导航:首页 > 污水知识 > 污水处理的毕业设计题目

污水处理的毕业设计题目

发布时间:2024-09-02 13:29:36

A. 求CASS工艺处理小区污水毕业设计,某小区生活污水处理站日处理量为400m3/d,出水用作景观水。

1概述建筑小区是具有一种功能或多种功能的相对独立的区域,其排水系统通常不在城市市政管网覆盖范围之内。根据当地的环保标准,必须设置独立的污水处理设施,这就是我们所指的小区污水处理。小区污水系统的处理能力,各国并无统一的限定。前苏联曾建议单个构筑物的处理能力不宜超过1400m3/d,美国则把处理能力限定在3785m3/d的范围内。根据我国情况,建议把污水量在4000m3/d以下的处理厂定义为小区污水处理厂。小区污水不同于城市污水(常包括部分工业废水),属于生活污水范畴。其水质水量特征可概括为:水质水量变化较大,污染物浓度偏低,即比城市污水低,污水可生化性好,处理难度小。小区污水的处理工艺因污水排入的水体功能不同而异,常用处理方法有:化粪池、一级处理 (初次沉淀池)、生物二级处理及二级处理后再经过滤消毒回用等。由于小区污水量较小,管理者水平不高,所以在工艺设计时尽可能选用无污泥或少污泥的处理工艺,以防因污泥处理不善造成二次污染。本文在介绍小区污水处理设计原则及常用流程的基础上,重点介绍了周期循环活性污泥(CASS)工艺处理小区污水及回用的设计参数与应用情况。 2小区污水处理设计原则及常用流程 2.1设计原则 (1)一般来说,不同小区对出水的要求差异较大,应根据我国《地面环境质量标准》(GB3838 -88)和《污水综合排放标准》(GB8978-96)的有关规定和当地环保部门的要求确定处理程度,以确保出水水质。
(2)污水处理设施的设计和建设必须结合小区的整体规划和建筑特点,即外观设计上要与小区建筑环境相协调,以求美观。
(3)在污水处理工艺上力求简单实用,以方便管理。
(4)在高程布置上应尽量采用立体布局,充分利用地下空间。平面布置上要紧凑,以节省用地。
(5)污水处理厂位置应尽可能位于小区下风向,与其它建筑物有一定的距离,以减少对环境的影响。
(6)设备化,定型化,模块化,施工安装方便,运行简易,设备性能稳定,适合分期建设。
(7)处理程度高,污泥产量少,并尽可能采用节能处理技术。
(8)处理构筑物对水力负荷和有机物负荷的适应范围较大,使系统有较好的经受冲击负荷的能力。
(9)小区内的人口是逐渐增加的,因此小区污水处理厂应留有发展余地。 2.2常用流程根据小区废水处理的原则,应选择处理效果稳定、产泥少、节能的处理方法。小区系统中的各类建筑物一般均建有化粪池,所以化粪池应与污水处理方法相结合。常用的工艺流程有: ①污水→格栅→调节池→提升泵→接触氧化池→沉淀池 →出水。
②污水→格栅→调节池→提升泵→曝气池→沉淀池污泥回流→出水。
③污水→格栅→调节池→提升泵→SBR池或CASS池→出水。
④污水→格栅→调节池→提升泵→混凝沉淀(加药)→过滤→出水(物化方法)。
⑤污水→格栅→调节池→提升泵→接触氧化池→混凝过滤(加药)→出水。 国内小区污水处理设计中组合式处理厂曾风靡一时,组合式处理指装配好的或易于组装的定型设备,其主要优点是施工快,不占绿地。但实际应用表明,存在不少问题。如设备的维修管理困难,对运行情况考核不便,单机处理水量有限,使用寿命等均有待时间验证。根据工程设计及实际运行经验,建议日处理能力1000m3以上的污水处理厂宜采用地上式。在水量不大,场地十分紧张时可考虑用埋地设备。 3CASS工艺处理小区污水3.1工作原理 CASS(Cyclic Activated Sludge System)是在SBR的基础上发展起来的,即在SBR池内进水端增加了一个生物选择器,实现了连续进水(沉淀期、排水期仍连续进水),间歇排水。设置生物选择器的主要目的是使系统选择出絮凝性细菌,其容积约占整个池子的10%。生物选择器的工艺过程遵循活性污泥的基质积累--再生理论,使活性污泥在选择器中经历一个高负荷的吸附阶段(基质积累),随后在主反应区经历一个较低负荷的基质降解阶段,以完成整个基质降解的全过程和污泥再生。据有关资料介绍,污泥膨胀的直接原因是丝状菌的过量繁殖。由于丝状菌比菌胶团的比表面积大,因此有利于摄取低浓度底物。但一般丝状菌的比增殖速率比非丝状菌小,在高底物浓度下菌胶团和丝状菌都以较大速率降解底物与增殖,但由于胶团细菌比增殖速率较大,其增殖量也较大,从而较丝状菌占优势,这样利用基质作为推动力选择性地培养胶团细菌,使其成为曝气池中的优势菌。所以,在CASS池进水端增加一个设计合理的生物选择器,可以有效地抑制丝状菌的生长和繁殖,克服污泥膨胀,提高系统的运行稳定性。 CASS工艺对污染物质降解是一个时间上的推流过程,集反应、沉淀、排水于一体,是一个好氧-缺氧-厌氧交替运行的过程,因此具有一定脱氮除磷效果。 3.2与传统活性污泥法的比较与传统活性污泥工艺相比,CASS工艺具有以下优点: (1)建设费用低。省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省20%~30 %。工艺流程简洁,污水厂主要构筑物为集水池、沉砂池、CASS曝气池、污泥池,布局紧凑,占地面积可减少35%。 (2)运转费用省。由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%。 (3)有机物去除率高,出水水质好。不仅能有效去除污水中有机碳源污染物,而且具有良好的脱氮、除磷功能。 (4)管理简单,运行可靠,不易发生污泥膨胀。污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠。 (5)污泥产量低,性质稳定。 3.3曝气方式的选择由于小区大都是居民居住区,对环境的要求比较高,因此污水厂建设时应充分考虑噪音扰民问题和污水厂操作人员的工作环境,采用水下曝气机代替传统的鼓风机曝气可有效解决噪音污染。另外,由于CASS工艺独特的运行方式,采用水下曝气机可省去复杂的管路及阀门,安装、维修方便,使用灵活,可根据进出水情况开不同的台数,在保证效果的条件下,达到经济运行的目的。 3.4撇水方式的选择撇水机是CASS工艺的关键组成部分,其性能是否稳定可靠直接影响到CASS工艺的正常运行。目前,国内外对撇水机仍在进行研究和开发,按照目前所用的原理,撇水机可分为三种类型,即浮球式、旋转式和虹吸式。撇水机研制的关键是解决滗水过程中,堰口、导水软管和升降控制装置与水流之间形成的动态平衡,使之可随排水量的不同调整浮动水堰浸没的深度,并随水位均匀地升降,将排水对底层污泥的干扰降低到最低限度,保证出水水质稳定。我院自主研制开发的撇水机属丝杠旋转式,自动撇水装置主要组成部分是:滗水器、可扰动的软管、水位控制器、可伸缩推动杆和驱动电机等。其中滗水器又叫自动浮动式水堰,上部为堰口和防止浮渣进入出水的浮筒,下部出水管兼起支撑作用,部分浸没在水中,通过可伸缩推动杆使方形堰口达到连续均匀地排出反应池中的上清液。具有升降平稳、排水均匀、自动控制、价格低廉等优点。3.5主要设计参数 CASS设计参数:污泥负荷0.1~0.2 kg BOD5/(kgMLSS·d),污泥龄15~30 d。水力停留时间12 h,工作周期4 h,其中曝气2.5 h,沉淀0.75 h,排水0.5~0.75 h。 4CASS工艺的出水回用众所周知,水资源紧缺已经成为世界性问题。我国也同样面临水资源短缺的现实。我国目前人均年占有水资源2700m3,仅相当于世界平均水平的1/4。我国的城市缺水现象更为严重,在300多个大中城市中有180个城市缺水,其中50多个城市严重缺水。以北京为例,全市水资源人均占有量仅为全国人均占有量1/6,而其年用水量已达42亿m3,每年大约缺水7~10亿m3。由于水资源的短缺,近年来城市供水水价持续上涨,小区污水经过适当处理后,用于小区绿化、厕所便器冲洗、洗车和清洁等有很好的社会效益和经济效益。采用CASS工艺处理小区污水,出水水质稳定,优于一般传统生物处理工艺,其出水接近《生活杂用水水质标准》(CJ25.1-89),主要项目见表1。通过过滤和消毒处理后,就可以作为中水回用。 表1生活杂用水水质标准 项目便器冲洗、城市道路浇洒洗车、扫除溶解性固体(mg/L)12001000悬浮性固体(mg/L)105色度(度)3030臭无不快感觉无不快感觉pH6.5~9.06.5~9.0BOD(mg/L)1010COD(mg/L)5050氨氮(mg/L)2010总大肠菌群(个/L)33过滤采用膜分离技术,膜分离技术是物质分离技术中的一个单元操作。膜法分离的最大特点是动力为压力,不伴随大量热量变化。因而有节能、可连续操作、便于自动化等优点。为开拓CASS工艺的出水回用领域,开发了一种新型过滤膜(盘片式过滤膜),该膜具有通量大、寿命长、耐污染强度大、易于反冲洗等优点。工程应用表明具有良好的应用前景。由于小区污水中含有致病细菌,消毒后回用可确保使用安全,在膜过滤前进行消毒还有利于对膜的保护。消毒采用次氯酸钠消毒剂即可达消毒要求。污水处理量在1000m3/d以上时,其污泥处理一般采用浓缩后脱水处理的方法,小规模时由于所产污泥量少,一般浓缩后定期用大粪车外运填埋或作农肥。在多个工程应用基础上,近期推出的CASS+膜过滤工艺已经应用于装备指挥技术学院污水处理及回用(2000m3/d)、总参某部污水处理及回用(3000m3/d)和中华人民共和国济南海关污水处理及回用(100m3/d)等工程。在济南海关的污水工程设计中,充分利用所提供的地形,既保护了原有的绿化统一规划,又可以利用处理后的水进行绿化和冲洗车辆,节约了大量的自来水,使用户受益匪浅。 5结论在水资源日益紧缺的今天,将处理后的水回用于绿化、冲洗车辆和冲洗厕所,其应用前景广泛。周期循环活性污泥工艺具有出水水质稳定、处理效果好、操作管理运行简单的特点,实际运行中可以实现中央集中控制和现场手动自动控制,经过多个工程实际应用,该工艺的配套设备滗水器和水下射流曝气机已经成熟,其出水经过滤和消毒处理后可以达到中水回用的标准,根据实际需求,可以设计成地埋式或半地埋式,因此具有节省占地的优势。中水回用势在必行,周期循环活性污泥+膜过滤工艺为小区污水处理及回用提供了新的工艺和配套设备。 CASS工艺处理小区污水及中水回用

