导航:首页 > 污水知识 > 处理污水用草酸好还是pac好

处理污水用草酸好还是pac好

发布时间:2024-10-06 18:21:19

A. 制药废水处理工艺及管理流程

制药废水处理技术研究

制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。其废水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放,属难处理的工业废水。随着我国医药工业的发展,制药废水已逐渐成为重要的污染源之一,如何处理该类废水是当今环境保护的一个难题。

1 制药废水的处理方法

制药废水的处理方法可归纳为以下几种:物化处理、化学处理 、生化处理 以及多种方法的组合处理等,各种处理方法具有各自的优势及不足。

1.1 物化处理

根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。

1.1.1 混凝法

该技术是目前国内外普遍采用的一种水质处理方法,它被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。刘明华等以其研制的一种高效复合型絮凝剂F-1处理急支糖浆生产废水,在 pH为6.5, 絮凝剂用量为300 mg/L时,废液的COD、SS和色度的去除率分别达到69.7%、96.4%和87.5%,其性能明显优于PAC(粉末活性炭)、聚丙烯酰胺(PAM)等单一絮凝剂。

1.1.2 气浮法

气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。

1.1.3 吸附法

常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示, 吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。

1.1.4 膜分离法

膜技术包括反渗透纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。朱安娜等采用纳滤膜对洁霉素废水进行分离实验,发现既减少了废水中洁霉素对微生物的抑制作用,又可回收洁霉素。

1.1.5 电解法

该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。李颖采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。

1.2 化学处理应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。

1.2.1 铁炭法

工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。楼茂兴等[9]采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%,最终出水达到国家《污水综合排放标准》(GB8978—1996)一级标准。

1.2.2 Fenton试剂处理法

亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大加强。程沧沧等[10]以TiO2为催化剂,9 W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05 mg/L降至0.41 mg/L。

1.2.3采用该法能提高废水的可生化性,同时对COD有较好的去除率。如Balcioglu等对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。

1.2.4 氧化技术

又称高级氧化技术,它汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果,主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。肖广全等[13]用超声波-好氧生物接触法处理制药废水,在超声波处理60 s,功率200 w的情况下,废水的COD总去除率达96%。

1.3 生化处理

生化处理技术是目前制药废水广泛采用的处理技术,包括好氧生物法、厌氧生物法、好氧-厌氧等组合方法。

1.3.1 好氧生物处理

由于制药废水大多是高浓度有机废水,进行好氧生物处理时一般需对原液进行稀释,因此动力消耗大,且废水可生化性较差,很难直接生化处理后达标排放,所以单独使用好氧处理的不多,一般需进行预处理。常用的好氧生物处理方法包括活性污泥法、深井曝气法、吸附生物降解法(AB法)、接触氧化法、序批式间歇活性污泥法(SBR法)、循环式活性污泥法(CASS法)等。

(1)深井曝气法

深井曝气是一种高速活性污泥系统,该法具有氧利用率高、占地面积小、处理效果佳、投资少、运行费用低、不存在污泥膨胀、产泥量低等优点。此外,其保温效果好,处理不受气候条件影响,可保证北方地区冬天废水处理的效果。东北制药总厂的高浓度有机废水经深井曝气池生化处理后,COD去除率达92.7%,可见用其处理效率是很高的,而且对下一步的治理极其有利,对工艺治理的出水达标起着决定性作用。

(2)AB法

AB法属超高负荷活性污泥法。AB工艺对BOD5、COD、SS、磷和氨氮的去除率一般均高于常规活性污泥法。其突出的优点是A段负荷高,抗冲击负荷能力强,对pH和有毒物质具有较大的缓冲作用,特别适用于处理浓度较高、水质水量变化较大的污水。杨俊仕等采用水解酸化-AB生物法工艺处理抗生素废水,工艺流程短,节能,处理费用也低于同种废水的化学絮凝-生物法处理方法。

(3)生物接触氧化法

该技术集活性污泥和生物膜法的优势于一体,具有容积负荷高、污泥产量少、抗冲击能力强、工艺运行稳定、管理方便等优点。很多工程采用两段法,目的在于驯化不同阶段的优势菌种,充分发挥不同微生物种群间的协同作用,提高生化效果和抗冲击能力。在工程中常以厌氧消化、酸化作为预处理工序,采用接触氧化法处理制药废水。哈尔滨北方制药厂采用水解酸化-两段生物接触氧化工艺处理制药废水,运行结果表明,该工艺处理效果稳定、工艺组合合理。随着该工艺技术的逐渐成熟,应用领域也更加广泛。

(4)SBR法

SBR法具有耐冲击负荷强、污泥活性高、结构简单、无需回流、操作灵活、占地少、投资省、运行稳定、基质去除率高、脱氮除磷效果好等优点,适合处理水量水质波动大的废水。王忠用SBR工艺处理制药废水的试验表明:曝气时间对该工艺的处理效果有很大影响;设置缺氧段,尤其是缺氧与好氧交替重复设计,可明显提高处理效果;反应池中投加PAC的SBR强化处理工艺,可明显提高系统的去除效果。近年来该工艺日趋完善,在制药废水处理中应用也较多,邱丽君等采用水解酸化-SBR法处理生物制药废水,出水水质达到GB8978-1996一级标准。

1.3.2厌氧生物处理

目前国内外处理高浓度有机废水主要是以厌氧法为主,但经单独的厌氧方法处理后出水COD仍较高,一般需要进行后处理(如好氧生物处理)。目前仍需加强高效厌氧反应器的开发设计及进行深入的运行条件研究。在处理制药废水中应用较成功的有上流式厌氧污泥床(UASB)、厌氧复合床(UBF)、厌氧折流板反应器(ABR)、水解法等。

(1)UASB法

UASB反应器具有厌氧消化效率高、结构简单、水力停留时间短、无需另设污泥回流装置等优点。采用UASB法处理卡那霉素、氯酶素、VC、SD和葡萄糖等制药生产废水时,通常要求SS含量不能过高,以保证COD去除率在85%~90%以上。二级串联UASB的COD去除率可达90%以上。

(2)UBF法买文宁等将UASB和UBF进行了对比试验,结果表明,UBF具有反应液传质和分离效果好、生物量大和生物种类多、处理效率高、运行稳定性强的特征,是实用高效的厌氧生物反应器。

