导航:首页 > 污水知识 > 废水可以厌氧处理吗

废水可以厌氧处理吗

发布时间:2024-10-26 23:19:43

⑴ 给一定废水,如何选择使用好氧还是厌氧处理

好氧+厌氧也就是水处理工艺中经典的A/O工艺,主要来处理类似生活废水的主要工艺.
一般会根据废水中COD、有机物、氮、磷的含量来确定好氧和厌氧的顺序.一般来讲,厌氧适合处理高浓度废水,也就是,厌氧放置于好氧前.一般厌氧池,仅可以将COD降至2000以下,而好氧池可以进一步将COD降至国标或地方范围,或者经后续工艺达标.

另外,A/O工艺,同时能够脱氮除磷,也就是水处理工艺中讲的硝化和反硝化,聚磷和放磷.但因两者相背(就是先厌氧还是先好氧对哪个有力),实际选择或建设时,均需要考虑.如今,很多污水处理上,都对好氧+厌氧的模式进行了部分改进,如将好氧池内增加填料,为微生物提高载体,同时提高接触效率.

1,好氧生物处理法

好氧生物处理就是在充分供氧或者供气的条件下,借助好氧微生物(主要是好氧细菌)或兼性好氧微生物,将污水中有机物氧化分解成较稳定的无机物的处理过程。处理过程中,废水中的一部分有机物在细菌生命活动过程中被同化、吸收,转化成增殖的细菌菌体部分,另一部分有机物则被氧化分解成简单的无机物(如二氧化碳、水、硝酸根离子等),并释放能量供细菌等微生物生命活动的需要。

2,厌氧生物处理法

厌氧生物处理法是在断绝氧气的条件下,利用厌氧微生物和兼性厌氧微生物的作用,将废水中的各种复杂有机物转化成比较简单的无机物(如二氧化碳)或有机物(如甲烷)的处理过程,也称为厌氧消化。与好氧生化法相比,厌氧生化法具有以下

优点:

①应用范围广:由于供氧限制,好氧法一般只适用于中、低浓度的有机废水的处理,而厌氧法既适用于高浓度有机废水,也适用于中、低浓度有机废水。有些有机物,如固体有机物、着色剂蒽酮和某些偶氮染料等,用好氧生物处理法难以降解,但用厌氧生物处理可以降解。

②能耗低:好氧法需要消耗大量能量供氧,曝气费用随有机物浓度增加而增大,而厌氧法不需要充氧,产生的沼气还可以作为能源。废水有机物达到一定浓度后,沼气能量可以抵偿所消耗的能量,相关物化处理药剂请至http://www.cl39.com/望采纳。

⑵ 厌氧生物处理适用于什么场合

废水的厌氧生物处理法

厌氧生物处理是在无氧的情况下,利用兼性菌和厌氧菌的代谢作用,分解有机物的一种生物处理法。是一种低成本的废水处理技术,它能在处理废水过程中回收能源。厌氧生化法不仅可用于处理有机污泥和高浓度有机废水,也用于处理中、低浓度有机废水,包括城市污水。

厌氧生化法与好氧生化法相比具有下列优点。

(1)应用范围广 好氧法因供氧限制一般只适用于中、低浓度有机废水的处理,而厌氧法既适用于高浓度有机废水,又适用于中、低浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的、如固体有机物、着色剂蒽酿和某些偶氮染料等。

(2)能耗低 好氧法需要消耗大量能量供氧,曝气费用随着有机物浓度的增加而增大,而厌氧法不需要允氧,而且产生的沼气可作为能源。废水有机物达一定浓度后,沼气能量可以抵偿消耗能量。当原水BOD5达到1500mg/L时,采用厌氧处理即有能量剩余。有机物浓度愈高,剩余能量愈多。—般厌氧法的动力消耗约为活性污泥法的1/10。

(3)负荷高 通常好氧法的有机容积负荷为2~4kgBOD/m3.d,而厌氧法为2~10kg COD/m3.d,高的可达50kgCOD/m3.d。

(4)剩余污泥量少,且其浓缩性、脱水性良好 好氧法每去除1kg COD将产生0.4~0.6 kg生物量,而厌氧法去除1kg COD只产生0.02~0.1kg 生物量,其剩余污泥量只有好氧法的5%~20%。同时,消化污泥在卫生学上和化学上都是稳定的。因此,剩余污泥处理和处置简单、运行费用低,甚至可作为肥料、饲料或饵料利用。