B. 污水处理厂设计的问题

仅供参考:生化磁分离工艺

BFMS水处理工艺技术
20000吨/日市政污水处理技术建议书

1、工程概况
污水处理厂的日处理能力为20000吨/日,设计出水水质达到一级B标准(暂)
2、工程规模
正常处理量:20000吨/日
峰值处理量:24000吨/日
3、设计进出水水质
1)进水水质(需业主提供实际数据)
PH=6~9;CODcr≤500mg/L;BOD5≤280mg/L;
悬浮物≤300mg/L;总磷≤5.0mg/L;氨氮≤40.0mg/L

2)出水水质(需业主提供出水标准,暂定为一级B)
PH=6~9;CODcr≤60mg/L;BOD5≤20mg/L;
悬浮物≤20mg/L;总磷≤1.0mg/L;氨氮≤15.0mg/L;
总氮≤20.0mg/L;粪大肠杆菌≤10000/L。
4、加载絮凝磁分离(简称BFMS)工艺原理和优势
BFMS技术是在传统的絮凝工艺中,加入磁粉,以增强絮凝的效果,形成高密度的絮体和加大絮体的比重,达到高效除污和快速沉降的目的。磁粉的离子极性和金属特性,作为絮体的核体,大大地强化了对水中悬浮污染物的絮凝结合能力,减少絮凝剂用量,在去除悬浮物,特别是在去除磷、细菌、病毒、油、重金属等方面的效果比传统工艺要好。由于磁粉的比重高达5.0×10³kg/m³,大约是砂子的两倍,混有磁粉的絮体比重增大,絮体快速沉降,速度可达20米/时以上,整个水处理从进水到出水可在10分钟左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓进行分离后回收并在系统中循环使用。高梯度磁过滤器捕集流过水中的残余微小颗粒,磁过滤器依照设定的要求被自动清洗,以达到高度净化出水的目的。根据在美国采用BFMS作深度水处理的报告,磁过滤器可达到去除26纳米病菌的结果。下面图示说明了BFMS工艺的处理过程。

BFMS Process 加载絮凝磁分离工艺

絮凝/ + 加载絮凝+ 沉淀分离+磁过滤
Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation

该工艺以前在工程中应用很少,原因是磁种的回收技术一直没有很好的解决,而现在这一技术难点已成功地被突破,磁种的回收率达到99%以上,该工艺技术在美国也进行了项目示范和商业项目运行。我们公司已在国内申请多项专利,形成了公司的自主知识产权。在过去三年中,我们公司用250吨/日的中试车已在城市污水处理、中水回用、地表水和地下水以及自来水处理、江水、湖水、河道水处理、高磷废水处理、造纸废水处理、采矿废水处理、炼油和油田废水处理方面成功的做了多项不同运行参数的试验,取得很好的结果;10000吨/日的中试车已于2007年5月在青岛李村河入海口的城市污水投入运行一个月,运行良好。在北京金源经开污水处理厂的出水进行除高磷深度处理运行月余,处理效果佳。作为奥运会应急城市污水处理工程,在北京清河污水厂安装了4×10000吨/日和2×5000吨/日共6组BFMS系统,综合处理效果好。该技术在胜利油田应用于处理采油废水的东营胜利油田一期工程(5000吨/日)已经投入使用,油田500吨/日地下水BFMS项目和30000吨/日采油水BFMS项目也在实施中。

与其他工艺相比,磁分离技术具有以下优点:
1) BFMS工艺能应用于城市污水的一级、二级、三级、中水和各种工业污水以及饮用水。
2) 处理效果好,其出水质与超滤膜出水相媲美,BFMS工艺能有效地从水中除去微粒污染物、微生物污染物和部分已溶解于水中的污染物,如:COD、BOD、悬浮物、总磷、色度、浊度等,特别是对磷有强大的去除效果。也能结合生物工艺非常有效和经济地脱氮。
3) 耐冲击负荷能力强,对水质的冲击有独特的耐冲击能力。当前段工序出现故障时,或其他有害金属离子进入污水处理系统,污水可直接进入磁分离系统,系统仍然能够保持较高的去除效果,大幅度去除水中污染物。
4) 占地极小,20000吨/日BFMS系统的占地约为400㎡左右,另加走道、加药及操作设施总占地约700㎡左右。
5) 投资低,比膜处理有明显的优势。
6) 运行成本低,设备使用寿命长,除了正常的维护外,不用更换部件而造成高昂的二次投资。
7) 运行管理方便,启动快捷,运行管理简单。

5、污水处理厂工艺设计建议
根据工程运行经验,去除污水中的漂浮物和泥砂,保证污水厂的连续运行,进入BFMS系统的污水进行预处理是必备的。依据BFMS系统的工作原理,常规预处理即可,即粗、细格栅和沉淀池。预处理也可考虑采用污水粉碎泵。
BFMS技术具有强大除磷和悬浮物能力,同时对其他指标(氮除外)也有较强的去除能力。对处理城市污水,因BFMS技术脱氮能力较差,建议后续的生化工艺(如BAF、SBR、A/O等)仅按氨氮负荷进行设计,通过调整BFMS系统的加药量即可保证剩余的CODcr和BOD5达到排放要求。因生化脱氮需要必须的碳源,若BFMS系统去除率太高会导致生化系统的碳源不足,微生物生长缓慢,脱氮能力达不到,因此建议对污泥贮池铺设备用管道系统,回流污泥作为备用碳源。

6、工艺流程
考虑市政污水的水质特点,结合BFMS技术的工艺优点,综合考虑投资和运行效果,建议污水处理厂的工艺流程如下:

市政污水

定期外运

达标排放

BFMS技术是污水厂处理工艺的重要部分,对BFMS系统排除的剩余污泥必须进行处理。

下图仅为BFMS工艺流程图:

污水厂来水 出水

污泥脱水系统

BFMS系统平面图布置如下:

