导航:首页 > 污水知识 > 菊酯类废水

菊酯类废水

发布时间:2024-09-18 05:48:25

㈠ 氯氟醚菊酯对人体有什么危害

氯氟醚菊酯是吸入和触杀型杀虫剂,对杀灭蚊、蝇等害虫效果好。对人属于低毒,如果误吸,应当立即转移至空气清新处,严重者给予吸氧并就医。一般低含量的氯氟醚菊酯可以很快的被人体代谢掉,但是不要长期接触。

菊酯是灭蚊产品的主要成分,是一种能够有效杀死蚊蝇的农药,有天然菊酯及化学合成菊酯。

天然菊酯的主要成分为除虫菊素,化学合成的菊酯称为拟除虫菊酯,种类较多,有氯菊酯、胺菊酯、氯氰菊酯、溴氰菊酯、右旋丙烯菊酯、富右旋反式丙烯菊脂、四氟甲醚菊酯、氯氟醚菊酯、四氟苯菊酯、甲氧卞氟菊酯、炔丙菊酯等等,这些成分都属于世界卫生组织推荐可用于防治卫生害虫及其媒介的农药。

㈡ 农药废水的农药废水处理方法

光催化法
锐钛型的TiO2 在紫外光的照射下能产生氧化性极强的羟基自由基,能够氧化降解有机物,使其转化为CO2、H2O以及无机物,降解速度快,无二次污染,为降解处理农药废水提供了新思路 。对于光催化降解有机物目前关注的问题,一方面是降解过程中的影响因素和降解过程的转化问题 ,对纳米TiO2 的固载化和反应分离一体化成为光催化领域中具有挑战性的课题之一,另一方面是提高制备催化剂催化效率的问题。
陈士夫等在玻璃纤维、玻璃珠、玻璃片上负载TiO2 薄膜光催化剂,并用于有机磷农药的降解,取得了满意的结果。梁喜珍通过研究TiO2 光催化降解有机磷农药乐果废水的影响因素,获得了适宜的工艺条件。潘健民通过对纳米TiO2 及其复合材料光催化降解有机磷农药进行的研究,分析了在不同催化剂、不同浓度AgNO3 浸渍、不同实验装置条件下的光催化降解效果,说明TiO2 表面担载微量的Ag后,不仅能提高纳米TiO2 催化活性,而且有较好的絮凝作用,使TiO2 与处理后的水易分离,后处理更方便。葛湘锋研究发现光催化降解在一定条件下符合零级动力学反应模式,而且反应速率常数和反应物起始浓度也呈线形关系,当反应物浓度增长过快达到一定值时,其反应速率常数明显下降,反应物浓度过高时,则降解反应不再符合零级反应。
目前采用的光催化体系多为高压灯、高压氙灯、黑光灯、紫外线杀菌灯等光源,能量消耗大。若能对纳米TiO2 进行有效、稳定地敏化,扩展其吸收光谱范围,能以太阳光直接作为光源, 则将大大降低成本。
超声波技术
超声波是频率大于20 kHz的声波,超声波诱导降解有机物的原理是在超声波的作用下液体产生空化作用,即在超声波负压相作用下,产生一些极端条件使有机物发生化学键断裂、水相燃烧、高温分解 或自由基反应。
钟爱国等研究表明,在甲胺磷浓度为1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、温度30 ℃、Fe2 + >50 mg·L - 1、充O2 至饱和的条件下,用低频超声波(80W·cm- 2 )连续辐照120 min,甲胺磷去除率达到99. 3% ,乙酰甲胺磷的去除率达到99. 9%。孙红杰等研究了各种因素超声波频率、功率、声强、变幅杆直径和溶液初始pH等对超声降解甲胺磷农药废水的影响。Kotronarou等得出对硫磷在超声条件下可以被完全降解为PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反应温度为20 ℃、pH为7. 4时,对硫磷无催化水解半衰期为108 d,其有毒代谢产物对氧磷水解半衰期为144 d。Cristina等对马拉磷农药在超声波辐射下, 82μmol·L - 1的马拉磷溶液30 min内pH从6下降到4, 2 h内所有的马拉磷全部降解,产物均为无机小分子。