(5)氮、磷营养需要量较少 好氧法一般要求BOD:N:P为100:5:1,而厌氧法的BOD:N:P为100:2.5:0.5,对氮、磷缺乏的工业废水所需投加的营养盐量较少。

(6)厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫卵、病毒等。

(7)厌氧活性污泥可以长期贮存,厌氧反应器可以季节性或间歇性运转。与好氧反应器相比,在停止运行一段时间后,能较迅速启动。

但是,厌氧生物处理法也存在下列缺点:

(1)厌氧微生物增殖缓慢,因而厌氧设备启动和处理时间比好氧设备长。

(2)处理后的出水水质差,往往需进一步处理才能达标排放。

1. 厌氧消化原理

复杂有机物的厌氧消化过程要经历数个阶段,由不同的细菌群接替完成。根据复杂有机物在此过程中的物态及物性变化,可分为以下三个阶段。

第一阶段为水解阶段。废水中的不溶性大分子有机物(如蛋白质、多糖类、脂类等)经发酵细菌水解后,分别转化为氨基酸、葡萄糖和甘油等水溶性的小分子有机物。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。

由于简单碳水化合物的分解产酸作用,要比含氮有机物的分解产氨作用迅速,故蛋白质的分解在碳水化合物分解后产生。

含氮有机物分解产生的NH3除了提供合成细胞物质的氮源外,在水中部分电离,形成NH4HCO3,具有缓冲消化液pH值的作用,故有时也把继碳水化合物分解后的蛋白质分解产氨过程称为酸性减退期,反应为:

第二阶段为产氢产乙酸阶段。在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2,如:

第三阶段为产甲烷阶段。产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化为甲烷。此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲院,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3,反应为:

上述三个阶段的反应速度依废水性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般的蛋白质均能被微生物迅速分解,对含这类有机物为主的废水,产甲烷易成为限速阶段。

虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡,这种动态平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,其至会导致整个厌氧消化过程停滞。

2. 影响厌氧处理的因素

(1)温度 温度是影响微生物生命活动最重要的因素之一,其对厌氧微生物及厌氧消化的影响尤为显著。各种微生物都在一定的温度范围内生长,根据微生物生长的温度范围,习惯上将微生物分为三类:(a)嗜冷微生物,生长温度为5~20 ℃;(b)嗜温微生物,生长温度20~42℃;(c)嗜热微生物,生长温度42~75℃。相应地厌氧废水处理也分为低温、中温和高温三类。这三类微生物在相应的适应温度范围内还存在最佳温度范围,当温度高于或低于最佳温度范围时其厌氧消化速率将明显降低。在工程运用中,中温工艺中以30~40 ℃最为常见,其最佳处理温度在35~40℃;高温工艺以50~60 ℃最为常见,最佳温度为55℃。

在上述范围里,温度的微小波动(例如1~3℃)对厌氧工艺不会有明显的影响,但如果温度下降幅度过大,则由于微生物活力下降,反应器的负荷也将降低。

(2)pH值 产甲烷菌对pH值变化适应性很差,其最佳范围为6.8~7.2,超出该范围厌氧消化细菌会受到抑制。

(3)氧化还原电位 绝对的厌氧环境是产甲烷菌进行正常活动的基本条件,产甲烷菌的最适氧化还原电位为-150~-400mV,培养甲烷菌的初期,氧化还原电位不能高于-330mV。

(4)营养 厌氧微生物对碳、氮等营养物质的要求略低于好氧微生物,需要补充专门的营养物质有钾、钠、钙等金属盐类,它们是形成细胞或非细胞的金属络合物所需要的物质,同时也应加入镍、铝、钴、钼等微量金属,以提高若干酶的活性。

(5)有机负荷 在厌氧法中,有机负荷通常指容积有机负荷,简称容积负荷,即消化器单位有效容积每天接受的有机物量(kg COD/m3.d)。对悬浮生长工艺,也有用污泥负荷表达的,即kg COD/(Kg 污泥.d);在污泥消化中,有促负荷习惯上以投配率或进料率表达,即每天所投加的湿污泥体积占消化器有效容积的百分数。由于各种湿污泥的含水率、挥发组分不尽一致,投配率不能反映实际的有机负荷,为此,又引入反应器单位有效容积每天接受的挥发性固体重量这一参数,即kg MLVSS/(m3.d)。