7、BFMS系统设计
1)BFMS系统共2套,单套处理量10000吨/日。
2)其他
(1)BFMS系统建议放在室内,设备空间要求L30×W20×H10米,采用轻钢结构形式。
(2)污泥处理建议不采用浓缩池,直接采用污泥贮池和污泥浓缩脱水一体机,处理BFMS系统排出的剩余污泥。在正常运行时BFMS系统排除的污泥的含水率在98-99%。
(3)配套电压为380V,每套BFMS系统装机容量为61KW(不含进水泵),运行负荷为40KW。总装机容量为122KW,总运行负荷为80KW。
(4)每套BFMS系统配套操作人员每班1人,4班3运转,均应经过上岗培训。
(5)污泥产量:0.4kgGS/m³废水。
8、BFMS系统水处理成本
1)直接运行成本:0.2446元/吨污水
A药剂:
絮凝剂干粉(29%纯度):2500元/吨;投加浓度以20ppm(AL2O3)计,成本为0.17元/吨污水;
PAM晶体:25000元/吨;投加浓度以1ppm计,成本为0.025元/吨污水.
B电耗
0.041度/吨污水,电费以0.57元/度计,则成本为0.0234元/吨污水.
C人工:0.014元/吨污水
D维修、维护0.012元/吨污水
2)总成本:0.3244元/吨污水
A直接运行成本:0.252元/吨污水
B固定资产折旧(平均年限法)15年:0.052元/吨污水
C经营管理及其他费用:0.031元/吨污水
9、20000吨/日BFMS系统投资
本工程共需2套10000吨/日BFMS系统,20000吨/日BFMS系统投资为********元(包括设计、安装、调试及系统设备)。
10、说明:
*由于对实际污水状况不了解,未进行水的测试,故BFMS系统的运行费用只是估算,具体数据需待做试验后再确定。
*本文内容仅供内部使用。

C. 污水处理自动控制系统设计 毕业设计 怎么弄哦 要关于PLC的

首先来要搞清楚在污水处理现场要控制的源对象哪些,通常主要包括:风机、泵、消毒设施、加药设施等,在不同的污水站这些设备的数量组合不同。通常,采用PLC可编程逻辑控制器作为现场自控系统的核心,再结合触摸屏、接触器、变频器等设备,同时编写相应的逻辑控制程序,构造成完整的污水处理自控系统。

除此之外,还可以实现远程控制。具体做法是,用PLC连接物联网智能采集终端,实现寄存器变量的远程读写。类似于下面的图。我们做的比较多了。

D. 模拟一个污水污水处理的项目概况

第1章 概 述
1.1毕业设计(论文)的主要内容(含主要技术参数)
1.1.1 设计题目
某城市污水二级处理厂工艺设计(30万吨/日)
1.1.2 设计规模及水质
1、设计规模:
该污水处理厂服务范围为某城区生活污水和工业废水。污水量为30×104m3/d,其中生活污水和工业废水所占比例约为6:4。
2、设计进水水质:
根据污水处理厂工程可行性研究报告并参考类似工程,确定污水处理厂进厂水质指标如下:
COD:480mg/L; BOD5:230mg/L; SS:250mg/L ;
NH3-N:35mg/L; TN:45 mg/L; TP:4 mg/L;
水温:≥12ºC; pH:6~9; 总碱度:280 mg/L(以CaCO3计)
3、污水处理厂出水水质:
出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级B标准,具体主要水质指标如下:
COD:≤60 mg/L; BOD5:≤20 mg/L; SS:≤20 mg/L;
NH3-N:≤8 mg/L; TN:≤20 mg/L; TP:≤1 mg/L。
1.1.3 基础资料
1、气象条件:
年平均气温:11℃;
极端最高气温:42.4℃;
极端最低气温:-18.8℃;
年平均降水量:637.9 mm;
平均日照时数:2147.3小时;

最大风速:17.0 m/s;主导风向为东北风,次主导风向为西南风。
2、水文地质
潜水:主要分布在黄土状土、粉土、粉细砂和砾石层的孔洞中,水位埋深平均4~5 m;
承压水:地下30 m深度;
地质:地表沉积物由第四纪全新世素填土,冲击风积黄土状土,冲击粉质粘土、粉土、粉细纱和砾石层构成,厚度5~20 m。
3、地形地貌
规划污水处理厂厂区地面平坦,适合于工程建设,地面平均高程:420m。
4、进水管标高:
进水管位于规划污水处理厂西侧,进水管管内底标高:415m;
5、受纳水体
受纳水体位于厂区东侧300米,该河流水质符合《地表水环境质量标准》中的Ⅲ类标准。30年一遇河水最高水位417m。
1.2毕业设计(论文)题目应完成的工作(含图纸数量)
毕业实习报告一份;
英文翻译一篇;
阶段成果书面报告;
毕业设计图纸6张(合A1图纸),主要包括总平面图、工艺流程图、高程布置图及主要单体构筑物的平面、剖面图。要求至少有一张手绘图(合A1图纸)。
毕业设计计算说明书一本,包括:(1)封面;(2)毕业设计(论文)任务书;(3)设计总说明或摘要;(4)英文设计总说明或英文摘要;(5)目录;(6)正文;(7)参考文献;(8)附录;(9)致谢。
1.3 处理程度
污水处理程度是由对象和地区排放标准决定
1.3.1 进出水的水质

BOD5
(mg/L) CODCR
(mg/L) SS
(mg/L) NH3-N
(mg/L) T-N
(mg/L) TP
(mg/L)
进水 230 480 250 35 45 4
出水 ≦20 ≦60 ≦20 ≦8 ≦20 ≦1

1.3.2 去除率
E= ×100%
式中:C0——进水物质浓度;
Ce——出水物质浓度。
(1)BOD5去除率:E= ×100%=91.3%;
(2)CODcr去除率:E= ×100%=87.5%;
(3)SS去除率:E= ×100%=92%;
(4)NH3-N去除率:E= ×100%=77.1%;
(5)TN去除率:E= ×100%=55.6%。
(6)TP去除率:E= ×100%=75%。
1.3.3 PH值
PH值6~9,在可生化处理的范围内,符合要求。

E. 姹2涓囧惃姹℃按鍘傚垵姝ヨ捐

褰撳墠浣嶇疆锛氶栭〉
瑙e喅鏂规
50000t锛廳鐨勫煄甯傛薄姘村勭悊鍘傛瘯涓氳捐℃柟妗
50000t锛廳鐨勫煄甯傛薄姘村勭悊鍘傛瘯涓氳捐

绗涓绔 璁捐″唴瀹瑰拰浠诲姟
1銆佽捐¢樼洰
50000t/d鐨勫煄甯傛薄姘村勭悊鍘傝捐°
2銆佽捐$洰鐨
锛1锛 娓╀範鍜屽珐鍥烘墍瀛︾煡璇嗐佸師鐞嗭紱
锛2锛 鎺屾彙涓鑸姘村勭悊鏋勭瓚鐗╃殑璁捐¤$畻銆
3銆佽捐¤佹眰锛
锛1锛 鐙绔嬫濊冿紝鐙绔嬪畬鎴愶紱
锛2锛 瀹屾垚涓昏佸勭悊鏋勭瓚鐗╃殑璁捐″竷缃锛
锛3锛 宸ヨ壓閫夋嫨銆佽惧囬夊瀷銆佹妧鏈鍙傛暟銆佹ц兘銆佽︾粏璇存槑锛
锛4锛 鎻愪氦鐨勬垚鍝侊細璁捐¤存槑涔︺佸伐鑹烘祦绋嬪浘銆侀珮绋嬪浘銆佸巶鍖哄钩闈㈠竷缃鍥俱
4銆佽捐℃ラわ細
锛1锛 姘磋川銆佹按閲忥紙鍙戝睍闇瑕併佷赴姘存湡銆佹灟姘存湡銆佸钩姘存湡锛夛紱
锛2锛 鍦扮悊浣嶇疆銆佸湴璐ㄨ祫鏂欒皟鏌ワ紙姘旇薄銆佹按鏂囥佹皵鍊欙級锛
锛3锛 鍑烘按瑕佹眰銆佽揪鍒版寚鏍囥佹薄姘村勭悊鍚庣殑鍑鸿矾锛
锛4锛 宸ヨ壓娴佺▼閫夋嫨锛屽寘鎷锛氬勭悊鏋勭瓚鐗╃殑璁捐°佸竷缃銆侀夊瀷銆佹ц兘鍙傛暟銆
锛5锛 璇勪环宸ヨ壓锛
锛6锛 璁捐¤$畻锛
锛7锛 寤鸿惧伐绋嬪浘锛堟祦绋嬪浘銆侀珮绋嬪浘銆佸巶鍖哄竷缃鍥撅級锛
锛8锛 浜哄憳缂栧埗锛岀粡璐规傜畻锛
锛9锛 鏂藉伐璇存槑銆
5銆佽捐′换鍔
锛1锛夈佽捐¤繘銆佸嚭姘存按璐ㄥ強鎺掓斁鏍囧噯

椤圭洰 CODCr(mg/L锛 BOD5锛坢g/L锛 SS锛坢g/L锛 NH3-N(mg/L锛 TP(mg/L)
杩涙按姘磋川 鈮200 鈮150 鈮200 鈮30 鈮4
鍑烘按姘磋川 鈮60 鈮20 鈮20 鈮15 鈮0.1
鎺掓斁鏍囧噯 60 20 20 15 0.1