蒋永生、傅敏等报道了用超声波降解模拟废水中低浓度乐果的试验表明,辐射时间延长,降解率增加,加入H2O2 可明显提高乐果的降解率,在溶液初始浓度较低的范围内,降解速率随浓度增大而加快,
浓度增大到一定值后,降解速率变化不明显,超声降解时溶液温度控制在15~60 ℃为宜。谢冰等对久效磷和亚磷酸三甲酯生产过程中产生的废水进行了超声气浮预处理,可降低其COD和毒性,提高其可生化性,再经以光合细菌为主的生化处理,可使其COD降至200 mg·L - 1。
王宏青等研究表明: 灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢; Fe2 +和H2O2 对降解有促进作用,且Fe2 +促进作用比H2O2 的大;采用不同气体饱和溶液时,降解率的大小顺序为Ar >O2 >Air >N2。红外光谱表明降解产物为SO42 - 、NO3- 和CO2。
目前有关超声辐射降解有机污染物的研究,大多属于实验室研究,还缺乏系统的研究,更缺少中试数据。
生物法
在国内,农药厂家大多建有生化处理装置,但目前几乎没有一家能够获得理想的处理效果。因此,对这类废水的生化处理研究是十分必要的。已有大量研究表明真菌、细菌、藻类等微生物对有农药有很好的降解作用。
程洁红从土壤中分离得到以多菌灵生产农药废水为惟一碳源生长的13株菌,经鉴定为假单胞菌属( Pseudom onas sp. ) ,研究了SBR 工艺运行的最佳条件,所筛选的菌株对多菌灵农药废水的COD去除率为52. 3%。张德咏,谭新球从生产甲胺磷农药的废水中筛选具有促生活性及可降解甲胺磷的光合细菌菌株, 培养后第7 d, 该菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,乐果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,该菌株也能够以三唑磷、辛硫磷作为惟一碳源生长。
生物膜法将微生物细胞固定在填料上,微生物附着于填料生长、繁殖,在其上形成膜状生物污泥。与常规的活性污泥法相比,生物膜具有生物体积浓度大、存活世代长、微生物种类繁多等优点,尤其适宜于特种菌在废水体系中的应用。王军、刘宝章利用半软性填料进行挂膜,处理菊酯类、杂环类综合农药废水。当进水CODCr为6 810、3 130、1 890mg·L - 1时,经过24 h的作用,细菌膜对CODCr的降解率分别达到24. 8%、43. 5%、53. 4%。
电解法
铁炭微电解法是絮凝、吸附、架桥、卷扫、共沉、电沉积、电化学还原等多种作用综合效应的结果,能有效地去除污染物提高废水的可生化性。新产生的铁表面及反应中产生的大量初生态的Fe2 +和原子H具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环;微电池电极周围的电场效应也能使溶液中的带电离子和胶体附集并沉积在电极上而除去;另外反应产生的Fe2 + 、Fe3 +及 其水合物具有强烈的吸附絮凝活性,能进一步提高处理效果。
雍文彬采用铁屑微电解法能有效去除农药生产废水中的COD、色度、As、氨氮、有机磷和总磷,去除率分别可达76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。张树艳采用铁炭微电解法对几种农药配水进行处理,试验结果表明,最佳反应条件下,废水的CODC r 去除率都可达67%以上;最佳反应条件:铁/水比为(0. 25~0. 375) ∶1,铁/炭比为( 1~3) ∶1, pH3~4,反应时间1~1. 5 h。废水经微电解处理,然后进行Fenton试剂氧化,则微电解出水中Fe2 + 可作为Fenton的铁源,且微电 解时有机污染物的初级降解也有利于后续Fenton反应的进行。