有机负荷是影响厌氧消化效率的一个重要因素,直接影响产气量和处理效率。在一定范围内,随着有机负荷的提高,产气率即单位重量物料的产气量趋向下降,而消化器的容积产气量则增多,反之亦然。对于具体应用场合,进料的有机物浓度是一定的,有机负荷或投配率的提高意味着停留时间缩短,则有机物分解率将下降,势必使单位重量物料的产气量减少。但因反应器相对的处理量增多了,单位容积的产气量将提高。

有机负荷值因工艺类型、运行条件以及废水废物的种类及其浓度而异。在通常的情况下,采用常规厌氧消化工艺,中温处理高浓度工业废水的有机负荷为2~3kg COD/(m3.d),在高温下为4~6kg COD/(m3.d)。上流式厌氧污泥床反应器、厌氧滤池、厌氧流化床等新型厌氧工艺的有机负荷在中温下为5~15 kg COD/(m3.d),可高达30 kg COD/(m3.d)。

(6)有毒物质 有毒物质会对厌氧微生物产生不同程度的抑制,使厌氧消化过程受到影响甚至破坏,常见抑制性物质为硫化物、氨氮、重金属、氰化物及某些人工合成的有机物。

⑶ 污水处理厌氧池是什么

厌氧生物处理技术即为在厌氧状态下,污水中的有机物被厌氧细菌分解、代谢、消化,使得污水中的有机物含量大幅减少,同时产生沼气的一种高效的污水处理方式。

厌氧处理作为生物处理的一个重要形式,正在陆续地开发出一系列新的厌氧处理工艺和构筑物,逐步克服了传统厌氧工艺的缺点,在理论和实践上取得了很大的进步。

在厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等。

在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。

(3)废水可以厌氧处理吗扩展阅读:

厌氧消化

有机物质被厌氧菌在厌氧条件下分解产生甲烷和二氧化碳的过程,厌氧是在空气缺乏的条件下从有机物中移出而生成CO2的。无论是酸性发酵,还是沼气发酵,参与生化反应的氧都是来自于水、有机物、硝酸盐或被分解的亚硝酸盐。

厌氧消化的优点是有机质经消化产生了能源,残余物可作肥料。厌氧消化开始用于废物处理等多个领域,如工业废水处理、城市垃圾的处理及潜在能源的开发、作燃料与动力、并且已建立了大规模的厌氧消化工厂。

⑷ 厌氧法处理污水的优缺点

录求污水处理工程节能措施的技术途径颇多,而有机污水的厌氧生物处理技术则是重要途径之一。
厌氧生物处理是利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD浓度可达15000mg/l,也可适用于低浓度有机废水,包括城市废;厌氧生物处理法能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d高的可达50kgCOD/m3.d;剩余污泥量少;产生的沼气可利用;营养需要量少;被降解的有机物种类多;能承受较大的负荷变化和水质变化。

显而易见,开发厌氧生物处理新工艺用来治理有机污水的污染,无疑是一种具有良好经济效益的方法。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物池、厌氧膨胀床和流化床、厌氧生物转盘等,目前升流式厌氧污泥床这种新工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,运转及构筑物造价均有所下降,对于不同含固量污水的适应性也强,因而已越来越受到重视,国内外目前已设计和施工的这种工艺较多。

二、升流式厌氧污泥床工作原理

升流式厌氧污泥床有反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

这种工艺的基本出发占在于:(1)为污泥絮凝提供有利的物理--化学条件,使厌氧污泥获得并保持良好的沉淀性能;(2)良好的污泥床常可形成一种相当稳定的生物相,能抵抗较强的扰动力。较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度;(3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。

三、厌氧污泥床内的流态和污泥分布

厌氧污泥床内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。在远离这股上升气、水流的地方容易形成死角。在这些死角处也具有一定的产气量,形成污泥和水的缓慢而微弱的混合,所以说在污泥层内形成不同程度的混合区,这些混合区的大小与短流程度有关。悬浮层内混合液,由于气体币的运动带动液体以较高速度上升和下降,形成较强的混合。在产气量较少的情况下,有时污泥层与悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显。有关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合区。