锛2锛夈佹帓鏀炬爣鍑嗭細锛圙B8978-1996锛変竴绾ф爣鍑嗭紱
锛3锛夈佹帴鍙楁按浣擄細娌虫祦锛堟爣楂橈細锛2m锛

绗浜岀珷 姹℃按澶勭悊宸ヨ壓娴佺▼璇存槑
涓銆佹皵璞′笌姘存枃璧勬枡锛 椋庡悜锛氬氬勾涓诲奸庡悜涓轰笢鍗楅庯紱 姘存枃锛氶檷姘撮噺澶氬勾骞冲潎涓烘瘡骞2370mm锛 钂稿彂閲忓氬勾骞冲潎涓烘瘡骞1800mm锛 鍦颁笅姘存按浣嶏紝鍦伴潰涓6锝7m銆 骞村钩鍧囨按娓╋細20鈩
浜屻佸巶鍖哄湴褰锛 姹℃按鍘傞夊潃鍖哄煙娴锋嫈鏍囬珮鍦19-21m宸﹀彸锛屽钩鍧囧湴闈㈡爣楂樹负20m銆傚钩鍧囧湴闈㈠潯搴︿负
0.3鈥帮綖0.5鈥 锛屽湴鍔夸负瑗垮寳楂橈紝涓滃崡浣庛傚巶鍖哄緛鍦伴潰绉涓轰笢瑗块暱224m锛屽崡鍖楅暱276m銆
涓夈佹薄姘村勭悊宸ヨ壓娴佺▼璇存槑锛
1銆佸伐鑹烘柟妗堝垎鏋愶細
鏈椤圭洰姹℃按澶勭悊鐨勭壒鐐逛负锛氣憼姹℃按浠ユ湁鏈烘薄鏌撲负涓伙紝BOD/COD =0.75,鍙鐢熷寲鎬ц緝濂斤紝閲嶉噾灞炲強鍏朵粬闅句互鐢熺墿闄嶈В鐨勬湁姣掓湁瀹虫薄鏌撶墿涓鑸涓嶈秴鏍囷紱鈶℃薄姘翠腑涓昏佹薄鏌撶墿鎸囨爣BOD銆丆OD銆丼S鍊间负鍏稿瀷鍩庡競姹℃按鍊笺
閽堝逛互涓婄壒鐐癸紝浠ュ強鍑烘按瑕佹眰锛岀幇鏈夊煄甯傛薄姘村勭悊鎶鏈鐨勭壒鐐癸紝浠ラ噰鐢ㄧ敓鍖栧勭悊鏈涓虹粡娴庛傜敱浜庡皢鏉ュ彲鑳借佹眰鍑烘按鍥炵敤锛屽勭悊宸ヨ壓灏氬簲纭濆寲锛岃冭檻鍒癗H3-N鍑烘按娴撳害鎺掓斁瑕佹眰杈冧綆锛屼笉蹇呭畬鍏ㄨ劚姘銆傛牴鎹鍥藉唴澶栧凡杩愯岀殑涓銆佸皬鍨嬫薄姘村勭悊鍘傜殑璋冩煡锛岃佽揪鍒扮‘瀹氱殑娌荤悊鐩鏍囷紝鍙閲囩敤鈥淎2/O娲绘ф薄娉ユ硶鈥濄
2銆佸伐鑹烘祦绋

绗涓夌珷 宸ヨ壓娴佺▼璁捐¤$畻

璁捐℃祦閲忥細

骞冲潎娴侀噺锛歈a=50000t/d鈮50000m3/d=2083.3 m3/h=0.579 m3/s
鎬诲彉鍖栫郴鏁帮細Kz= (Qa锛嶅钩鍧囨祦閲忥紝L/s)
=
=1.34
鈭磋捐℃祦閲廞max锛
Qmax= Kz脳Qa=1.34脳50000 =67000 m3/d =2791.7 m3/h =0.775 m3/s

璁惧囪捐¤$畻
涓銆 鏍兼爡
鏍兼爡鏄鐢变竴缁勫钩琛岀殑閲戝睘鏍呮潯鎴栫瓫缃戝埗鎴愶紝瀹夎呭湪姹℃按娓犻亾涓娿佹车鎴块泦姘翠簳鐨勮繘鍙e勬垨姹℃按澶勭悊鍘傜殑绔閮锛岀敤浠ユ埅鐣欒緝澶х殑鎮娴鐗╂垨婕傛诞鐗┿備竴鑸鎯呭喌涓嬶紝鍒嗙矖缁嗕袱閬撴牸鏍呫
鏍兼爡鍨嬪彿锛氶摼鏉″紡鏈烘版牸鏍
璁捐″弬鏁帮細
鏍呮潯瀹藉害s锛10.0mm 鏍呮潯闂撮殭瀹藉害d=20.0mm 鏍呭墠姘存繁h锛0.8m
杩囨爡娴侀焨=1.0m/s 鏍呭墠娓犻亾娴侀焨b=0.55m/s 伪=60掳

鏍兼爡寤虹瓚瀹藉害b
鍙朾锛3.2m
杩涙按娓犻亾娓愬介儴鍒嗙殑闀垮害(l1)锛
璁捐繘姘存笭瀹絙1锛2.5m 鍏舵笎瀹介儴鍒嗗睍寮瑙掑害伪锛20掳

鏍呮Ы涓庡嚭姘存笭閬撹繛鎺ュ勭殑娓愮獎閮ㄤ唤闀垮害(l2)锛

閫氳繃鏍兼爡鐨勬按澶存崯澶(h2)锛
鏍兼爡鏉℃柇闈涓虹煩褰㈡柇闈, 鏁卥=3, 鍒欙細

鏍呭悗妲芥婚珮搴(h鎬)锛
璁炬爡鍓嶆笭閬撹秴楂榟1=0.3m

鏍呮Ы鎬婚暱搴(L):

姣忔棩鏍呮福閲廤锛
璁炬瘡鏃ユ爡娓i噺涓0.07m3/1000m3锛屽彇KZ锛1.34

閲囩敤鏈烘版竻娓c
浜屻 鎻愬崌娉垫埧
1銆 姘存车閫夋嫨
璁捐℃按閲67000m3/d锛岄夋嫨鐢4鍙版綔姹℃车(3鐢1澶)

鎵绋/m 娴侀噺/(m3/h) 杞閫/(r/min) 杞村姛鐜/kw 鍙惰疆鐩村緞/mm 鏁堢巼/%
7.22 1210 1450 29.9 300 79.5
2銆 闆嗘按姹
鈶淬佸圭Н 鎸変竴鍙版车鏈澶ф祦閲忔椂6min鐨勫嚭娴侀噺璁捐★紝鍒欓泦姘存睜鐨勬湁鏁堝圭Н

鈶点侀潰绉 鍙栨湁鏁堟按娣 锛屽垯闈㈢Н

鈶躲佹车浣嶅強瀹夎
娼滄按鐢垫车鐩存帴缃浜庨泦姘存睜鍐咃紝鐢垫车妫淇閲囩敤绉诲姩鍚婃灦銆

涓夈 娌夌爞姹
娌夌爞姹犵殑浣滅敤鏄浠庢薄姘翠腑鍘婚櫎鐮傚瓙銆佺叅娓g瓑姣旈噸杈冨ぇ鐨勯楃矑锛屼繚璇佸悗缁澶勭悊鏋勭瓚鐗╃殑姝e父杩愯屻
閫夊瀷锛氬钩娴佸紡娌夌爞姹
璁捐″弬鏁帮細
璁捐℃祦閲 锛岃捐℃按鍔涘仠鐣欐椂闂
姘村钩娴侀
1銆 闀垮害锛
2銆 姘存祦鏂闈㈤潰绉锛
3銆 姹犳诲藉害锛 鏈夋晥姘存繁
4銆 娌夌爞鏂楀圭Н锛
T锛2d锛孹锛30m3/106m3
5銆 姣忎釜娌夌爞鏂楃殑瀹圭Н(V0)
璁炬瘡涓鍒嗘牸鏈2鏍兼矇鐮傛枟锛屽垯

6銆 娌夌爞鏂楀悇閮ㄥ垎灏哄革細
璁捐串鐮傛枟搴曞絙1锛0.5m锛涙枟澹佷笌姘村钩闈㈢殑鍊捐60掳锛岃串鐮傛枟楂榟鈥3锛1.0m

7銆佽串鐮傛枟瀹圭Н锛(V1)

8銆佹矇鐮傚ら珮搴︼細(h3)
璁鹃噰鐢ㄩ噸鍔涙帓鐮傦紝姹犲簳鍧″害i锛6锛咃紝鍧″悜鐮傛枟锛屽垯
9銆佹睜鎬婚珮搴︼細(H)

10銆佹牳绠楁渶灏忔祦閫
(绗﹀悎瑕佹眰)

鍥涖 鍒濇矇姹
鍒濇矇姹犵殑浣滅敤瀹ゅ规薄姘翠徊瀵嗗害澶х殑鍥轰綋鎮娴鐗╄繘琛屾矇娣鍒嗙汇
閫夊瀷锛氬钩娴佸紡娌夋穩姹
璁捐″弬鏁帮細
1銆 姹犲瓙鎬婚潰绉疉锛岃〃鏄庤礋鑽峰彇