吴慧芳采用微电解和Fenton试剂氧化两种物化手段对菊酯、氯苯BOD5 /CODCr = 0. 03)和对邻硝氯苯(BOD5 /CODCr = 0. 05) 3种废水按比例配制而成的综合农药废水进行预处理,结果表明:在废水pH为2~2. 5时,经微电解处理后,BOD5 /CODCr比值达0. 45以上,可生化性提高; Fenton试剂对综合农药废水CODCr去除率为60%左右,色度去除率接近100%。刘占孟以活性炭-纳米二氧化钛为电催化剂,对甲胺磷溶液的电催化氧化降解规律进行研究表明,该工艺能有效去除废水中的有机物,纳米二氧化钛催化剂的催化效果显著。电解效果随着电解时间的延长、催化剂的增加而升高,低pH有利于电催化氧化过程中H2O2 和·OH 的生成。王永广采用电解/UASB /SBR工艺处理生化性差、氯离子浓度高的氟磺胺草醚农药废水。设计电流密度取30. 0 A·m- 2 ,该工程的电费为2. 30 元·m- 3 ,药剂费为0. 30 元·m- 3 ,人工费为1. 50元·m- 3 ,运行成本为4. 10元·m- 3 , COD去除率> 97%。
氧化法
深度氧化技术(AOPs)可通过氧化剂的组合产生具有高度氧化活性的·OH,被认为是处理难降解有机污染物的最佳技术。
引入紫外线、双氧水联合作用和调控反应体系pH,可进一步提高臭氧深度氧化法的效率。陈爱因研究表明,紫外光催化臭氧化降解农药2, 4-二氯苯氧乙酸(2, 4- D)废水成效显著,臭氧/紫外(UV)深度氧化法(比较单独臭氧化、臭氧/紫外、臭氧/双氧水、臭氧/双氧水/紫外4种臭氧化过程)是最好的臭氧化处理方法。2, 4- D 200 mg·L - 1的水样,反应30min, 2, 4- D降解完全, 75 min时矿化率达75%以上。碱性反应氛围有利于臭氧化反应进行。双氧水的引入对2, 4- D降解无明显促进作用,这是因为双氧水分解消耗OH- ,没有缓冲的反应体系pH降低,限制了双氧水的分解和·OH自由基链反应。表明添加H2O2 对光解效果有一定改善作用,投加量达到75 mg·L - 1时,水样的COD去除率由零投加时的20%提高到40% ,但过量投加对处理效果没有进一步促进作用。曝气能促进光解效果,特别对UV /Fenton工艺作用更为显著,光解水样2 h后,曝气条件下的COD 去除率可从不曝气条件下的30%提高到80%。
催化湿式氧化能实现有机污染物的高效降解,同时可以大大降低反应的温度和压力,为高浓度难生物降解的有机废水的处理提供了一种高效的新型技术。催化剂是催化湿式氧化的核心,诸多学者致力于研究开发新型高效的催化剂。韩利华等以Cu和Ce为活性组分,制备了Cu /Ce复合金属氧化物,比较了均相-多相催化剂的催化性能。韩玉英在催化湿式氧化法处理吡虫啉农药废水中,分别用硝酸亚铈和硝酸铜作催化剂,反应一定时间后COD去除率分别达到80%和95. 5%。用硝酸铜作催化剂处理吡虫啉农药废水具有较高的活性,但Cu2 + 有较高的溶出量。张翼、马军在废水中加入2种自制的催化剂,结果表明,只用臭氧处理的情况下7 d后有机磷的去除率为78. 03%; 在催化剂A 存在下, 去除率可达93. 85%;在催化剂B存在下,去除率可达为88. 35%。在室温和中性介质中均属于一级反应。ClO2 是一种强氧化剂,碱性条件下氰根(CN- )先被氧化为氯酸盐,氯酸盐进一步被氧化为碳酸盐和氮气,从而彻底消除氰化物毒性。陈莉荣将含氰农药废水空气吹脱除氨后,采用ClO2 作为氰化物的氧化剂,氰化物浓度为60~80 mg·L - 1 , pH为11. 5左右时,按ClO2 ∶CN- ≥3. 5 (质量比)投药,氰化物的去除率达97%以上,氧化后废水经生物处理系统进一步处理后各项指标都能达排放标准要求。

