种有优良净洗、发泡、对钙皂分散能力好的表面活性剂,易溶于水,耐酸碱和硬水,可作羊毛和蚕丝的洗涤剂。 介绍
硫酸是一种二元酸与醇类发生酯化反应时可以生成硫酸单酯和硫酸双酯。硫酸单酯和碱中和生成的盐叫硫酸酯盐。
ROH+HOSO2--OH===RO--SO2--OH+H2O
(醇) (硫酸) (硫酸单酯)
RO--S02—OH+NaOH=RO--SO2--ONa+H20
(硫酸酯盐)
R0一S02—0Na一般写成R—OSO3Na形式,有的书上写成RSO4Na并简称为烷基硫酸酯盐。它与磺酸盐结构的区别在于硫酸酯盐中的硫原子不与烃基中的碳原子直接相连。它们性质上的最大区别在于硫酸酯盐在酸性条件下可以发生水解:
分类
硫酸酯盐型阴离子表面活性剂主要有脂肪醇硫酸酯盐(又称伯烷基硫酸酯盐)和仲烷基硫酸酯盐两类。
⑴脂肪醇硫酸(酯)盐(FAS或AS) 脂肪醇硫酸盐的通式为:ROS0-3M+,R为烷基,M+为钠、钾、铵、乙醇胺基等阳离子,又名伯烷基硫酸盐,英文简写为FAS或AS①。
FAS是肥皂之后出现的最早阴离子表面活性剂,是由椰子油氢解生成的C12~C14脂肪醇与硫酸酯化并中和制得。它有合适的溶解性、泡沫性和去污性。大量应用于洁齿剂、香波、泡沫浴和化妆品中,也是轻垢、重垢洗涤剂、地毯清洗剂、硬表面清洗剂配方中的重要组分。’如月桂基硫酸钠(C12H25OSO3Na),商品名为K12的洗涤剂在洁齿剂中有润湿、起泡和洗涤的作用;而月桂基硫酸酯的重金属盐有杀灭真菌和细菌的作用;用牛脂和椰子油制成的钠肥皂与烷基硫酸酯的钠、钾盐配制成的富脂香皂泡沫丰富、细腻,还能防止皂钙的生成;高碳脂肪醇硫酸盐与两性离子表面活性剂复配制成的块状洗涤剂有良好的研磨性和物理性能,并具有调理作用。
高碳脂肪醇硫酸盐可用作工业清洁剂、柔软平滑剂、纺织油剂组分、乳液聚合用乳化剂等。它们的铵盐和三乙醇胺盐用于香波和溶剂中。
商品名为阴离子洗涤剂ASEA的表面活性剂成分为脂肪醇硫酸酯单乙醇胺盐,结构为 ROS03NHaCH2CH20H。
⑵仲烷基硫酸盐(Teep01) 它是由。—烯烃与硫酸反应生成的仲烷基硫酸酯,经中和后得到的产品,通式为R厂CH—o—SOaN,,商品名为梯波尔(Teep01)。
与伯烷基硫酸(酯)盐不同,其硫酸酯盐部分一(O—SO3Na)是与烷基链上的仲碳原子相连,烷基链的碳原子数为10~18。
梯波尔(Teep01)与FAS相似,也是一种性能良好的表面活性剂,但由于结构上的差异,它的溶解性和润湿性更好。因制成粉状产品易吸潮结块,一般制成液体或浆状洗涤剂。
⑶脂肪醇聚氧乙烯醚硫酸酯盐(AES) 脂肪醇聚氧乙烯醚是一种非离.子表面活性剂,与硫酸酯化、中和得到硫酸酯盐(AES)。实际上AES是非离子—阴离子型两性混合表面活性剂,一般也将它归在阴离子型硫酸酯盐表面活性剂中。