(3)水解酸化法

水解池全称为水解升流式污泥床(HUSB),它是改进的UASB。水解池较之全过程厌氧池有以下优点:不需密闭、搅拌,不设三相分离器,降低了造价并利于维护;可将污水中的大分子、不易生物降解的有机物降解为小分子、易生物降解的有机物,改善原水的可生化性;反应迅速、池子体积小,基建投资少,并能减少污泥量。近年来,水解-好氧工艺在制药废水处理中得到了广泛的应用,如某生物制药厂采用水解酸化-二段式生物接触氧化工艺处理制药废水,运行稳定,有机物去除效果显著,COD、BOD5和SS的去除率分别为90.7%、92.4%和87.6%。

1.3.3 厌氧-好氧及其他组合处理工艺

由于单独的好氧处理或厌氧处理往往不能满足要求,而厌氧-好氧、水解酸化-好氧等组合工艺在改善废水的可生化性、耐冲击性、投资成本、处理效果等方面表现出了明显优于单一处理方法的性能,因而在工程实践中得到了广泛应用。如利民制药厂采用厌氧-好氧工艺处理制药废水,BOD5去除率达98%,COD去除率达95%,处理效果稳定;肖利平等采用微电解-厌氧水解酸化-SBR工艺处理化学合成制药废水,结果表明,整个串联工艺对废水水质、水量的变化具有较强的耐冲击能力,COD去除率可达86%~92%,是处理制药废水的一种理想的工艺选择;胡大锵等在对医药中间体制药废水的处理中采用水解酸化-A/O-催化氧化-接触氧化工艺,当进水COD为12 000 mg/L左右时,出水COD达300 mg/L以下;许玫英等采用生物膜-SBR法处理含生物难降解物的制药废水,COD的去除率能达到87.5%~98.31%,远高于单独的生物膜法和SBR法的处理效果。

此外,随着膜技术的不断发展,膜生物反应器(MBR)在制药废水处理中的应用研究也逐渐深入。MBR综合了膜分离技术和生物处理的特点,具有容积负荷高、抗冲击能力强、占地面积小、剩余污泥量少等优点。白晓慧等采用厌氧-膜生物反应器工艺处理COD为25 000 mg/L的医药中间体酰氯废水,选用杭州化滤膜工程公司生产的ZKM-W0.5T型膜组件,系统对COD的去除率均保持在90%以上;Livinggston等利用专性细菌降解特定有机物的能力,首次采用了萃取膜生物反应器处理含3,4-二氯苯胺的工业废水,HRT为2 h,其去除率达到99%,获得了理想的处理效果。尽管在膜污染方面仍存在问题,但随着膜技术的不断发展,将会使MBR在制药废水处理领域中得到更加广泛的应用。

2 制药废水的处理工艺及选择

制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的SS、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。

预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具体工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理-厌氧-好氧-(后处理)组合工艺。如陈明辉等采用水解吸附—接触氧化—过滤组合工艺处理含人工胰岛素等的综合制药废水,处理后出水水质优于GB8978-1996的一级标准。气浮-水解-接触氧化工艺处理化学制药废水、复合微氧水解-复合好氧-砂滤工艺处理抗生素废水、气浮-UBF-CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。

3 制药废水中有用物质的回收利用

推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。如浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明显经济效益;某高科技制药企业用吹脱法处理甲醛含量极高的生产废水,甲醛气体经回收后可配成福尔马林试剂,亦可作为锅炉热源进行焚烧。通过回收甲醛使资源得到可持续利用,并且4~5年内可将该处理站的投资费用收回[33],实现了环境效益和经济效益的统一。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。

4 结语

关于处理制药废水的研究已有不少报道,但由于制药行业原料及工艺的多样性,排放的废水水质千差万别,所以制药废水并没有成熟统一的治理方法,具体选择哪种工艺路线取决于废水的性质。根据该废水的特点,一般应通过预处理以提高废水的可生化性并初步去除污染物,再结合生化处理。目前,开发经济、有效的复合水处理单元是亟待解决的问题。同时,应加强清洁生产的研究,并在处理前期考虑废水是否有回收利用的价值和适当的途径,以达到经济效益和环境效益的统一。

B. 纸浆如何固化成型

脲醛树脂
ure-aformaldehyde resins

尿素与甲醛反应得到的聚合物。又称脲甲醛树脂。英文缩写UF。加工成型时发生交联,制品为不溶不熔的热固性树脂。固化后的脲醛树脂颜色比酚醛树脂浅,呈半透明状,耐弱酸、弱碱,绝缘性能好,耐磨性极佳,价格便宜,但遇强酸、强碱易分解,耐候性较差。商品名Beetle。尿素与37%甲醛水溶液在酸或碱的催化下可缩聚得到线性脲醛低聚物,工业上以碱作催化剂,95℃左右反应,甲醛/尿素之摩尔比为1.5~2.0,以保证树脂能固化。反应第一步生成一和二羟甲基脲,然后羟甲基与氨基进一步缩合,得到可溶性树脂,如果用酸催化,易导致凝胶。产物需在中性条件下才能贮存。线性脲醛树脂以氯化铵为固化剂时可在室温固化。模塑粉则在130~160℃加热固化,促进剂如硫酸锌、磷酸三甲酯、草酸二乙酯等可加速固化过程。脲醛树脂主要用于制造模压塑料,制造日用生活品和电器零件,还可作板材粘合剂、纸和织物的浆料、贴面板、建筑装饰板等。由于其色浅和易于着色,制品往往色彩丰富瑰丽。

脲醛树脂一般为水溶性树脂,较易固化,固化后的树脂无毒、无色、耐光性好,长期使用不变色,热成型时也不变色,可加入各种着色剂以制备各种色泽鲜艳的制品。

脲醛树脂坚硬,耐刮伤,耐弱酸弱碱及油脂等介质,价格便宜,具有一定的韧性,但它易于吸水,因而耐水性和电性能较差,耐热性也不高。

脲醛树脂的用途相当广泛,除用作模塑料、层压塑料、泡沫塑料外,还可用于制作水溶性粘合剂,以粘接木材;用作织物的防缩防绉处理剂;用作纸张的罩光漆,以提高纸张的湿强度。下面主要对它在塑料上的应用作一简单绍。