2銆 娌夋穩閮ㄥ垎鏈夋晥姘存繁h2
鍙杢锛1.5h
3銆 娌夋穩閮ㄥ垎鏈夋晥瀹圭НV鈥

4銆 姹犻暱L

5銆 姹犲瓙鎬诲藉害B

6銆 姹犲瓙涓鏁帮紝瀹藉害鍙朾锛5 m

7銆 鏍℃牳闀垮芥瘮
(绗﹀悎瑕佹眰)
8銆 姹℃偿閮ㄥ垎鎵闇鎬诲圭НV
宸茬煡杩涙按SS娴撳害 =200mg/L
鍒濇矇姹犳晥鐜囪捐50锛咃紝鍒欏嚭姘碨S娴撳害
璁炬薄娉ュ惈姘寸巼97锛咃紝涓ゆ℃帓娉ユ椂闂撮棿闅擳=2d锛屾薄娉ュ归噸

9銆 姣忔牸姹犳薄娉ユ墍闇瀹圭НV鈥

10銆佹薄娉ユ枟瀹圭НV1锛

11銆 姹℃偿鏂椾互涓婃褰㈤儴鍒嗘薄娉ュ圭НV2

12銆 姹℃偿鏂楀拰姊褰㈤儴鍒嗗圭Н

13銆 娌夋穩姹犳婚珮搴H
鍙8m
浜斻
璁捐″弬鏁
1銆佽捐℃渶澶ф祦閲 Q=50 000m3/d
2銆佽捐¤繘姘存按璐 COD=200mg/L锛汢OD5(S0)=150mg/L锛汼S=200mg/L锛汵H3-N=30mg/L锛汿P=4mg/L
3銆佽捐″嚭姘存按璐 COD=60mg/L锛汢OD5(Se)=20mg/L锛汼S=20mg/L锛汵H3-N=15mg/L锛汿P=0.1mg/L
4銆佽捐¤$畻锛岄噰鐢ˋ2/O鐢熺墿闄ょ7宸ヨ壓
鈶淬 BOD5姹℃偿璐熻嵎N=0.13kgBOD5/(kgMLSS•d)
鈶点 鍥炴祦姹℃偿娴撳害XR=6 600mg/L
鈶躲 姹℃偿鍥炴祦姣擱=100%
鈶枫 娣峰悎娑叉偓娴鍥轰綋娴撳害
鈶搞 鍙嶅簲姹犲圭НV

鈶广 鍙嶅簲姹犳绘按鍔涘仠鐣欐椂闂

鈶恒 鍚勬垫按鍔涘仠鐣欐椂闂村拰瀹圭Н
鍘屾哀锛氱己姘э細濂芥哀锛1锛1锛3
鍘屾哀姹犳按鍔涘仠鐣欐椂闂 锛屾睜瀹 锛
缂烘哀姹犳按鍔涘仠鐣欐椂闂 锛屾睜瀹 锛
濂芥哀姹犳按鍔涘仠鐣欐椂闂 锛屾睜瀹
鈶汇 鍘屾哀娈垫荤7璐熻嵎
鈶笺 鍙嶅簲姹犱富瑕佸昂瀵
鍙嶅簲姹犳诲圭Н
璁惧弽搴旀睜2缁勶紝鍗曠粍姹犲
鏈夋晥姘存繁
鍗曠粍鏈夋晥闈㈢Н
閲囩敤5寤婇亾寮忔帹娴佸紡鍙嶅簲姹狅紝寤婇亾瀹
鍗曠粍鍙嶅簲姹犻暱搴
鏍℃牳锛 (婊¤冻 )
(婊¤冻 )
鍙栬秴楂樹负1.0m锛屽垯鍙嶅簲姹犳婚珮
鈶姐 鍙嶅簲姹犺繘銆佸嚭姘寸郴缁熻$畻
鈶 杩涙按绠
鍗曠粍鍙嶅簲姹犺繘姘寸¤捐℃祦閲
绠¢亾娴侀
绠¢亾杩囨按鏂闈㈤潰绉
绠″緞
鍙栧嚭姘寸$″緞DN700mm
鏍℃牳绠¢亾娴侀
鈶 鍥炴祦姹℃偿娓犻亾銆傚崟缁勫弽搴旀睜鍥炴祦姹℃偿娓犻亾璁捐℃祦閲廞R

娓犻亾娴侀
鍙栧洖娴佹薄娉ョ$″緞DN700mm
鈶 杩涙按浜
鍙嶅簲姹犺繘姘村瓟灏哄革細
杩涙按瀛旇繃娴侀噺
瀛斿彛娴侀
瀛斿彛杩囨按鏂闈㈢Н
瀛斿彛灏哄稿彇
杩涙按绔栦簳骞抽潰灏哄
鈶 鍑烘按鍫板強鍑烘按绔栦簳銆傛寜鐭╁舰鍫版祦閲忓叕寮忥細

寮忎腑 鈥斺斿牥瀹斤紝
H鈥斺斿牥涓婃按澶撮珮锛宮

鍑烘按瀛旇繃娴侀噺
瀛斿彛娴侀
瀛斿彛杩囨按鏂闈㈢Н
瀛斿彛灏哄稿彇
杩涙按绔栦簳骞抽潰灏哄
鈶 鍑烘按绠°傚崟缁勫弽搴旀睜鍑烘按绠¤捐℃祦閲

绠¢亾娴侀
绠¢亾杩囨按鏂闈㈢Н
绠″緞
鍙栧嚭姘寸$″緞DN900mm
鏍℃牳绠¢亾娴侀
鈶俱 鏇濇皵绯荤粺璁捐¤$畻
鈶 璁捐¢渶姘ч噺AOR銆
AOR锛濓紙鍘婚櫎BOD5闇姘ч噺-鍓╀綑姹℃偿涓瑽ODu姘у綋閲忥級+锛圢H3-N纭濆寲闇姘ч噺-鍓╀綑姹℃偿涓璑H3-N鐨勬哀褰撻噺锛-鍙嶇濆寲鑴辨爱浜ф哀閲
纰冲寲闇姘ч噺D1
纭濆寲闇瑕侀噺D2
鍙嶇濆寲鑴辨爱浜х敓鐨勬哀閲

鎬婚渶瑕侀噺
鏈澶ч渶瑕侀噺涓庡钩鍧囬渶姘ч噺涔嬫瘮涓1.4锛屽垯

鍘婚櫎1kgBOD5鐨勯渶姘ч噺
鈶 鏍囧噯闇姘ч噺
閲囩敤榧撻庢洕姘旓紝寰瀛旀洕姘斿櫒銆傛洕姘斿櫒鏁疯句簬姹犲簳锛岃窛姹犲簳0.2m锛屾饭娌℃繁搴3.8m锛屾哀杞绉绘晥鐜嘐A锛20锛咃紝璁$畻娓╁害T=25鈩冦

鐩稿簲鏈澶ф椂鏍囧噯闇姘ч噺

濂芥哀鍙嶅簲姹犲钩鍧囨椂渚涙皵閲

鏈澶ф椂渚涙皵閲

鈶 鎵闇绌烘皵鍘嬪姏p

寮忎腑

鈶 鏇濇皵鍣ㄦ暟閲忚$畻(浠ュ崟缁勫弽搴旀睜璁$畻)
鎸変緵姘ц兘鍔涜$畻鎵闇鏇濇皵鍣ㄦ暟閲忋

鈶 渚涢庣¢亾璁$畻
渚涢庡共绠¢亾閲囩敤鐜鐘跺竷缃銆
娴侀噺
娴侀
绠″緞
鍙栧共绠$″緞寰瓺N500mm
鍗曚晶渚涙皵(鍚戝崟渚у粖閬撲緵姘)鏀绠
娴侀
绠″緞
鍙栨敮绠$″緞涓篋N300mm
鍙屼晶渚涙皵
娴侀
绠″緞
鍙栨敮绠$″緞DN=450mm
鈶裤佸帉姘ф睜璁惧囬夋嫨(浠ュ崟缁勫弽搴旀睜璁$畻) 鍘屾哀姹犺惧兼祦澧欙紝灏嗗帉姘ф睜鍒嗘垚3鏍笺傛瘡鏍煎唴璁炬綔姘存悈鎷屾満1鍙帮紝鎵闇鍔熺巼鎸 姹犲硅$畻銆
鍘屾哀姹犳湁鏁堝圭Н
娣峰悎鍏ㄦ睜姹℃按鎵闇鍔熺巼涓