脂肪醇聚氧乙烯醚硫酸酯盐,简称醇醚硫酸盐(AES)。由于它的溶解性能、抗硬水性能、
①AS可以是alk9nesul{。n9te,烷基磺酸盐,也可以是alkancswlfatc伯烷基硫酸酯盐的缩写,此处为后者。起泡性;润湿力均比脂肪醇硫酸盐(AS)好且刺激性低,因此常作为AS的替代晶广泛应用于香波、浴用品、剃须膏等盥洗卫生用品中,也是轻垢、重垢洗涤剂、地毯清洗剂、硬表面清洗剂的重要组分。
⑷脂肪酸衍生物的硫酸酯盐 这类物质的通式为R一CXR'OSO-3M+ (X为氧原子、--N、-N、R',为烷基、亚烷基、羟烷基、烷氧基)。这类产品有良好的润湿性和乳化性,通常用润湿剂。如用硫酸处理含有羟基或不饱和键的油脂或脂肪酸酯,中和后得到的产品为油脂或脂肪酸酯的硫酸酯盐。其中有代表性的是用蓖麻油酸化、中和得到的土耳其红油(因适合做土耳其红染料的匀染助剂而得名)。
⑸不饱和醇的硫酸酯盐 当脂肪醇硫酸酯盐结构中脂肪醇部分是含有双键的不饱和醇时其性能有较大改变,如在低温时仍呈透明状,有较低表面张力和临界胶束浓度,有良好的润湿性能。其中油醇硫酸盐[CH3(CH2)7CH=CH(CH2)7一CH2OS3Na]是一种重要的不饱:和醇硫酸盐,它的起泡力好、去污力强并有良好的乳化能力和良好的钙皂分散力,是目前正在研制开发的新产品。 烷基磷酸酯盐包括烷基磷酸单、双酯盐,也包括脂肪醇聚氧乙烯醚的磷酸单双酯盐和烷基酚聚氧乙烯醚的磷酸单、双酯盐。常见的是烷基磷酸单、双酯盐。
⑴烷基磷酸单、双酯盐(AP) 这是烷基醇与磷酸酯化、中和后的产物。磷酸是三元酸可与脂肪醇酯化生成单酯、双酯与三酯。形成单酯、双酯的产物中仍含有显酸性的氢离子可与碱中和生成盐。生成的烷基磷酸单、双酯盐具有表面活性。
工业上从降低成本考虑,产物通常为单酯盐和双酯盐的混合物。从性能上看,烷基磷酸单酯盐的去污力差,烷基磷酸双酯盐稍好,其中又以二癸基磷酸双酯盐较好,但起泡性能差。由于具有降低纤维间静摩擦系数的作用,因此在纺织工业上常用作化纤产品的抗静电剂。
⑵醇醚、酚醚的磷酸酯盐 这是非离子表面活性剂烷基醇聚氧乙烯醚、烷基酚聚氧乙烯醚与磷酸发生酯化反应,经中和后得到的产物。
它们实际上是非离子—阴离子型两性混合表面活性剂,但常归之于阴离子表面活性剂中,由于含有聚氧乙烯链段,具有一些非离子表面活性剂的性质,因此与烷基磷酸酯盐同类产品相比,去污、润湿性能都有所改进。烷基醇聚氧乙烯醚磷酸酯盐商品名为6503洗涤剂。 除上述四种阴离子表面活性剂外,还有其他的阴离子表面活性剂,如氨基酸盐(R-CHNH2COO-)、酚盐、烯醇盐、酮基磺胺盐([R-CO-N-SO2-R']-)及配位式阴离子盐(如[ROCe(NO3)5]-)等。它们在不同的pH值下溶解度各有不同,阴离子表面活性剂在生产生活中发挥着很多作用。是生活中必不可少的一类物质。