㈢ 现在农业面源污染最常用的治理技术是什么

农村生活污水治理技术
近20年来, 国外在农业面源污染控制实践中, 农村生活污水治理研究得到了较大发展。国内在消化、吸收国外先进技术的基础上, 对生活污水处理技术进行了集成及创新, 尤其针对我国农村分散式生活污水处理, 开展了技术研究与工程实践, 取得了较好进展。
人工湿地污水处理系统是一种研究较为广泛的污水处理系统。它是在自然湿地基础上发展起来的污水处理生态工程技术, 利用自然生态系统中的物理、化学和生物的三重协同作用来实现对污水的净化[5−6]。澳大利亚科学和工业研究组织(CSIRO)研制的“FILTER”污水处理系统则是一种“过滤、土地处理与暗管排水相结合的污水再利用系统”。其特点是过滤后的污水都汇集到地下暗管排水系统中, 并设有水泵, 可以控制排水暗管以上的地下水位以及处理后污水的排出量[7]。“FILTER”系统对生活污水的处理效果好, 其运行费用低, 特别适用于土地资源丰富、可以轮作休耕的地区, 或是以种植牧草为主的地区。毛细管渗滤沟污水处理, 是一种基于土地的地下污水渗滤处理系统, 它利用了自然净化能力, 是一种简单、高效的小规模污水处理工艺, 特别适用于污水管网不完备的地区, 是一项处理分散排放的污水的实用技术。
蚯蚓生态滤池处理系统是近年在法国和智利发展起来的一项针对农村生活污水的处理技术, 该工艺仅通过向土壤处理系统中接种蚯蚓, 改善生态滤池的处理环境, 提高污水处理效率, 适宜用于农村生活污水处理[8]。李军状等[9]采用塔式蚯蚓生态滤池处理系统对集中型农村生活污水进行处理, 该系统对COD、NH4+-N、TN和TP的平均去除率分别为86.7%、91.3%、72.4%和96.2%。不过, 如何长期保持蚯蚓良好的活性, 是该技术面临的一个重要问题。另外, 对蚯蚓生态滤池处理系统的长期运行效果, 尚需检验。
稳定塘处理系统是由美国加州大学伯克利分校的Oswald提出的, 是一种利用天然净化能力的生物处理构筑物的总称, 主要利用菌藻的共同作用处理废水中的有机污染物[10]。Babu等[11]的研究证明, 其建造的藻类稳定塘的主要除N机理是硝化−反硝化、藻类对N的利用以及矿化作用。赵学敏等[12]对滇池流域大清河生物稳定塘系统中的水质净化效果进行了分析, 结果表明, 生物稳定塘系统对TN、TP、NH4+-N、BOD5和COD的去除率分别达29.29%、48.68%、33.68%、68.14%和71.25%。
生物膜处理技术是近几十年来得到迅速发展的污水处理方法。生物膜法就是利用微生物分解功能, 采取人工措施来创造更有利于微生物生长和繁殖的环境, 使微生物大量繁殖, 以提高对污水中有机物的氧化降解效率。吴迪等[13]对改进后的“一体化生物膜技术”处理农村生活污水进行了实际应用, 监测结果表明, 其对COD、BOD、NH4+-N、TN、TP和SS平均去除率分别为75.6%、85.9%、86.7%、63.9%、69.3%和85.5%。吴永红等[14]系统研究了自然生物膜对于N、P等营养元素的去除效果和机理。其N、P去除机理首先是生物膜利用沉积于膜上的有机物为营养物质, 将一部分物质转化为细胞物质, 进行生长繁殖, 成为生物膜中新的活性物质; 其次由于生物膜的蓬松的絮状结构, 微孔多, 表面积大, 具有很强的吸附能力。
2.2 生活垃圾和农业废弃物处理技术
生活垃圾、农作物秸秆、畜禽养殖废弃物等是我国农村主要的固体废弃物, 实现农村固体废弃物的资源化是当前农村生态环境建设的重要内容。由于生活垃圾来源和成分复杂, 目前的主要处理方式以“村收集−镇转运−县(市)集中处理”为主, 大部分被集中填埋或焚烧, 少部分与农作物秸秆、畜禽养殖废弃物等进行堆肥化处理。高温堆肥过程中如何减少N的损失是高温堆肥要解决的关键技术。
农作物秸秆是农村主要的固体废弃物, 目前其资源化率还比较低, 部分地区农作物秸秆的焚烧已导致严重的生态环境问题, 尤其在我国的东部地区。目前, 农作物秸秆的处理以还田为主, 包括部分还田或全量还田。随着作物收获机械的改进, 秸秆全量还田已成为主要还田方式。此外, 秸秆打捆收获后用作能源、建筑材料、花卉盆钵等新型资源化方式也已形成一定的规模。
畜禽粪便是农业面源污染的主要来源, 已经成为经济发达地区或水环境敏感地区优先控制的污染源。在中国的传统农业中, 畜禽粪便是优质的农家肥, 不仅能提供农作物生长所需的养分, 也能改善土壤物理化性质, 是中国农业数千年持续发展的重要物质基础。畜禽粪便资源化的主要途径是农肥化, 固体部分经发酵后生产优质有机肥, 再进行还田以实现循环利用。液体部分目前主要处理方式包括厌氧发酵生产沼气, 或直接进入污水处理工程进行净化, 或与农村的固体废弃物如秸秆、生活垃圾等进行联合发酵。其中沼液的安全处置是当前急需要解决的关键问题。
2.3 农业化学品减量化技术 2.3.1 化肥减量化技术