鈶裤 姹℃偿鍥炴祦璁惧
姹℃偿鍥炴祦姣
姹℃偿鍥炴祦閲
璁惧洖娴佹薄娉ユ车鎴1搴э紝鍐呰3鍙版綔姹℃车(2鐢1澶)
鍗曟车娴侀噺
姘存车鎵绋嬫牴鎹绔栧悜娴佺▼纭瀹氥
鈷銆 娣峰悎娑插洖娴佽惧
鈶 娣峰悎娑插洖娴佹车
娣峰悎娑插洖娴佹瘮
娣峰悎娑插洖娴侀噺
璁炬贩鍚堟恫鍥炴祦娉垫埧2搴э紝姣忓骇娉垫埧鍐呰3鍙版綔姹℃车(2鐢1澶)
鍗曟车娴侀噺
鈶 娣峰悎娑插洖娴佺°
娣峰悎娑插洖娴佺¤捐
娉垫埧杩涙按绠¤捐℃祦閫熼噰鐢
绠¢亾杩囨按鏂闈㈢Н
绠″緞
鍙栨车鎴胯繘姘寸$″緞DN900mm
鏍℃牳绠¢亾娴侀
鈶 娉垫埧鍘嬪姏鍑烘按鎬荤¤捐℃祦閲
璁捐℃祦閫熼噰鐢

鍏銆 浜屾矇姹
璁捐″弬鏁
涓轰簡浣挎矇娣姹犲唴姘存祦鏇寸ǔ銆佽繘鍑烘按閰嶆按鏇村潎鍖銆佸瓨鎺掓偿鏇存柟渚匡紝甯搁噰鐢ㄥ渾褰㈣緪娴佸紡浜屾矇姹犮備簩娌夋睜涓轰腑蹇冭繘姘达紝鍛ㄨ竟鍑烘按锛屽箙娴佸紡娌夋穩姹狅紝鍏2搴с備簩娌夋睜闈㈢Н鎸夎〃闈㈣礋鑽锋硶璁$畻锛屾按鍔涘仠鐣欐椂闂磘=2.5h锛岃〃闈㈣礋鑽蜂负1.5m3/锛坢2•h-1锛夈
1) 姹犱綋璁捐¤$畻
鈶. 浜屾矇姹犺〃闈㈤潰绉

浜屾矇姹犵洿寰 锛 鍙29.8m
鈶. 姹犱綋鏈夋晥姘存繁 娣峰悎娑叉祿搴 锛屽洖娴佹薄娉ユ祿搴︿负
涓轰繚璇佹薄娉ュ洖娴佹祿搴︼紝浜屾矇姹犵殑瀛樻偿鏃堕棿涓嶅疁灏忎簬2h锛
浜屾矇姹犳薄娉ュ尯鎵闇瀛樻偿瀹圭НVw

閲囩敤鏈烘板埉鍚告偿鏈鸿繛缁鎺掓偿锛岃炬偿鏂楃殑楂樺害H2涓0.5m銆
鈶. 浜屾矇姹犵紦鍐插尯楂樺害H3=0.5m锛岃秴楂樹负H4=0.3m锛屾矇娣姹犲潯搴﹁惤宸瓾5=0.63m
浜屾矇姹犺竟鎬婚珮搴
鈶. 鏍℃牳寰勬繁姣
浜屾矇姹犵洿寰勪笌姘存繁姣斾负 锛岀﹀悎瑕佹眰
2) 杩涙按绯荤粺璁$畻
鈶. 杩涙按绠¤$畻
鍗曟睜璁捐℃薄姘存祦閲
杩涙按绠¤捐℃祦閲
閫夊彇绠″緞DN1000mm锛
娴侀
鍧¢檷涓 1000i=1.83
鈶. 杩涙按绔栦簳
杩涙按绔栦簳閲囩敤D2=1.5m锛屾祦閫熶负0.1锝0.2m/s
鍑烘按鍙e昂瀵0.45脳1.5m²,鍏6涓锛屾部浜曞佸潎鍖鍒嗗竷銆
鍑烘按鍙f祦閫
鈶. 绋虫祦绛掕$畻
鍙栫瓛涓娴侀
绋虫祦绛掕繃娴侀潰绉
绋虫祦绛掔洿寰
3) 鍑烘按閮ㄥ垎璁捐
a锛 鍗曟睜璁捐℃祦閲
b锛 鐜褰㈤泦姘存Ы鍐呮祦閲
c锛 鐜褰㈤泦姘存Ы璁捐
閲囩敤鍛ㄨ竟闆嗘按妲斤紝鍗曚晶闆嗘按锛屾瘡姹犲彧鏈変竴涓鎬诲嚭姘村彛锛屽畨鍏ㄧ郴鏁発鍙1.2
闆嗘按妲藉藉害 鍙
闆嗘按妲借捣鐐规按娣变负
闆嗘按妲界粓鐐规按娣变负
妲芥繁鍙0.7m锛岄噰鐢ㄥ弻渚ч泦姘寸幆褰㈤泦姘存Ы璁$畻锛屽彇妲藉絙=0.8m锛屾Ы涓娴侀
妲藉唴缁堢偣姘存繁
妲藉唴璧风偣姘存繁

鏍℃牳锛氬綋姘存祦澧炲姞涓鍊嶆椂锛宷=0.2896 m³/s锛寁´=0.8m/s

璁捐″彇鐜褰㈡Ы鍐呮按娣变负0.6m锛岄泦姘存Ы鎬婚珮涓0.6+0.3锛堣秴楂橈級=0.9m锛岄噰鐢90掳涓夎掑牥銆

d锛 鍑烘按婧㈡祦鍫扮殑璁捐
閲囩敤鍑烘按涓夎掑牥锛90掳锛夛紝鍫颁笂姘村ご锛堜笁瑙掑彛搴曢儴鑷充笂娓告按闈㈢殑楂樺害锛塇1=0.05m(H2O).
姣忎釜涓夎掑牥鐨勬祦閲
涓夎掑牥涓鏁
涓夎掑牥涓蹇冭窛锛堝崟渚у嚭姘达級

4) 鎺掓偿閮ㄥ垎璁捐
鈶狅紟 鍗曟睜姹℃偿閲
鎬绘薄娉ラ噺涓哄洖娴佹薄娉ラ噺鍔犲墿浣欐薄娉ラ噺
鍥炴祦姹℃偿閲
鍓╀綑姹℃偿閲

鈶★紟 闆嗘偿妲芥部鏁翠釜姹犲緞涓轰袱杈归泦娉

涓冦 娑堟瘨鎺ヨЕ姹

4銆佸姞姘闂
鈶淬佸姞姘閲 鎸夋瘡绔嬫柟绫虫姇鍔5g璁★紝鍒
鈶点佸姞姘璁惧 閫夌敤3鍙癛EGAL-2100鍨嬭礋鍘嬪姞姘鏈猴紙2鐢1澶囷級锛屽崟鍙板姞姘閲忎负10kg/h
鍏銆 姹℃偿娉垫埧
璁捐℃薄娉ュ洖娴佹车鎴2搴
1銆佽捐″弬鏁
姹℃偿鍥炴祦姣100锛
璁捐″洖娴佹薄娉ユ祦閲50000m3/d
鍓╀綑姹℃偿閲2130m3/d
2銆 姹℃偿娉
鍥炴祦姹℃偿娉6鍙帮紙4鐢2澶囷級锛屽瀷鍙 200QW350-20-37娼滄按鎺掓薄娉
鍓╀綑姹℃偿娉4鍙帮紙2鐢2澶囷級锛屽瀷鍙 200QW350-20-37娼滄按鎺掓薄娉
3銆 闆嗘偿姹
鈶淬佸圭Н 鎸1鍙版车鏈澶ф祦閲忔椂6min鐨勫嚭娴侀噺璁捐

鍙栭泦娉ユ睜瀹圭Н50m3
鈶点侀潰绉 鏈夋晥姘存繁 锛岄潰绉
闆嗘偿姹犻暱搴﹀彇5m锛屽藉害

4銆 娉典綅鍙婂畨瑁
鎺掓薄娉电洿鎺ョ疆浜庨泦姘存睜鍐咃紝鎺掓薄娉垫淇閲囩敤绉诲姩鍚婃灦銆
涔濄 姹℃偿娴撶缉姹
鍒濇矇姹犳薄娉ュ惈姘寸巼澶х害95锛
璁捐″弬鏁

1銆 娴撶缉姹犲昂瀵

2銆 娴撶缉鍚庢薄娉ヤ綋绉
3銆
閲囩敤鍛ㄨ竟椹卞姩鍗曡噦鏃嬭浆寮忓埉娉ユ満銆
鍗併 璐娉ユ睜
1銆 姹℃偿閲

2銆 璐娉ユ睜瀹圭Н
璁捐¤串娉ユ睜鍛ㄦ湡1d锛屽垯璐娉ユ睜瀹圭Н

3銆 娉ユ睜灏哄

4銆 鎼呮媽璁惧
涓洪槻姝㈡薄娉ュ湪璐娉ユ睜缁堟矇娣锛岃串娉ユ睜鍐呰剧疆鎼呮媽璁惧囥傝剧疆娑蹭笅鎼呮媽鏈1鍙帮紝鍔熺巼10kw銆
鍗佷竴銆 鑴辨按闂
1銆 鍘嬫护鏈
2銆佸姞鑽閲忚$畻