(一)脲醛压塑粉

脲醛树脂的压塑粉俗称为电玉粉,它是由树酯、固化剂、填料、着色剂、润滑剂、稳定剂、增塑剂等组份用湿法生产而成的。

1 组成
(1)树脂用作压塑粉的脲醛树脂要求采用反应程度较浅的缩聚物,此时树脂粘度小,便于浸渍填料,并可保证在较长的生产周期和进行干燥后仍有适当的流动性,在工业上多采用尿素与甲醛在低温下的缩合物(一、二羟甲基脲的混合物)。通常采用脲与甲醛的配比为1:1。5(摩尔比),在PH=8(及温度)30—35度下全部溶解后,再加入脲量0。3%——0。54%的草酸及0。33%—0。88%的草酸酯,随即发生放热反应,温度上升,温度保持在55—60度,并严格控制PH=5。5—6。5,经60—75min 即得所需的脲醛树脂。由于缩聚度较低,实际上仅刚过加成反应阶段,主要的缩聚反应是在固化过程中进行的。
(2)固化剂压塑粉中所用的固化剂要求具有一定的潜伏性,常用的有草酸、邻苯二甲酸、苯甲酸、一氯乙酸等。
(3)填料最常用的填料是纸浆,其次为木粉或无机填料(石棉、玻璃纤维、云母等)。所用的纸浆是以木材为原料,经亚硫酸盐处理,溶去木材中非纤维素杂质,再经
漂白即得的纯净的纤维素。填料的用量为总物料量的25%-32%,用量过小,压塑粉流动性大,制品强度低;反之,用量过多时,压塑粉流动性减小,制品表面不光滑,耐水
性降低。
(4)着色剂着色剂可赋予塑料鲜艳的色彩,选用着色剂时要注意,所用着色剂的着色能力强,在塑料中能分散均匀,在加工温度下和长期的日光照射时不变色,不从制品中析出。通常用的着色剂是颜料,染料较少使用,用量为物料量的0.01%-0.2%。
(5)润滑剂润滑剂在压制成品时可提高料的流动性,并可从制品中析出,在制品和模具间形成隔离膜,使制品不易粘模。常用的润滑剂为硬脂酸的金属盐(如锌、钙、铝、镁等的金属盐)、有机酸的酯类(如硬脂酸环己酯、硬脂酸甘油脂等)。其加入量为物料量的0.1%-1.5%,过多时会污染制品的外观,减少光泽;过少则制品难于脱模。
(6)稳定剂在压塑粉中加入的催化剂虽说是潜伏性的催化剂,但是在室温的存放过程中仍会有少量的酸放出,从而影响到压塑粉的质量,因此通常加入一些碱性的物质以吸收放出的酸,常用的碱为六亚甲基四胺或碳酸铵。
(7)增塑剂在压塑粉中一般不用增塑剂,只在特殊的场合使用,目的是提高料的流动性,并降低固化时的收缩率。可用的增塑剂有脲及硫脲。
上述的各种组分常根据实际的情况而选用,不是所有的模塑料中都要用。