我国是世界上化肥施用量最多的国家, 肥料的平均利用率只有30%左右, 大多数养分随径流、渗漏和挥发等途径损失掉了, 不仅浪费了资源, 而且
加剧了水体富营养化。因此, 根据不同地区的实际情况研究减量施肥技术具有重大的意义。目前主要的化肥减量技术有以下几种:
氮肥运筹优化技术: 在施氮量相等的情况下, 合理调整基追肥的分配比例, 如太湖流域的稻田土壤, 基于目前常规施肥量, 将基肥施用量削减20%, 可有效地协调当地的经济效益和环境效益[15]。Qiao等[16]的研究证实, 在太湖地区水稻产区通过两年连续试验, 消减50%的施氮量(相对于常规施氮量)并未显著影响水稻产量。何传龙等[17]在巢湖地区根据蔬菜地养分供应能力和甘蓝的营养特性, 运用减量平衡施肥技术, 使肥料施用量减少30%, N、P、K肥利用率分别提高27.3%、23.4%和23.5%, N、P淋失量分别减少90.0%、78.4%。但是此类研究一般局限于较短时间, 对于长期减量施肥对作物产量有何影响, 尚需进一步探明。
种植制度优化技术: 比如稻麦轮作制中引入豆科绿肥, 既可降低旱季的施氮量, 又可补充稻季的氮素。在太湖地区进行的水稻−紫云英轮作试验结果表明, 冬季将小麦改为紫云英, 稻季不施用化学氮肥, 水稻产量可达到农户常规产量的95%左右, 如果补充农户施氮量的30%, 则可获得与农户正常产量相当的产量, 或略有增产[16]。王静等[18]在滇池流域蔬菜产地的调查表明, 合理的轮作模式可减少蔬菜地N、P的盈余量。
缓控释等新型肥料技术: 缓控释肥料中养分的释放与作物养分需求比较吻合, 养分的释放供应量前期不过多, 后期不缺乏, 具有“削峰填谷”的效果, 可以大大降低向环境排放的风险。田琳琳等[19]在太湖流域大田蔬菜地的试验结果表明, 在蔬菜生产中, “低量控释肥+低量化肥”是兼具经济效益和环境效益的施肥模式。但是目前缓控释肥费用相对普通化肥较高, 限制了其广泛使用。
施加土壤改良剂控制N、P流失: 生物质炭(biochar)由于其良好的吸附性能、低廉的成本以及良好的生物亲和性, 将其运用于农田营养盐释放控制, 受到研究人员的关注[20]。Ding等[21]在农田表层20 cm的土壤施加0.5%的生物质炭, 可以减少15.2%的NH4+-N损失量。姬红利等[22]以滇池设施农业土壤和坡耕地土壤为研究对象, 采用外源施用土壤改良剂(硫酸亚铁、硫酸铝和聚丙烯酰胺)和土壤消毒剂(五氯硝基苯)的办法, 研究了土壤改良剂对土壤解吸过滤液中TP和TDP浓度变化的影响。野外田间试验表明: 施加改良剂后, 径流雨水中TP和TDP值明显降低, 上述土壤改良剂的施用对降低P流失具有明显效果。但是其经济性与环境风险如何尚待进一步研究。 2.3.2 农药减量化与残留控制技术
在化学农药减量施用方面, 当前主要发展趋势是由化学农药防治逐渐转向非化学防治技术或低污染的化学防治技术。近年来, 江苏省多家单位联合开展水稻化学农药污染控制技术研究, 针对水稻螟虫、灰飞虱、条纹叶枯病与纹枯病等重大病虫害, 研究开发了多项无公害关键技术, 在水稻核心示范区减少了30%农药用量。卢仲良等[23]选用高效低毒的三唑磷、丙溴磷、井冈霉素、噻嗪酮、毒死蜱等药剂进行施药, 增产6.97%。在农药残留生物降解方面, 国内外做了很多研究工作, 包括细菌、真菌、放线菌等各种降解农药的微生物菌株相继被分离和鉴定, 用以降解有机磷、有机氯和三嗪类除草剂、氨基甲酸酯类、拟除虫菊酯类等多种农药。近年来伴随着基因工程和分子生物学的发展, 构建高效工程菌是当前研究的热点, 将高效降解农药酶的基因构建到载体上, 经转化获得工程菌, 以期提高具降解作用的特定蛋白或酶的表达水平, 从而提高降解活性。但是目前的研究仍然存在不足, 大多数研究以实验室研究为主, 降解机理研究不够深入, 中间产物难以检测, 技术零散、集成度低、配套性差和展示度低等仍然是目前我国集约化农田农药减量化与残留控制需求中的突出问题。
2.4 污染物质的生态拦截技术
农业面源污染物质大部分随降雨径流进入水体, 在其进入水体前, 通过建立生物(生态)拦截系统, 有效阻断径流水中的N、P等污染物进入水环境, 是控制农业面源污染物的重要技术手段。国外主要是设置宽广的生物隔离带来控制N、P的径流迁移, 如加拿大一种“草地−树木过滤带系统”, 可以显著降低径流的污染物含量[25]。杨林章等[26]结合太湖地区实际情况提出了生态拦截型沟渠系统, 它主要由工程部分和植物部分组成, 能减缓流速, 促进流水携带颗粒物质的沉淀, 有利于构建植物对沟壁、水体和沟底中逸出养分的立体式吸收和拦截, 从而实现对农田排出养分的控制。沟渠系统对农田径流中TN、TP的去除效果分别达到48.1%和40.2%。但是, 在生态沟渠的农田规划和设计标准、两侧及岸边植物品种筛选及空间配置技术、水生经济植物的品种筛选及空间配置技术、浮床植物的肥药管理技术、浮床植物残体的再利用技术以及植物的高效N、P利用机制等的研究还需要进一步拓展和深化。