5. 阴离子表面活性剂介绍及应用

我们都知道化学的奇妙之处,它能把身边很多的物质通过实验来改变自身很多特性,比如有些物质界面在添加一些表面活性剂后,我们可以发现该物质发生了很明显的变化。今天我们的就来了解一下表面活性剂里其中一种-阴离子表面活性剂。


阴离子表面活性剂能使水中解离,而在解离后它表面的活性作用就会带有负电荷,并具有表面活性。阴离子表面活性剂通过其中的化学结构区分主要有四种,分别是硫酸酯盐、磷酸酯盐、羧酸盐和磺酸盐。阴离子表面活性剂在我们生活中是很常见的,我们洗刷时用的洗涤剂能够去污作用就是在其中添加了阴离子表面活性剂,还有起泡剂的发泡效果和乳化剂。分散剂等些,它们其中的分散和乳化作用都是活性剂的添加。


阴离子表面活性剂很广泛的被运用起来,在一些废水清理站厂,就会运用到阴离子表面活性剂的阴离子聚丙烯酰胺,它可以放在工业废水中使一些废渣絮凝沉淀,就是使用活性剂里的基团吸附水里漂浮的固体粒子,使粒子集聚起来,然后促使集聚物沉淀并加快水溶液的澄清效果,从而使废水变活水,这样工业废水经过沉淀处理可安全排除或是重新利用。在一些电镀厂废水和洗煤废水等污水处理上都得到很好的使用和明显的效果。我们饮喝的水也会通过这样澄清和净化过程。


在农业方面也会用到阴离子表面活性剂,通过与表面活性剂加工过的农药制成的农业用剂,经过用水混合在农田上喷洒使用,不仅可以更好的促进药性对植物的渗透提高药效利用率,同时还一方面降低农药的制作成本和对种植土壤的改良有了很好的提升。


我们清洁剂方面也有阴离子表面活性剂作为成分的添加,在经过开发研究后,一些人体肤面能接触的活性剂也相继出现,如我们生活使用的沐浴露、洗面奶等一些洗涤的用品,表面活性剂的个别物质通过调节后,使它的的柔和度和湿润度适合人体肤质的使用。同时在添加使用后对于原本的效果更是有了明显的提升,如活性剂的磷酸月桂酯钠盐制成的洗发水对头发不仅有很好的软化效果,同时还可以防止头发头皮的生长。

6. 电镀废水特点

电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。

一般情况水的酸性强 也有少量呈碱性的 其中重金属含量随表面活性剂、光亮剂、以及生产工艺的不同而变化。

通常镀贵重金属的厂家都做金属回收,水也做了中水回用

镀塑料的一般重金属含量比较低是一种水

镀金属的要看加工的物品和数量

但通常电镀水中铬含量都比较高

至于处理方法有下面几种,主要是根据成本和出水要求而定方法

化学沉淀

化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。

中和沉淀法

在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。

硫化物沉淀法

加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,而且反应的pH值在7—9之间,处理后的废水一般不用中和。硫化物沉淀法的缺点是[2]:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时防止有害气体硫化氢生成和硫化物离子残留问题。

螯合沉淀法

加入螯合沉淀剂(如DTCR)使其发生螯合沉淀。该方法有出水稳定达标效果好,适用条件广,无二次污染,污泥含水率低,污泥便于回收,同时设备要求简单,实施方便等特点。缺点在于价格偏高。

氧化还原处理

化学还原法

电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。

应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。

铁氧体法

铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+, Fe2+氧化成Fe3+,调节pH值至8左右,使Fe离子和Cr离子产生氢氧化物沉淀。通入空气搅拌并加入氢氧化物不断反应,形成铬铁氧体。其典型工艺有间歇式和连续式。铁氧体法形成的污泥化学稳定性高,易于固液分离和脱水。铁氧体法除能处理含Cr废水外,特别适用于含重金属离子的电镀混合废水。我国应用铁氧体法已经有几十年历史,处理后的废水能达到排放标准,在国内电镀工业中应用较多。

铁氧体法具有设备简单、投资少、操作简便、不产生二次污染等优点。但在形成铁氧体过程中需要加热(约70oC),能耗较高,处理后盐度高,而且有不能处理含Hg和络合物废水的缺点。

电解法

电解法处理含Cr废水在我国已经有二十多年的历史,具有去除率高、无二次污染、所沉淀的重金属可回收利用等优点。大约有30多种废水溶液中的金属离子可进行电沉积。电解法是一种比较成熟的处理技术,能减少污泥的生成量,且能回收Cu、Ag、Cd等金属,已应用于废水的治理。不过电解法成本比较高,一般经浓缩后再电解经济效益较好。