C. 物化法处理印染废水的研究进展


我国是印染纺织第一大国,而印染行业又是工业废水排放大户,据不完全统计,全国印染废水每天排放量为3.0×106~4.0×106t。印染废水具有水量水质变化大、有机污染物含量高、色度深、pH波动大等特点,过去常采用成本较低的生化法处理即可满足较低的排放标准。
1处理印染废水的物理方法
常用的处理印染废水的物理方法主要包括吸附、混凝、膜处理等。通常地,吸附和膜处理技术作为生物处理的深度处理技术;而混凝技术视具体情况可以放在生物处理工段的前面,也可以放在后面。这些技术都可取得较好的效果。不过一般来说此类技术只是对废水中的污染物进行了相间转移,并没有从根本上消除污染,而且相应材料消耗较大,增加了处理成本,限制了大范围的推广应用。
1.1吸附法
当印染废水与多孔性物质混合或通过由其颗粒组成的滤床时,污染物就会进入多孔物质的孔隙内或者是黏附在表面而被除去。吸附法适用于低浓度印染废水,多用于深度处理。应用最多的吸附剂是活性炭,但单独采用活性炭吸附处理印染废水的成本很高。
近些年来研究的重点主要在于寻找开发新型廉价易得的吸附剂,并对其进行改性来提高吸附性能,其种类和主要性能如表1所示。
1.2混凝法
混凝工艺流程简单,操作管理方便。但由于染料品种繁多,单一混凝剂难以适应成分复杂的印染废水,因此开发新型高效无毒混凝剂,对现有药剂进行改性,争取做到一剂多用是目前该技术发展的趋势。
目前常用的絮凝剂包括无机絮凝剂、有机絮凝剂及生物絮凝剂。无机絮凝剂主要有铝盐、铁盐等低分子混凝剂以及聚合氯化铝(PAC)、聚合硫酸铁等高分子混凝剂。传统的铝盐混凝一直占主导地位,其絮体小、形态稳定,对大部分染料废水处理效果比较理想,但反应较慢,受温度影响较大且有毒性;铁
盐反应快、絮体大、易失稳沉淀,对疏水性染料脱色效率高,但对亲水性染料脱色不理想,投加量不当会使水体呈现黄色,COD去除率低。有人围绕着铁磁性物质展开研究,通过磁种混凝使非磁性污染物获得磁性,实现磁分离来缩短时间。D.Pak等〔1〕将炼钢过程中产生的废渣粉碎(其成分中含有磁性铁氧化物)来处理纺织废水,沉降速度较FeCl3或PAC大10倍,对色度、SS、TOC、COD、总氮和总磷的去除率都较高;贾宏艺等〔2〕利用磁性纳米Fe3O4颗粒的超顺磁特性,在外加磁场的作用下将磁颗粒、亚铁盐及有机物形成的混凝体迅速沉降下来,COD去除率较只投加亚铁盐时高15%。
有机高分子絮凝剂较无机絮凝剂絮凝速度快且稳定,用量少,受共存盐类、pH及温度影响小,产生的残渣也较少,因此应用前景更加广泛。主要品种有聚丙烯酰胺、聚丙烯酸、聚二甲基二烯丙基氯化铵、聚胺等,由于合成高分子有毒性,因而天然无毒的高分子絮凝剂如壳聚糖日益受到重视。但壳聚糖只能溶解于弱酸性溶液,溶解度较小,在壳聚糖分子上引入基团对其进行改性,增强壳聚糖的螯合能力已经成为必然趋势。刘运学等〔3〕对比了羧甲基壳聚糖和壳聚糖对某毛巾厂印染废水的混凝处理效果,在相同工艺条件下前者得到的脱色率和COD去除率都优于后者。
近些年生物絮凝剂发展迅猛,其对水中胶体和悬浮物具有絮凝作用,且无二次污染,具有高效、无毒、絮凝对象广泛、脱色效果独特等优点,但是成本较高,技术上还存在一些问题。
1.3膜分离
膜分离技术由于无相变、设备简单、操作方便等优点,迅速发展日趋成熟并已形成工业化规模,但不适宜直接处理印染废水,否则极容易造成严重的膜污染且难以再生;膜分离技术多用于深度处理,降低和去除残存的有机物、色度并脱除无机盐分,分离前段工艺中形成的微生物、絮凝物或是投加的固体催化剂,与其他技术联用的效果极好,出水可以达到回用标准。丛利泽等〔4〕采用混凝沉淀法对COD高达2500mg/L,色度高达10000倍的印染废水进行预处理,后接膜生物反应器与纳滤膜分离系统组合工艺,处理后COD降到30mg/L,NH3-N降到8mg/L,色度为0,其中纳滤膜主要分离色素等生物难降解小分子物质。浙江某公司〔5〕采用超滤-反渗透联用处理印染废水,超滤可去除部分有机物及色度,更主要是去除可能污堵反渗透膜的胶体、细菌、病毒等杂质,延长了反渗透膜的清洗周期和寿命;反渗透可去除98%的盐分,完全去除硬度,同时对COD、色度也具有极高的去除作用,出水完全达到纯水标准。
2化学氧化方法
化学氧化能够使印染废水中的有机染料发生化学反应而被分解,常用的氧化剂包括O2、O3、ClO2、H2O2、新生态MnO2等。这些氧化剂都能与染料发生氧化还原反应,但由于成本高或效率低导致费用昂贵,于是人们纷纷添加催化剂来提高其氧化性能,通过产生氧化活性更高的˙OH来提高其氧化能力。印染废水中染料的颜色来源于染料分子的共扼体系—含不饱和基团—N=N—、C=C、—N=O、C=O、C=S—、—CH=N—等的发色体〔6〕。˙OH的标准氧化电位高达2.8eV,是除元素氟以外最强的氧化剂,能够有效打破共扼体系结构,使之变成无色的有机分子,无选择地将绝大多数有机物彻底氧化成CO2、H2O和其他无机物。
2.1光化学氧化法
光化学氧化印染废水不受盐离子种类、有机物浓度和pH波动的影响,无二次污染,操作条件温和。利用紫外光照射在TiO2的表面产生˙OH进而氧化有机污染物是当前实验室内最主要的方法,但对于色度较高的印染废水由于光透过性较差而使处理效果不够理想。
于是研究重点正在从利用紫外光的光催化氧化向利用可见光的光敏化氧化转变。因为染料本身就是一种光敏化剂,能够被可见光激发向TiO2转移电子,形成的导带电子被水中的氧捕获,进而形成˙O2-和˙OH,这样协助催化剂被间接激发,从而扩大了可利用光的波长范围,甚至可以直接利用太阳光,极大地降低了处理成本。在实验室内采取的措施有:改变光收集装置透镜聚焦〔7〕、复式抛物线集光器〔8〕、镀发光剂〔9〕、联合类Fenton技术〔8-10〕等,这些都得到了良好的处理效果。在突尼斯占地50m2的光敏化氧化工艺中试装置的运行结果表明,太阳光能够去除难降解有机物和色度〔11〕,甚至较实验室内有更高的效率(量子产率达15%),并提高了废水的可生化性,这在阳光充沛的地区具有极大的意义,只是太阳光的光效率过低,使得处理设施占地面积庞大。
2.2电化学氧化法
关于电化学氧化的研究主要集中在对电极的改进上,以提高电极材料的催化性能,提高电流效率降低能耗。温轶等〔12〕以碳纳米管电催化电极做阳极,不锈钢片为阴极分解处理含活性艳红X-3B的模拟印染废水,在酸性条件下当电流密度为20mA/cm2时可以有效电催化氧化有机染料。A.Sakalis等〔13〕以铌/硼掺杂金刚石为阳极来处理4种偶氮染料,与Pt/Ti相比,电耗更低,效率更高,脱色率高达90%。A.Koparal等〔14〕利用硼掺杂金刚石拉西环形阳极在双极滴流塔反应器中处理碱性红29,其分解率达99%,最优的条件下脱色率和COD去除率分别为97.2%和91%,而电流密度仅1mA/cm2。
实际印染废水往往含有大量无机盐类,导电性较强,无需额外投加电解质。研究表明,当废水中含有卤化物时电解效率会提高,其中NaCl影响最大,不仅能降低电耗,利于絮凝,还能在阳极形成ClO-继续氧化。A.Sakalis等〔15〕还发现Na2SO4也有相似效果可生成S2O32-,但效果没有NaCl明显。
另外通过电解产生的O2或是外界提供的O2还可以在阴极上还原产生H2O2,类似与Fenton试剂联用。JunshuiChen等〔16〕将Fe2+换成Co2+,获得了更强的催化能力,对溴邻苯三酚红的分解更加迅速。
电化学方法处理印染废水快速高效,优点众多,但由于价格昂贵,实际应用并不多,目前着重在对微观机理、中间产物及其毒性的研究。
2.3湿式氧化法
湿式氧化法(WAO)是在高温高压条件下,利用溶解的氧气将废水中有机物氧化的方法。该工艺操作条件苛刻,对反应器要求严格,且停留时间较长。旨在降低反应温度和压力的湿式催化氧化技术(CWAO)近年来受到广泛的重视和研究。
如何使反应条件变得更加温和是湿式催化氧化工艺的关键。有人投加H2O2、O3等氧化性物质来降低操作条件,也有人制备高效催化剂尝试在常压较低温度下处理染料溶液。Sung-ChulKim等〔17〕以10gAl-Cu柱状黏土催化H2O2处理1000mg/L的活性蓝19溶液,常压、80℃下,20min内可完全将其去除,还抑制了Cu的溶出。YanLiu等〔18〕在常温常压下向500mg/L的甲基橙模拟染料废水通入空气2.5h,采用Fe2O3-CeO2-TiO2/γ-Al2O3作为催化剂,脱色率、COD去除率和TOC去除率分别可达98.09%、97.50%和97.08%;HongzhuMa等〔19〕在常压、35℃、pH=5的条件下,用CuO-MoO3-P2O5催化氧气处理300mg/L的甲基橙溶液,脱色率仅有55%,而在相同条件下亚甲基蓝10min的脱色率就可达99.26%。
2.4Fenton法
Fenton试剂是由H2O2与Fe2+混合组成的氧化体系,H2O2在酸性条件下(一般pH<3.5)被Fe2+或Fe3+催化分解产生高活性的˙OH和˙O2H,同时Fe离子还具有絮凝作用。W.Bae等〔20〕采用Fenton法处理印染纺织废水时发现Fe离子絮凝的效果远大于自由基的氧化作用。此技术去除效率高,易操作,但是酸性的反应环境会造成设备腐蚀,因此在排放前须进行中和处理,且出水中Fe2+排放浓度高。李绍锋等〔21〕采用Fenton试剂对9种活性染料所配水样进行处理,pH在3~5之间,Fenton试剂对9种染料的降解效果均较好,色度去除率达90%以上,COD去除率在40%~80%之间。反应后的UV-VIS吸收光谱区已无N=N双键及芳香结构的特征
吸收,说明染料分子中此部分结构已被Fenton试剂彻底破坏。单独采用Fenton试剂氧化印染废水中的有机物时H2O2的消耗量过大,处理成本高,一般需与其他技术联用。近年来有人在Fenton工艺里引入紫外〔20〕、草酸盐等或是固定催化剂〔22-24〕,可进一步增强其氧化能力、扩大适用的pH范围和抑制Fe的溶出。JiyunFeng等〔25〕把Fe涂在斑脱土上作为光Fenton催化剂氧化偶氮染料OrangeⅡ,脱色率100%,TOC去除率达50%~60%。A.Durán等〔8〕对比了光Fenton技术在投加草酸盐与否时处理活性蓝4溶液的效果,发现前者有助于创造低pH氛围,提高了反应速率,且COD、TOC的去除率都优于后者。
2.5微波诱导催化氧化法
微波是指波长为1mm~1m、频率为300~300000MHz的一种电磁波。在液体中微波能使极性分子高速旋转,产生热效应;许多磁性物质如过渡金属及其化合物、活性炭等对微波有很强的吸收能力,常作为诱导化学反应的催化剂,当受微波辐射时不均匀的表面会产生许多“热点”,其能量比其他部位高得多,诱导产生高能电子辐射、臭氧氧化、紫外光解和非平衡态等离子体等多种反应,可以产生高温并形成活性氧化物质,从而使有机物直接分解或将大分子有机物转变成小分子有机物。
张国宇等〔26〕以颗粒活性炭为催化剂微波诱导氧化雅格素红BF-3B150%染料废水,较单独使用微波氧化和活性炭吸附两者时都具有明显的优越性,最优条件下色度和COD去除率分别为99.6%、96.8%。微波辐射能有效解吸活性炭表面的有机物,使活性炭再生并有利于有机物的消解和回收再利用。但是活性炭的机械强度较差,微波、高温及水力扰动都会使其结构受到破坏甚至破碎,从而影响了其催化活性和寿命。近些年来所使用的催化剂逐渐转到金属及其化合物,例如张惠灵等〔27〕用CuO/γ-Al2O3替换活性炭,效果明显,当掺杂CeO2后脱色率又提高30%,还延长了催化剂的使用寿命;洪光等〔28〕以改性氧化铝诱导微波氧化处理雅格素蓝BF-BR染料,催化活性和使用寿命均优于颗粒活性炭。
2.6超声催化氧化法
超声处理效果不受溶液色度影响,并可能实现完全褪色和100%矿化。超声空化能在液体中产生局部高温高压、高剪切力,诱使水分子及染料分子裂解产生˙OH自由基,另外溶解在溶液中的N2和O2也可以发生自由基裂解反应产生˙N和˙O自由基,进一步引发各种反应,使水中有机物矿化成无机物或转换成易生物降解的小分子化合物,还有可能促进絮凝。由于超声波产生的自由基浓度有限,能量转化率低,效果并不理想〔29〕,目前多使用催化剂〔30〕或者与其他氧化技术联用来提高效率。A.Maezawa等〔31〕发现超声提高了光催化分解酸性橙52的效率和TOC的去除率,并且不受Cl-的影响,可能是超声波增加了催化剂的表面积,提高了传质速度,同时在催化剂表面生成的H2O2有利于产生˙OH。Ki-TaekByun等〔32〕在多泡声致发光条件下30min内去除亚甲基蓝,较普通TiO2催化UV快得多,但同时证实了微气泡在崩溃瞬间发出的光对染料的氧化几乎不起作用。JianhuiSun等〔33〕研究表明超声可以显著增加低Fe2+浓度的Fenton试剂氧化酸性黑1的能力,最适条件下30min去除率达到98.83%,避免了普通Fenton含铁污泥的问题。G.Tezcanli-Güyer等〔34〕发现超声对O3和UV有催化作用,可以提高O3的传质,同时在催化剂表面生成的H2O2有利于产生˙OH,当3种方法协同作用时,酸性红7的分解速率大大提高。
符德学等〔35〕采用超声协同钛铁双阳极电解体系氧化含有碱性湖蓝5B的印染度水,集超声空化、阳极催化氧化、电生自由基氧化和电絮凝等技术于一体,COD去除率达到90.2%,脱色率达到98.3%。
3结束语
上述方法用来处理印染废水各有优劣,物理法总体上处理成本较高,其中的吸附法和膜分离技术适合于作为深度处理技术;化学氧化处理效率高、二次污染较少,越来越受到青睐,但直接用于生产则费用昂贵,这限制了这些高效技术的实际应用。比较有效的处理工艺是将化学氧化技术与生化技术结合,充分发挥各自的优势,通过物化处理减少印染废水的生物毒性,提高可生化性,再采用处理成本较低的生化法进一步处理。吸附法和膜分离技术作为出水要求严格的工艺或回用水技术较为合适。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