㈣ 氯氰菊酯生产过程中产生的废水的危害

氯氰菊酯是一种拟除虫菊酯类杀虫剂,生物活性较高,具有触杀和胃毒作用。杀虫谱广、击倒速度快,杀虫活性较氯氰菊酯高。适用于防治棉花、蔬菜、果树、茶树、森林等多种植物上的害虫及卫生害虫。氯氰菊酯在生产过程中,每吨原药产生废水6吨,COD:80000-100000mg/L, 总氰化合物(CN-):50mg/L,氰化物有剧毒,我国污水综合排放标准(GB 8978-1996)一级标准要求总氰化物(CN-)的限额允许排放浓度为0.5 mg/L,但是,国内外至今没有成熟有效的工业化治理方法。此废水中含氰化钠、间苯氧基苯甲醛、氯氰菊酯、氯氰菊酯等多种有毒有害污染物,该废水浓度高、对微生物毒性作用大,生物降解性差,属高浓度、难降解类农药废水。

在先将废水的pH值,用硫酸或盐酸调节为2-3左右,然后在10-100℃温度条件下,向废水中滴加10-40%氯酸钠溶液进行氧化反应0.5-10小时。将氯酸钠氧化后的废水,用氢氧化钠或氢氧化钙或氧化钙,调节pH值为913左右,然后通入二氧化氯进行氧化反应0.5-6小时。

经过二氧化氯氧化后的废水,用氢氧化钠或氢氧化钙或氧化钙,调节pH值为9-14左右,然后通入臭氧进行氧化反应0.5-9小时。

这种氯氰菊酯废水处理方法可有效降解氯氰菊酯废水难生物降解的有机物,COD去除率高达到90%,总氰化物(CN-)≤0.5 mg/L,而且使处理后废水的可生化性大大提高,废水的BOD5/COD(B/C)由0.06提高到 0.38,提高了氯氰菊酯废水的可生化性。