鎶曞姞閲 浠ュ共鍥轰綋鐨0.4%璁
.
鍗佷簩銆佹瀯寤虹瓚鐗╁拰璁惧囦竴瑙堣〃锛

搴忓彿 鍚嶇О 瑙勬牸 鏁伴噺 璁捐″弬鏁 涓昏佽惧

1

鏍兼爡

L脳B =
3.58m脳3.2m

1搴 璁捐℃祦閲
Qd=50000m3/d
鏍呮潯闂撮殭
鏍呭墠姘存繁
杩囨爡娴侀
HG-1200鍥炴棆寮忔満姊版牸鏍1濂
瓒呭0娉㈡按浣嶈2濂
铻烘棆鍘嬫Θ鏈猴紙桅300锛1鍙
铻虹汗杈撻佹満锛埼300锛1鍙
閽㈤椄闂锛2.0X1.7m锛4鎵
鎵嬪姩鍚闂鏈猴紙5t锛4鍙

2

杩涙按娉垫埧
L 脳 B =
20m脳 13m

1搴 璁捐℃祦閲廞=2793.6 m3/h
鍗曟车娴侀噺Q= 350m3/h
璁捐℃壃绋婬=6mH2O
閫夋车鎵绋婬= 7.22mH2O
1mH2O=9800 Pa 铻烘棆娉碉紙桅1500mm,N60kw锛5鍙帮紝4鐢1澶
閽㈤椄闂锛2.0mX2.0m锛5鎵
鎵嬪姩鍚闂鏈猴紙5t锛5鍙
鎵嬪姩鍗曟佹偓鎸傚紡璧烽噸鏈猴紙2t锛孡k4m锛1鍙

3
骞虫祦娌夌爞姹
L脳B脳H=
12.5m脳3.1m脳2.57m

1搴 璁捐℃祦閲
Q锛2793.6 m3/h
姘村钩娴侀焩= 0.25 m/s
鏈夋晥姘存繁H1= 1 m
鍋滅暀鏃堕棿T= 50 S

鐮傛按鍒嗙诲櫒锛埼0.5m锛2鍙

4

骞虫祦寮忓垵娌夋睜

L脳B脳H=
21.6m脳5m脳8m

13搴
璁捐℃祦閲廞= 2793.3 m3/h
琛ㄩ潰璐熻嵎q= 2.0m3/(m2•h)
鍋滅暀鏃堕棿T= 2.0 d

鍏ㄦˉ寮忓埉鍚告偿鏈(妗ラ暱40m,绾块熷害3m/min, N0.55X2kW) 2鍙
鎾囨福鏂4涓

5

鏇濇皵姹

L脳B脳H =
70m脳55m脳4.5m

1搴
BOD涓150锛岀粡鍒濇矇姹犲勭悊锛岄檷浣25% 缃楄尐榧撻庢満锛圱SO-150锛孮a15.9m3/min, P19.6kPa,N11kw锛3鍙
娑堝0鍣6涓

6

杈愭祦寮忎簩娌夋睜

D脳H=
桅29.8m脳3m

2搴 璁捐℃祦閲廞= 2084.4m3/h
琛ㄩ潰璐熻嵎q= 1.5m3/(m2•h)
鍥轰綋璐熻嵎qs= 144锝192 kgSS/(m2•d)
鍋滅暀鏃堕棿T= 2.5 h
姹犺竟姘存繁H1=2 m

鍏ㄦˉ寮忓埉鍚告偿鏈(妗ラ暱40m,绾块熷害3m/min, N0.55X2kW) 2鍙
鎾囨福鏂4涓
鍑烘按鍫版澘1520mX2.0m
瀵兼祦缇ゆ澘560mX0.6m

7 鎺ヨЕ娑堟瘨姹 L脳B脳H=
32.4m脳3.6m脳3m
1搴 璁捐℃祦閲廞=2187.5 m3/h
鍋滅暀鏃堕棿T= 0.5 h
鏈夋晥姘存繁H1=2 m
娉ㄦ按娉碉紙Q3锝6 m3/h 锛2鍙

9

鍔犳隘闂

L脳B=
12m脳9m

1搴
鎶曟隘閲 250 kg/d
姘搴撹串姘閲忔寜15d璁
璐熷帇鍔犳隘鏈(GEGAL-2100)3鍙
鐢靛姩鍗曟佹偓鎸傝捣閲嶆満(2.0t)1鍙

10
鍥炴祦鍙婂墿
浣欐薄娉ユ车鎴匡紙鍚堝缓寮忥級

L脳B=
10m脳5m

1搴 鏃犲牭濉炴綔姘村紡鍥炴祦姹℃偿娉2鍙
閽㈤椄闂(2.0X2.0m)2鎵
鎵嬪姩鍗曟佹偓鎸傚紡璧烽噸鏈(2t)1鍙
濂楃瓛闃DN800mm, 桅1500mm 2涓
鐢靛姩鍚闂鏈猴紙1.0t锛2鍙
鎵嬪姩鍚闂鏈猴紙5.0t锛2鍙
鏃犲牭濉炴綔姘村紡鍓╀綑姹℃偿娉3鍙

绗鍥涚珷 骞抽潰甯冪疆
锛1锛夋诲钩闈㈠竷缃鍘熷垯
璇ユ薄姘村勭悊鍘備负鏂板缓宸ョ▼锛屾诲钩闈㈠竷缃鍖呮嫭锛氭薄姘翠笌姹℃偿澶勭悊宸ヨ壓鏋勭瓚鐗╁強璁炬柦鐨勬诲钩闈㈠竷缃锛屽悇绉嶇$嚎銆佺¢亾鍙婃笭閬撶殑骞抽潰甯冪疆锛屽悇绉嶈緟鍔╁缓绛戠墿涓庤炬柦鐨勫钩闈㈠竷缃銆傛诲浘骞抽潰甯冪疆鏃跺簲閬典粠浠ヤ笅鍑犳潯鍘熷垯銆
鈶 澶勭悊鏋勭瓚鐗╀笌璁炬柦鐨勫竷缃搴旈『搴旀祦绋嬨侀泦涓绱у噾锛屼互渚夸簬鑺傜害鐢ㄥ湴鍜岃繍琛岀$悊銆
鈶 宸ヨ壓鏋勭瓚鐗╋紙鎴栬炬柦锛変笌涓嶅悓鍔熻兘鐨勮緟鍔╁缓绛戠墿搴旀寜鍔熻兘鐨勫樊寮傦紝鍒嗗埆鐩稿圭嫭绔嬪竷缃锛屽苟鍗忚皟濂戒笌鐜澧冩潯浠剁殑鍏崇郴锛堝傚湴褰㈣蛋鍔裤佹薄姘村嚭鍙f柟鍚戙侀庡悜銆佸懆鍥寸殑閲嶈佹垨鏁忔劅寤虹瓚鐗╃瓑锛夈
鈶 鏋勶紙寤猴級涔嬮棿鐨勯棿璺濆簲婊¤冻浜ら氥佺¢亾锛堟笭锛夋暦璁俱佹柦宸ュ拰杩愯岀$悊绛夋柟闈㈢殑瑕佹眰銆
鈶 绠¢亾锛堢嚎锛変笌娓犻亾鐨勫钩闈㈠竷缃锛屽簲涓庡叾楂樼▼甯冪疆鐩稿崗璋冿紝搴旈『搴旀薄姘村勭悊鍘傚悇绉嶄粙璐ㄨ緭閫佺殑瑕佹眰锛屽敖閲忛伩鍏嶅氭℃彁鍗囧拰杩傚洖鏇叉姌锛屼究浜庤妭鑳介檷鑰楀拰杩愯岀淮鎶ゃ
鈶 鍗忚皟濂借緟寤虹瓚鐗╋紝閬撹矾锛岀豢鍖栦笌澶勭悊鏋勶紙寤猴級绛戠墿鐨勫叧绯伙紝鍋氬埌鏂逛究鐢熶骇杩愯岋紝淇濊瘉瀹夊叏鐣呴亾锛岀編鍖栧巶鍖虹幆澧冦
锛2锛夋诲钩闈㈠竷缃缁撴灉
姹℃按鐢卞寳杈规帓姘存诲共绠℃埅娴佽繘鍏ワ紝缁忓勭悊鍚庣敱璇ユ帓姘存诲共绠″拰娉电珯鎺掑叆娌虫祦銆
姹℃按澶勭悊鍘傚憟闀挎柟褰锛屼笢瑗块暱380绫筹紝鍗楀寳闀280绫炽傜患鍚堟ゼ銆佽亴宸ュ胯垗鍙婂叾浠栦富瑕佽緟鍔╁缓绛戜綅浜庡巶鍖轰笢閮锛屽崰鍦拌緝澶х殑姘村勭悊鏋勭瓚鐗╁湪鍘傚尯涓滈儴锛屾部娴佺▼鑷鍖楀悜鍗楁帓寮锛屾薄娉ュ勭悊绯荤粺鍦ㄥ巶鍖虹殑涓滃崡閮ㄣ
鍘傚尯涓诲共閬撳8绫筹紝涓や晶鏋勶紙寤猴級绛戠墿闂磋窛涓嶅皬浜15绫筹紝娆″共閬撳4绫筹紝涓や晶鏋勶紙寤猴級绛戠墿闂磋窛涓嶅皬浜10绫炽
鎬诲钩闈㈠竷缃鍙傝侀檮鍥1锛堝钩闈㈠竷缃鍥撅級銆