D. 污水处理中,加盐酸与加草酸的区别以及对pac的影响

4mg/l的意思是有效氯的投加量,应该是用在二氧化氯发生器上的吧,原理是2naclo3+4hcl

2clo2↑
+cl2↑+2nacl+2h2o,一般每生产1克有效氯消耗氯酸钠0.65g、盐酸1.3g,下面那个网址你详细看下就行

E. 污水处理厂用那些水处理药剂

絮凝剂、阻垢分散剂、缓蚀阻垢剂、杀菌灭藻剂、缓蚀剂

F. 高锰酸钾废液怎么处理

问题一:高锰酸钾废液处理 10分 高锰酸钾是盐,如果浓度高的话具有一定腐蚀性,浓度低的话可以杀菌,可以稀释到浅紫色倒掉,没事。

问题二:废水中有大量高锰酸钾如何去除 高锰酸钾含量有多少,是否有回收价值?如果没有,可以考虑加入还原剂将其分解,如加入双氧水,但是形成的锰离子估计还要回收吧,现在国家对排放要求很严的。
请描述具体含量,

问题三:高锰酸钾怎样洗掉 锰酸钾是强氧化剂,利用它强氧化的作用来消毒,所以想驱除他,一定要用还罚性的化学药品或用品
1.实验室中常用的:硫代硫酸钠\亚硝酸钠\双氧水\柠檬酸\草酸
2如果没有以上试剂,家中的常用物品可以用来试一试
阿斯匹林药片,一般退烧药中都有
维生素C药片效果不错
漂白粉可以一试
如果是弄到衣服上,用草酸就可以了。

问题四:污水处理中怎样去除高猛酸钾的红原色 投加聚合氯化铝或聚合氯化铝铁.
氯铝铁对铁离子去除有不错的效果,两种药剂对于色度的去除能达到80%以上.
如果你已经投加PAC或PAFC没有效果,可以搭配一定浓度的絮凝剂试一下.
具体加多少效果最好根据实验室小试.
如果还不能解决,就从源头解决,尽量避开这种高色度的污水,或减少进水增加停留时间.