厌氧污泥床内污泥浓度与设备的有机负荷率有关。是处理制糖废水试验时,升流式厌氧污泥床内污泥分布与负荷的关系。从图中可看出污泥层污泥浓度比悬浮层污泥浓度高,悬浮层的上下部分污泥浓度差较小,说明接近完全混合型流态,反应区内污泥的颁,当有机负荷很高时污泥层和悬浮层分界不明显。试验表明,污水通过底部0.4-0.6m的高度,已有90%的有机物被转化。由此可见厌氧污泥具有极高的活性,改变了长期以来认为厌氧处理过程进行缓慢的概念。在厌氧污泥中,积累有大量高活性的厌氧污泥是这种设备具有巨大处理能力的主要原因,而这又归于污泥具有良好的沉淀性能。

升流式厌氧污泥床具有高的容积有机负荷率,其主要原因是设备内,特别是污泥层内保有大量的厌氧污泥。工艺的稳定性和高效性很大程度上取决于生成具有优良沉降性能和很高甲烷活性的污泥,尤其是颗粒状污泥。与此相反,如果反应区内的污泥以松散的絮凝状体存在,往往出现污泥上浮流失,使厌氧污泥床不能在较高的负荷下稳定运行。

根据厌氧污泥床内污泥形成的形态和达到的COD容积负荷,可以将污泥颗粒化过程大致分为三个运行期:
(1)投产运行期:从接种污泥开始到污泥床内的COD容积负荷达到5kgCOD/m3.d左右,此运行期污泥沉降性能一般;

(2)颗粒污泥出现期:这一运行期的特点是有小颗粒污泥开始出现。当污泥床内的总SS量和总VSS量降至最低时本运行期即告结束,这一运行期污泥沉降性能不太好;

(3)颗粒污泥形成期:这一运行期的特点是颗粒污泥大量形成,由下至上逐步充满整个厌氧污泥床。当污泥床容积负荷达到16kgCOD/m3.d以上时,可以认为颗粒污泥已培养成熟。该运行期污泥沉降性很好。

五、污泥的流失与外部沉淀池的设置

在升流式厌氧泥床内虽有气液固三相分离器,混合液进入沉淀区前已把气体分离,但由于沉淀区内的污泥仍具有较高的产甲烷活性,继续在沉淀区内产气;或者由于冲击负荷及水质突然变化,可能使反应区内污泥膨胀,结果沉淀区固液分离不佳,发生污泥流失而影响了水质和污泥床中污泥浓度。为了减少出水所带的悬浮物进入水体,外部另设一沉淀池,沉淀下来的污泥回流到污泥床内。设外部沉淀池的好处是:(1)污泥回流可加速污泥的积累,缩短投产期;(2)去除悬浮物,改善出水水质;(3)当偶尔发生污泥大量上漂时,回收污泥保持工艺的稳定性;(4)回流污泥可作进一步分解,可减少剩余污泥量。

设外部沉淀池的升流式厌氧污床工艺流程。

六、升流式厌氧污泥床的设计

升流式厌氧污泥床的工艺设计主要是计算厌氧污泥床的容积、产气量、剩余污泥量、营养需要量.

升流式厌氧污泥床的池形状有圆形、方形、矩形。污泥床高度一般为3-8m,多用钢筋混凝土建造。当污水有机物浓度比较高时,需要的沉淀区面积小,反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。

气液固三相分离器是升流式厌氧污泥床的重要组成部分,它对污泥床的正常运行和获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视。根据经验,三相分离器应满足以下几点要求:
1、混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀;

2、沉淀器斜壁角度约为50o;

3、沉淀区的表面水力负荷应在0.7m3.h以下,进入沉淀区前,通过沉淀槽低缝的流速不大于2m/h;

4、处于集气器的液一气界面上的污泥要很好地使之浸没于水中;

5、应防止集气器内产生大量泡沫。

第2、3两个条件可以通过适当选择沉淀器的深度-面积比来加以满足。对于低浓度污水,主要用限制表面水力负荷来控制;对于中等浓度和高浓度污水,在极高负荷下,单位横截面上释放的气体体积可能成为一个临界指标。但是直到现在国内外所取得的成果表明,只要负荷率不超过20kgCOD/m3.d,厌氧污泥床高度不大于10m,可以预料没有任何问题。

污泥与液体的分离基于污泥絮凝、沉淀和过滤作用。所以创造条件使污泥具有良好的絮凝、沉淀性能对于分离器的工作是具有重要意义。

特别注意是防止气泡进入沉淀区,要使固一液进入沉淀区之前就与气泡很好分离。在气-液表面上形成浮渣能迫使一些气泡进入沉淀区,所以在一些情况下必须考虑设置排放这些浮渣或破坏这些浮渣的设施。