㈤ 污水处理中微电解的原理

微电解技术是处理高浓度有机废水的一种理想的工艺,同时又被称为内电解法。在不同点的情况之下,利用填充在废水中的微电解材料自身生产的一点二伏的电位差对废水进行点解处理,从而达到降解有机污染物的目的,当系统桶水之后设备中会形成无数的微电池系统,在作用空间中构成一个电场。

微电解的工作原理基于电化学,氧化还原,物理吸附以及絮凝沉淀的共同作用对于废水进行处理。该方法适用范围广、处理的效果好、成本低廉、操作维护方便、不需要消耗电力资源等优点。本工艺用于难降解高浓度废水的处理可以大幅度的降低cod和色度,提高废水的可生化性,同时可以对氨氮的脱除具有很好的效果。传统上的微电解工艺所采用的微电解材料一般为铁屑和木炭,使用之前要加酸碱活化,使用的过程中很容易钝化板结,同时又因为铁与碳是物理接触,所以他们之间很容易形成隔离层使微电解不能继续进行而失去作用,这就导致了频繁的更换为电解材料,不但工作量大,成本高同时还影响了废水的处理效果和效率。
二、铁碳微电解原理铁炭填料反应原理(即铁炭填料处理高难度工业有机废水原理):
(1)电子流动:利用铁元素和碳元素之间的电位差,铁元素与碳元素之间存在一个自然地1.4V的电位差。当铁碳填料浸泡在废水溶液中的时候,废水溶液充当导电溶液,废微电解填料价格多少水中的污染物质充当电解质。在铁碳之间自然电位差形成的微弱电场之下,铁会释放出电子,电子在电场的作用之下由阳极向阴极移动。电子在移动的过程中会有穿过污染物质的概率,特别是长链物质或者是含有苯环的物质被电子穿过的概率更高。长链物质或者是含有苯环物质的碳链是通过成对电子相互连接的,当溶液中的单个电子穿插的时候,单个电子就会被碳链中的成对电子吸引住,从而微电解填料价格多少形成3电子结构,而这种3电子结构是一种非常不稳定的结构,存在一定的时间之后这种3电子结构就会自动爆炸,从而长链物质被分成2段。电子继续穿插,锻炼之后的碳链又会被分割,这样碳链就会越来越短。这样难降解物质就会转化为容易降解的物质。同时能够降低COD。
(2)还原性:当铁碳填料浸泡在废水溶液中的时候,作为阳极的铁会失去电子从而变成铁离子,新生成的铁离子具有非常强的还原性,可以将废水中的难降解物质进行还原反应。
(3)氧化性:电子在废水中穿插的时候,也会穿过水分子,水分子被分解的时候就会产生大量的氢自由基、氧自由基、和氢氧自由基,这些新生态的自由基具有非常强的氧化性,可以将废水中的有机物彻底氧化为二氧化碳和水。从而彻底降低COD。
(4)电泳:电子在废水中运动的时候会吸附带微电解填料价格多少正电的污染颗粒,吸附在电子上面的污染物质运动到阴极之后会被中和然后就会沉到底部被除去。
(5)絮凝作用:铁失电子之后会形成铁离子,新生态的铁离子再加入碱液之后会形成氢氧化亚铁,氢氧化亚铁是良好的絮凝剂,可以吸附废水中的大量有机物絮凝沉淀。

阅读全文

与菊酯类废水相关的资料

热点内容
熨斗除水垢 浏览:925
一次性增幅器提升成功率 浏览:460
中国银行密码器提升限额 浏览:767
污水生物除磷磷以什么形式去除 浏览:470
国外最好的空气净化器什么品牌 浏览:371
脱硫废水回用水流向 浏览:728
深碧澜净水器不吸水是怎么回事 浏览:493
树脂工艺品真空机价格 浏览:877
树脂粘数粘度 浏览:974
做桌子用什么环氧树脂 浏览:718
一般洗砂废水含固量是多少 浏览:223
回东北用换什么玻璃水 浏览:503
处理污水设备 浏览:670
新领驭空气滤芯在哪里 浏览:558
工业废水余热利用上海热泵厂家 浏览:845
为什么有些纯净水喝了肚子胀 浏览:499
怎么选择前置过滤器 浏览:438
2017款逍客空调滤芯怎么更换 浏览:387
污水提升器弯头 浏览:70
污水处理酸碱用量多少合适 浏览:983