问题五:高锰酸钾溶液把石英石台面弄脏了怎么处理 可以用热抹布沾取洗洁精擦掉。
家庭除去光滑物品上胶印的方法很多,可以尝试以下方法:
1、用肥皂加少许氨水与松节油的混合液,可以去掉许多玻璃上胶印。
2、用粘性好的透明胶反复粘撕,可以去掉表面一些。
3、用一点稀钠水一擦就掉,或者用油漆稀料也可以。
4、可以用电吹风吹干,然后在轻轻一刮就可以了。
5、用棉签蘸洗甲水擦拭。
6、风油精擦拭。
7、使用专用清洁剂或运动鞋去污膏擦拭。
8、用绘图用的4b橡皮就是很软的那种韩国橡皮可以把它擦掉。
9、如果是残留很久的痕迹已经变硬的,可以先用热毛巾把它弄软了再擦。

问题六:高锰酸钾弄到手上怎么办 使用高锰酸钾溶液,常会使手等接触部位染成黄色,一般洗涤剂不能去除。可用1粒阿斯匹林片蘸水擦洗,就很容易洗去

G. 染料废水处理设计方案

染料品种数以万计,印染加工过程中约有10%~20%的染料随废水排出,每排放1t染料废水,就会污染20t水体。废水中的染料能吸收光线,降低水体透明度,造成视觉上的污染。染料废水是难处理的工业废水之一,具有色度深、碱性大、有机污染物含量高和水质变化大的特点。大多数染料为有毒难降解有机物,化学稳定性强,具有致癌、致畸、致突变作用;直接危害人类健康,还严重破坏水体、土壤及生态环境,造成难以想象的后果。有效解决染料废水治理问题是消除印染行业发展瓶颈的关键所在。
1 、染料废水及其污染
染料工业污染中尤以染料废水的污染问题最为突出。近些年来,我国每年污水排放量达390多亿吨,其中工业污水占51%,而染料废水又占总工业废水排放量的35%,而且还以1%的速度在逐年增加。每排放1t染料废水,就能造成20t水体的污染。各行业中,印染纺织业的COD排放量排在第4位,而且排放比重还在逐年增加。“三河三湖”中,染料废水对太湖、淮河流域造成的污染状况尤其严重。
染料废水主要来自于染料及染料中间体的生产企业,由染整过程中排放出的染料、浆料、助剂等组成。随着印染工业的迅猛发展,染料废水已成为水体中几种最主要的污染源之一。目前世界染料年产量约为(8~9)x105t。我国是纺织品生产和加工大国,纺织品出口额已多年来列居世界首位,每年的染料生产量达1.5×105 t,其中大约10%~15%的染料会直接随废水排入水体中。
染料废水色度高、水量大、碱性大、组成成分复杂,属于比较难处理的工业废水之。染料是染料废水中的主要污染物,带有各类显色基团(如-N=N-,-N=O等)和部分极性基团(-SO3Na,-OH,-NH2),成分复杂,大多数是以芳烃和杂环为母体,属较难降解的有机污染物,也是我国各大水域的重要污染源。
大多数有机染料化学稳定性强,具有三致(致癌、致畸、致突变)作用,是典型有毒难降解有机污染物。此外,废水中的染料能吸收光线,降低水体的透明度,对水生生物、微生物的生长不利,并且降低了水体的自净能力,同时导致视觉污染,严重破坏水体、土壤及生态环境,直接和间接地危害人类身体健康。
2、 染料废水的处理方法
对染料行之有效的降解和处理技术是治理染料废水的重要前提。针对大多数染料化学性质稳定、难以降解的特点,各国科学家都高度重视染料及染料废水的降解和处理方法的研究。随着科技进步以及污染治理技术的不断发展,人类也找到了很多行之有效的处理染料废水的方法,概括起来不外乎物化法、生物法、物化一生物联合法。
2.1 物化法
2.1.1 混凝沉降法
混凝沉降法是目前处理染料废水效果比较稳定、工艺较为成熟的方法。普遍接受的机理有桥联作用、压缩双层、网捕和电中和作用。混凝剂自身特性决定了其沉降性能的好坏,很多环境因素包括温度、pH和Eh等则可能对沉降功能起促进或抑制作用。近年来,IPF(无机高分子絮凝剂)成为研究混凝絮凝行为和机理的热点。与普通的混凝剂相比,IPF能形成更多的有效絮凝的形态A13+。混凝法的主要研究方向是开发有效混凝剂,尤其是有机一无机复合混凝剂。
张凯松等人副研制的无机一有机复合混凝剂,对染料废水的处理效果比聚合氯化铝(PAC)更为明显。吴敦虎等人¨列对利用硼泥复合混凝剂处理染料污水的研究结果表明:当剂量为0.3~0.6 g/L,pH值为4.0~11.5时,脱色率达到92%以上,优于PAC。
2.1.2膜分离法
膜分离技术具有工艺简单、低能耗、不对环境产生污染的优势。通过自行研制醋酸纤维素(CA)纳米滤膜,郭明远等人指出:CA纳滤膜对活性染料废水的处理和回收染料效果明显。掺入活性炭填充共混的改性壳聚糖超滤膜,适当交联后对酸性红染料废水的最大脱色截留率达98.8%。冯冰凌等人采用壳聚糖超滤膜处理染料废水,脱色率超过95%,COD去除率达80%左右。吴开芬u引利用超滤法对靛蓝染料的废水进行处理,可实现染料的高浓度溶液的直接回用,透过液则可作为中性水被再循环利用。Soma等人mo利用氧化铝微滤膜,对不溶性染料废水进行过滤时的截留率高达98%。
由于膜污染、浓差极化和过快的更换频率,加之膜的价格较贵,使得膜分离技术处理染料废水的成本过高,大大限制了膜分离技术在染料废水治理行业的应用和推广。
2.1.3催化氧化法
催化氧化法是通过催化作用加快体系中氧化剂的分解,并使之与水中有机物迅速反应,在较短的时间内致使有机污染物氧化降解。针对采用高级化学氧化法和好氧生物处理法处理分散染料废水时效果不太理想这一问题,周建等人采用催化氧化法对内电解处理后不能达标的染料废水进行处理,不仅日处理蒽醌系列分散染料达2500t,还降低了内电解处理后未达标染料废水的色度和COD值,大大减少了运行费用。ArslanLt引采用Fe2+催化臭氧氧化法对分散染料废水进行处理,研究结论指出,单独采用臭氧(应用剂量为2300 mg/L)氧化法时,只在pH=3的条件下有一定的降解效果,脱色率也只有77%,COD的去除率仅为ll%;但采用Fe2+絮凝、臭氧氧化和Fe2+催化臭氧氧化相结合的方法处理时,Fe“使用剂量为0.09~18 mmol/L、染料废水pH值为3—13的范围内,脱色率达到了97%,对COD的去除率也提高到54%。
2.1.4 Fenton试剂法
以Fe3+或Fe2+为催化剂,在H202存在时产生的强氧化性,能使许多有机分子氧化,而且反应体系不需要高温高压,反应条件不苛刻,反应设备也比较简单,适用范围较广。陈文松等人利用低剂量Fenton氧化一混凝法处理模拟和实际染料废水的研究结论指出,该方法对处理同时含有亲水性和疏水性染料、成分复杂的染料废水特别适合,而且操作方便、运行成本不高。近年来一些学者把紫外光(uV)、草酸盐等也引入Fenton法中,使得Fenton法的氧化能力大大提高,处理效果也更加显著。K.Swaminathan等人心川就光助Fenton体系对偶氮染料活性橙-4进行了脱色研究,其研究结论指出,光助Fenton体系降解能力远强于一般Fenton体系。
Fenton法的不足之处在于:氧化能力相对较弱,出水因含大量铁离子而显色。近年来,铁离子的固定化技术,成为Fenton氧化法的重要方向。
2.1.5 光氧化法
光氧化法是利用光化学反应降解污染物,包括无催化剂和有催化剂参与2种,前者也称光化学氧化,后者又称光催化氧化。光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物,最终生成CO2、H20和其他一些离子,如PO43-、NO3-、Cl-等。有机物的光降解过程可分为直接光降解和间接光降解。直接光降解是指有机物分子吸收光能后进一步发生化学反应。间接光降解则是周围环境存在的某些物质吸收光能形成激发态后,再诱导有机污染物产生一系列的氧化降解反应,它在处理环境中难生物降解的有机污染物时更为有效。
2.1.6臭氧氧化法
臭氧的氧化能力极强,除分散染料外,它能够破坏有机染料的发色或助色基团而具有一定的脱色作用。H.Y.Shu等人对8种偶氮染料在单独O3,氧化和UV/O3氧化作用下的降解进行了比较,研究结果表明,可能是因为染料废水色度过深,吸收了大部分紫外光,引入UV后有机染料的降解速度并没有明显加快。史惠祥等人口刮利用臭氧降解偶氮染料阳离子红x-GRL的研究结论中指出,臭氧对染料的脱色以直接氧化为主。
由于臭氧在水中的溶解度较低,如何更有效地提高臭氧在水溶液中的溶解量,已成为研究臭氧氧化技术的热点和关键。此外,臭氧的使用会产生一些副产品,尤其要重视的是羰基化合物中的甲醛、乙醛等醛类,因这类物质具有急性和慢性毒性和一定的致癌、致畸、致突变性,容易导致二次污染,另外,臭氧发生器的成本相对较高,因此单独使用不够经济。