近年来,电解法迅速发展,并对铁屑内电解进行了深入研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果。

另外,高压脉冲电凝系统(High Voltage Electrocagulation System)为当今世界新一代电化学水处理设备,对表面处理、涂装废水以及电镀混合废水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有显著的治理效果。高压脉冲电凝法比传统电解法电流效率提高20%—30%;电解时间缩短30%—40%;节省电能达到30%—40%;污泥产生量少;对重金属去除率可达96%一99%[3]。

溶剂萃取分离

溶剂萃取法[4]是分离和净化物质常用的方法。由于液一液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。

吸附法

吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法。利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理。腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低[5]。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr 6+的去除率达到99%,出水中Cr 6+含量低于国家排放标准,具有实际应用前暑[6]。

膜分离技术

膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中[7]。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。

离子交换处理法

离子交换处理法是利用离子交换剂分离废水中有害物质的方法,应用的离子交换剂有离子交换树脂、沸石等等,离子交换树脂有凝胶型和大孔型。前者有选择性,后者制造复杂、成本高、再生剂耗量大,因而在应用上受到很大限制。离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力,多数情况下离子是先被吸附,再被交换,离子交换剂具有吸附、交换双重作用。这种材料的应用越来越多,如膨润土[11],它是以蒙脱石为主要成分的粘土,具有吸水膨胀性好、比表面积大、较强的吸附能力和离子交换能力,若经改良后其吸附及离子交换的能力更强。但是却较难再生,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点:沸石[9]是含网架结构的铝硅酸盐矿物,其内部多孔,比表面积大,具有独特的吸附和离子交换能力。研究表明[10],沸石从废水中去除重金属离子的机理,多数情况下是吸附和离子交换双重作用,随流速增加,离子交换将取代吸附作用占主要地位。若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力。通过吸附和离子交换再生过程,废水中重金属离子浓度可浓缩提高30倍。沸石去除铜,在NaCl再生过程中,去除率达97%以上,可多次吸附交换,再生循环,而且对铜的去除率并不降低。

生物处理技术

由于传统治理方法有成本高、操作复杂、对于大流量低浓度的有害污染难处理等缺点,经过多年的探索和研究,生物治理技术日益受到人们的重视。随着耐重金属毒性微生物的研究进展,采用生物技术处理电镀重金属废水呈现蓬勃发展势头,根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法。

生物絮凝法

生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、 Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来。应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点。此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株。因而微生物絮凝法具有广阔的应用前景。

生物吸附法

生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用。

生物化学法

生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法。该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高。因许多重金属离子氢氧化物的离子积很小而沉淀。有关研究表明,生物化学法处理含Cr 6+浓度为30—40mg/L的废水去除率可达99.67%—99.97%[11]。有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属。赵晓红等人[12]用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8 mg/L的溶液,当pH为4.0时,去除率达99.12%。

希望能帮你!~

阅读全文

与电镀废水中的活性剂检测相关的资料

热点内容
空调滤芯壳怎么拆卸 浏览:357
污水管网建设存在的问题和建议 浏览:78
净化器消音怎么处理 浏览:234
R反渗透膜是什么意思 浏览:693
辐射废水排放 浏览:173
什么花可以降解废水cod 浏览:570
空气净化器的空气是什么味道 浏览:729
cf1200过滤桶不工作 浏览:39
成都第四污水处理厂占地 浏览:138
污水处理率多少合格 浏览:237
天津市海润水处理 浏览:487
新小区未接污水管网找什么部门 浏览:376
苯酚为什么不能蒸馏 浏览:55
斐讯空气净化器a1用什么软件 浏览:650
净水器滤芯堵是什么原因 浏览:812
车子换空调滤芯一般要多少钱 浏览:822
超纯水跟自来水有什么区别 浏览:516
姬存希黄瓜胶与蒸馏水配比 浏览:150
污水处理测试多少以上合格 浏览:189
跑胶时蒸馏水代替缓冲液后果 浏览:414