如上所述,升流式厌氧污泥床的混合是靠上流的水流和发酵过程中产生的气泡来完成的。因此,一般采用多点进水,使进水均匀地分布在床断面上。

升流式厌氧污泥床容积的计算一般按有机物容积负荷或水力停留时间进行。设计时可通过试验决定参数或参考同类废水用的设计和运行参数。

七、升流式厌氧污泥床的启动

1、污泥的驯化

升流式套氧污泥床设备启动的最大困难是获得大量沉降性能良好的厌氧污泥。最好的办法加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期可长达1-2年,初中表明,投加少量的载体,有利于厌氧菌的附着,促进初期颗粒污泥的形成;比重大的絮状污泥比轻的易于颗粒化;比甲烷活性高的厌氧污泥可缩短启动期。

2、启动操作要点

(1)最好一次投加足够量的接种污泥;

(2)从污泥床流出的污泥一般不需回流,以使特别轼的污泥连续地从污泥床流出,使较重的污泥在床内积累,并促进其增殖进行颗粒化;

(3)启动开始废水COD浓度较低时,未必泥颗粒化快;

(4)最初污泥负荷率应低于0.1-0.2kgCOD/kgTSS.d;

(5)污水中原来存在的和产生出来的多种挥发酸未能有效分解之前,不应提高有机容积负荷率;

(6)可降解的COD去除率达到80%左右时,才能增加有机容积负荷率;

(7)为促进污泥颗粒化,反应区内的最小空塔速度为1m/d,采用较高的表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥发展为大颗粒。

八、升流式厌氧污泥床工艺的优缺点

升流式厌氧污泥床的主要优点是:

1、升流式厌氧污泥床内污泥浓度高。平均污泥浓度为20-40gVSS/1;

2、有机负荷高。水力停留时间短。中温发酵,容积负荷一般为10kgCOD/m3.d左右;

3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;

4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;

5、升流式厌氧污泥床内设三相分离器,一般不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,一般无污泥回流设备。

主要缺点是:

1、进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;

2、污泥床内有短流现象,影响处理能力;

3、对水质和负荷突然变化较敏感,耐冲击力稍差。

升流式厌氧污泥床工艺近年来在国外发展很快,在国内也已有生产性规模装置,该工艺既节约了能源,基至可回收能量,又解决了环境污染问题,取得了较好的经济效益和社会效益。这种新工艺的研究和发展具有广阔的应用前景。

⑸ 为什么说污水的厌氧处理对有机物的降解不彻底

污水的厌氧处理对有机物的降解不彻底是因为厌氧条件下缺氧,对于污水中的有机物质的降解只能进行到一定程度。在厌氧条件下,微生物不能将有机物的全部碳原子氧化分解,而仅能将一部分碳原子氧化分解,并通过产生甲烷等有机物作为代谢产物。相比之下,氧化处理则可以将有机物的大部分甚至全部进行氧化分解,达到深度处理的目的。
另外,厌氧处理还需要注意沉渣处置问题。污水经过厌氧处理,产生的污泥中含有大量难以分解的物质,如果处理不当或者沉渣堆积过多,可能会产生臭味、渗漏等环境问题。
因此,在实际污水处理中,常采用氧化处理和厌氧-好氧接续处理等多种方法结合使用,以达到更好的污水处理效果。

阅读全文

与废水可以厌氧处理吗相关的资料

热点内容
滤芯如何激活 浏览:996
反渗透膜进水方向 浏览:218
茶室净水器龙头怎么安装 浏览:529
净水机滤芯软化什么意思 浏览:586
味精工业废水来源特点 浏览:912
氨基酸污水 浏览:461
饮水机热水温度多少正常 浏览:80
净水器都用什么材质做的 浏览:310
农村饮水机多少钱一吨水 浏览:66
污水加哪些药剂可以脱水 浏览:877
反渗透管接头怎么安装正确 浏览:680
三座污水处理厂什么时候投入 浏览:878
污水池散发气体怎么算 浏览:323
怎样去除柴油机水箱中的水垢 浏览:18
易开得净水器大概多少钱一台 浏览:936
环氧树脂分子成膜的粒径有多少 浏览:712
废水可以厌氧处理吗 浏览:959
直饮净水一体机如何更换滤芯 浏览:827
污水管不同管径如何连接 浏览:646
ro膜如何拆卸和安装 浏览:357