2.1.7 超声氧化法
随着超声化学的研究深入,超声氧化法被认为是一种清洁且具良好应用前景的方法,成为处理水污染的一项有效技术。超声波作用下产生的声空化效应形成的高温高压促使空化气泡内部的水蒸汽与其他气体发生离解产生自由基,引发超声化学反应的进行。N.Ince等人对pH和染料分子结构对超声降解效率的影响研究表明:pH对染料的降解有重要影响,降解程度随pH的减小而增加;分子质量越小,结构越简单,且具有偶氮基临位羟基取代基的染料分子越易被降解。G.Tezcanli—Gtiyer等人刚发现羟基自由基首先进攻染料的发色基团,染料的脱色过程快于芳香环的破坏过程。J.Ge等人研究也指出,引入超声能有效加快染料的降解,并提高矿化速率。
2.1.8 电化学法
电化学处理技术近年来进展很快,原基础上增加了氧化、光催化氧化或催化氧化的协同作用,微电解技术的局限性问题得到了较好地解决。周光元等人处理含盐染料废水的研究表明,处理过程中余氯的产生对脱色和去除COD起关键作用,电解l h后,脱色率可达85%,COD的去除率也达到99.8%。章婷曦等人采用内电解-催化氧化-氧化塘法处理染料废水时COD的去除率和脱色率都超过95%。祁梦兰等人采用微电解一催化氧化一飞灰吸附的组合工艺处理活性染料废水脱色率达99.9%,COD去除率在95%以上。
目前,电化学方法主要应用在去除具有生物毒性的有机污染化合物方面,这种方法最具吸引性的一大特点是能发挥电化学方法所特有的电催化性能,可以有选择性地将有机污染物降解到某一特定程度。此外,电化学方法与其他处理方法有较好的协同性,可实现联用,达到理想的处理效果。但是,利用电化学法彻底降解水中的有机污染物设备投入过高,而且需要消耗大量能源。
2.2 生物法
生物处理法是通过生物菌体的絮凝、吸附功能和生物降解作用,对染料进行分离和氧化降解。生物絮凝和生物吸附并不使染料发生化学变化。而生物降解过程则是利用微生物酶等的作用对染料分子进行氧化或还原,破坏染料的发色基团和不饱和键,并通过一系列氧化、还原、水解、化合等过程,将染料分子最终降解成为简单的无机物,或转化成各种微生物自身需要的营养物或原生质。生物处理法有好氧处理、厌氧处理和厌氧-好氧联合处理3种。
针对传统的生物处理法对纺织、染料废水中的有机染料不能起到有效的处理作用这一实际情况,一些学者近些年来着力研究开发厌氧一好氧联用技术,并取得了意想不到的效果。一些研究表明,同时应用好氧法和厌氧法,通过实现优势互补,很多好氧生物法不能氧化降解或降解程度有限的有机染料,通过厌氧法都能实现不同程度的降解。
作为实用的水污染处理技术之一,微生物处理染料废水的开发和研究已有多年的历史。微生物脱色降解机理非常复杂多样,很多降解过程和反应机制还很不清楚,有待不断探讨。
由于对各种有毒有害的、难以降解的、在环境中宿存的异生物质具有低耗、高效、广谱、适用性强的生物降解作用,以黄孢原毛平革菌为代表的白腐真菌成为治理多种污染物的有效武器,近些年来发展起来的真菌技术被很多学者称之为创新环境生物技术。可能是由于其在次生代谢阶段产生的木质素过氧化酶和锰过氧化酶的作用,许多白腐真菌对染料有广谱的脱色和降解能力。培养条件对白腐真菌脱色及降解活性有较大的影响。Conneely等人认为,白腐真菌对一些染料废水,如Rem.azol绿蓝G133、酞菁染料、Everzol绿蓝和Heli.gon蓝等生物吸附作用较强,并通过胞外酶的代谢作用使染料脱色降解。
利用微生物对染料废水进行处理的发展方向之一是选育和培养高效降解工程菌。微生物对有机染料的脱色、降解,以前多集中在兼性厌氧菌,如芽孢杆菌、假单胞菌和一些光合细菌,近年来逐渐筛选到了不少新品种。一些学者采用假单胞菌属对多种印染工业废水进行处理,研究结果表明,食油假单胞菌对其中的甲基橙、B15染料的脱色率都能达到80%以上,并且在高浓度染料环境中,食油假单胞菌表现出很强的耐受性。
20世纪80年代初,固定化微生物技术成为国内外有机工业废水处理的研究热点。这种技术是将可降解染料的微生物固定在特定载体的表面,提高微生物降解效率。用于固定化的微生物有单一和混合等多种方式。相关研究指出,混合菌脱色降解作用更好。随着固定化脱色菌载体技术的发展,脱色降解反应时问也在大大缩短。
生物强化技术是在生物处理体系中投加具有特定功能的微生物来改善原有处理体系的处理性能,用于对难降解有机物的去除。实施生物强化技术的途径主要有:投加高效降解的微生物;投加遗传工程菌(GEM);对现有处理体系的营养供给进行优化,通过添加基质或底物类似物质,来刺激微生物的生长或提高其活力。
膜生物反应器也是近些年来发展起来的一种新型污水处理技术。最早应用于发酵工业,20世纪80年代,膜生物反应器技术引起了学术界高度重视。膜技术能截流生物体,减少出水中所含的生物。通过无泡鼓气、膜生物反应器使氧的利用最大化。近年来,膜生物反应器已成功地应用于处理水道污水、粪便污水和垃圾渗滤液,并开始应用于处理染料废水。很多学者认为,含酶膜生物反应器将是未来处理染料废水的重要方向。由于膜制造费用高且易堵塞,膜生物反应器技术在水处理领域全面推广还受到了一定限制。
尽管生物法得到了很大发展,但随着染料废水的可生化度降低,受到微生物对营养物质、pH值、温度等条件有苛刻要求的限制,在实际应用处理染料废水时,生物法很难适应染料废水水质波动大、染料种类多、毒性高的实际状况。如微生物的高效化及固定化等生物强化技术。许多专家和学者都致力于高效降解菌的筛选和基因工程菌的构建等研究工作,实现利用大自然现有的丰富资源来为人类服务,但是实践表明,新开发的高效菌应用于染料废水的处理时,并不一定能够完全达到预期的强化作用。此外,微生物本身还存在着安全性问题,高效菌与基因工程菌流落到自然环境中,可能对自然环境和生态平衡造成威胁,因而,这些生物方法的应用必须事先经过严格的环境安全性检查和评估。同时,微生物对染料的降解机理以及微生物的代谢机制还需要进一步研究和探讨。

H. 请教液碱的用途

液碱是重要的化工基础原料,用途极广。化学工业用于制造甲酸、草酸、硼砂、苯酚、氰化钠及肥皂、合成脂肪酸、合成洗涤剂等。纺织印染工业用作棉布退浆剂、煮练剂、丝光剂和还原染料、海昌蓝染料的溶剂。冶炼工业用制造氢氧化铝、氧化铝及金属表面处理剂。

仪器工业用作酸中和剂、脱色剂、脱臭剂。胶粘剂工业用作淀粉糊化剂、中和剂。另外,在搪瓷、医药、化妆品、制革、涂料、农药、玻璃等工业都有广泛应用。

(8)处理污水用草酸好还是pac好扩展阅读:

液碱即液态状的氢氧化钠,亦称烧碱、苛性钠。现有氯碱厂由于生产工艺的不同,液碱的浓度通常为30-32%或40-42%。

纯品为无色透明液体。相对密度1.328-1.349,熔点318.4℃,沸点1390℃。纯液体烧碱称为液碱,为无色透明液体。工业品多含杂质,主要为氯化钠及碳酸钠等,有时还有少量氧化铁。当溶成浓液碱后,大部分杂质会上浮液面,可分离除去。

在酸碱电离理论中,碱指在水溶液中电离出的阴离子全部都是OH-的物质;在酸碱质子理论中碱指能够接受质子的物质;在酸碱电子理论中,碱指电子给予体。

参考资料来源:网络-碱

参考资料来源:网络-液碱

I. 水处理化工原材料,跟一些其他化工材料有哪些

化学原料已经被广泛用于污水处理,在污水处理行业,我们污水处理人员把这些化工原料叫污水处理药剂,因此,化工原料也可以为水环境污染治理贡献力量。
污水处理化工原料有上百种,但是污水处理常用的化工原料只有十几种,例如:盐酸、硫酸、氢氧化钠、碳酸钠、氯化镁、磷酸氢二钠、水玻璃、硅酸镁铝、聚合氯化铝、聚丙烯酰胺、聚铁、三氯化铁、明矾、绿矾等等。

阅读全文

与处理污水用草酸好还是pac好相关的资料

热点内容
原油实沸点蒸馏流程图 浏览:287
太阳能热水器真空管除垢 浏览:401
环氧低温固化氨基树脂 浏览:405
自来水跟污水一样怎么办 浏览:599
帝豪车载空气净化器滤芯怎么更换 浏览:39
日本废水氚 浏览:590
污水泵可以露出水面 浏览:665
家用反渗透纯水机废水一直流什么原因 浏览:18
净水前置与末端多少钱 浏览:566
史密斯电热水器除垢价格 浏览:771
开景ro膜清洗液 浏览:30
ro膜的进水cod要求 浏览:786
德国梅尔直饮机滤芯第三根多少钱 浏览:742
新余净化器怎么样 浏览:783
防排烟过滤器 浏览:83
路障水马的树脂粉成品 浏览:711
新奥拓汽车空调滤芯怎么换 浏览:796
装载机滤芯怎么换油 浏览:853
绿之韵净水器怎么使用 浏览:839
悬浮催化蒸馏技术特点 浏览:547