绗浜旂珷 楂樼▼甯冪疆鍙婅$畻
锛1锛夐珮绋嬪竷缃鍘熷垯
鈶 鍏呭垎鍒╃敤鍦板舰鍦板娍鍙婂煄甯傛帓姘寸郴缁燂紝浣挎薄姘寸粡涓娆℃彁鍗囦究鑳介『鍒╄嚜娴侀氳繃姹℃按澶勭悊鏋勭瓚鐗╋紝鎺掑嚭鍘傚栥
鈶 鍗忚皟濂介珮绋嬪竷缃涓庡钩闈㈠竷缃鐨勫叧绯伙紝鍋氬埌鏃㈠噺灏戝崰鍦帮紝鍙堝埄浜庢薄姘淬佹薄娉ヨ緭閫侊紝骞舵湁鍒╀簬鍑忓皯宸ョ▼鎶曡祫鍜岃繍琛屾垚鏈銆
鈶 鍋氬ソ姹℃按楂樼▼甯冪疆涓庢薄娉ラ珮绋嬪竷缃鐨勯厤鍚堬紝灏介噺鍚屾椂鍑忓皯涓よ呯殑鎻愬崌娆℃暟鍜岄珮搴︺
鈶 鍗忚皟濂芥薄姘村勭悊鍘傛讳綋楂樼▼甯冪疆涓庡崟浣撶珫鍚戣捐★紝鏃渚夸簬姝e父鎺掓斁锛屽張鏈夊埄浜庢淇鎺掔┖銆
锛2锛夐珮绋嬪竷缃缁撴灉
鐢变簬璇ユ薄姘村勭悊鍘傚嚭姘存帓鍏ュ競鏀挎帓姘存诲共绠″悗锛岀粡缁堢偣娉电珯鎻愬崌鎵嶆帓鍏ユ渤娴侊紝鏁呮薄姘村勭悊鍘傞珮绋嬪竷缃鐢辫嚜韬鍥犵礌鍐冲畾銆
閲囩敤鏅閫氭椿鎬ф薄娉ユ硶锛岃緪娴佸紡浜屾矇姹犮佹洕姘旀睜銆佸垵娌夋睜鍗犲湴闈㈢Н杈冨ぇ锛屽傛灉鍩嬫繁璁捐¤繃澶э紝涓鏂归潰涓嶅埄浜庢柦宸ワ紝涔熶笉鍒╀簬鍦熸柟骞宠锛屾晠鎸夊敖閲忓噺灏戝煁娣便備粠闄嶄綆鍦熷缓宸ョ▼鎶曡祫鑰冭檻锛屽嚭姘村彛姘撮潰楂樼▼瀹氫负64m锛屽垯鐩稿簲鐨勬瀯绛戠墿鍜岃炬柦鐨勯珮绋嬪彲浠ヤ粠鍑烘按鍙i嗘祦璁$畻鍑哄叾姘村ご鎹熷け,浠庤岀畻鍑烘潵銆
鎬婚珮绋嬪竷缃鍙傝侀檮鍥2楂樼▼鍥俱

锛3锛夐珮绋嬭$畻

h1鈥旀部绋嬫按澶存崯澶 h1=il, i鈥斿潯搴 i=0.005
h2鈥斿眬閮ㄦ按澶存崯澶 h2=h1脳50%
h3鈥旀瀯绛戠墿姘村ご鎹熷け

a銆 宸存皬璁¢噺妲
H=0.3m
宸存皬璁¢噺妲芥爣楂 -1.7000m

b銆 娑堟瘨姹犵殑鐩稿规爣楂
鎺掓按鍙g殑鐩稿规爣鍦伴潰鏍囬珮锛 0.00m
娑堟瘨姹犵殑姘村ご鎹熷け锛 0.30m
娑堟瘨姹犵浉瀵瑰湴闈㈡爣楂橈細 -1.4000m

c銆 娌夋穩姹犻珮绋嬫崯澶辫$畻
l=40m
h1=il=0.005脳40=0.20m
h2= h1脳50%=0.10m
h3=0.45m
H2=h1+h2+h3=0.20+0.10+0.45=0.75m
娌夋穩姹犵浉瀵瑰湴闈㈡爣楂 -0.6000m

d銆 A2/O鍙嶅簲姹犻珮绋嬫崯澶辫$畻
l=55m
h1=il=0.005脳55=0.275m
h2= h1脳50%=0.1375m
h3=0.60m
H3=h1+h2+h3=0.275+0.1375+0.60=1.0125m
A2/O鍙嶅簲姹犳睜鐩稿瑰湴闈㈡爣楂 0.4625m

e銆 骞虫祦寮忔矇鐮傛睜楂樼▼鎹熷け璁$畻
l=12m
h1= il=0.005脳12=0.06m
h2= h1脳50%=0.03m
h3=0.3m
H4=h1+h2+h3=0.06+0.03+0.30=0.39m
骞虫祦寮忔矇鐮傛睜鐩稿瑰湴闈㈡爣楂 0.8525m

f銆 缁嗘牸鏍呴珮绋嬫崯澶辫$畻
h1= 0.30m
h2= h1脳50%=0.15m
h3=0.30m
H5=h1+h2+h3=0.30+0.15+0.30=0.75m
缁嗘牸鏍呯浉瀵瑰湴闈㈡爣楂 1.6025m

g銆 姹℃按鎻愬崌娉甸珮绋嬫崯澶辫$畻
l=5m
h1= il=0.005脳5=0.025m
h2= h1脳50%=0.0125m
h3=0.20m
H6=h1+h2+h3=0.025+0.0125+0.20=0.2375m
姹℃按鎻愬崌娉电浉瀵瑰湴闈㈡爣楂 -4.1600m

F. 生活污水A/O法处理工艺的论文开题报告怎么写

A2/O工艺处理城市污水(一)
(2011-12-03 21:13:00)
转载▼
标签:
教育
分类: 博文

摘要
本次毕业设计的题目为江阴某经济开发区污水处理厂设计— A2/O 工艺。主要任务是完成该经济开发区排水管网布置及污水处理厂初步设计和单项处理构筑物施工图设计。
其中初步设计要完成设计说明书一份、污水处理厂总平面图一张及污水处理厂污水与污泥高程图一张;单项处理构筑物施工图设计中,主要是完成
A2/O 平面图和剖面图及部分大样图。该污水处理厂工程,近期规模为2.5万吨/日。
该污水厂的污水处理流程为:从泵房到沉砂池,进入A2/O 反应池,进入辐流式二次沉淀池,进入接触池,再进入巴氏计量槽,最后出水;污泥的流程为:从A2/O反应池排出的剩余污泥进入集泥配水井,再由污水泵送入浓缩池, 再进入储泥池,最后外运处置。
污水处理厂处理后的出水优于国家污水综合排放标准(GB8978-1996)中的一级标准。
所选择的A2/O 工艺,具有良好的脱氮除磷功能。
关键词:A2/O 工艺;脱氮除磷;
ABSTRACT

The topic of this graate design is about the design of the sewage disposal
plant in the development area of economy and techonology in Jangyin City. The technics of the plant is the Anaerobic-Anoxic-Oxic. The main task is the primary design of the plant and the shop drawing of the oxidation ditch pond.

The task of the primary design isthata design book、a plan of the plant、the high drawing of the disposal of sludge and sewage; in the single disposal build design, the harvest is that the section plane drawing 、the plan and some part magnifying drawings of the Anaerobic-Anoxic-Oxic.

The construction of this plant is 25000 steres per day.

The process of the sewage in the plant is that the sewage runs from pumphouse
to sand sinking pond, enters the pond of sedimentation tank, enters disinfection pond, then enters calculation trough ,at last lets out. The process of the sludge is that: Surplus sludge from the sedimentation tank enters concentration pond, enters digestion pong, then it is dehydrated, at last it is carried out of the plant.

The outlet water of the plant meets the level one of the National Sewage
Discharge Standard (GB8978-1996).

There is an Anaerobic-Anoxic-Oxic more than the craft of SBR in the craft of CASS. it prevents sludge from eapending,promots releasing phosphorus ,and
strengthens anti-nitration.

Key words: The Anaerobic-Anoxic-Oxic; Taking off the nitrogen and the
phosphorus;

第一部分
第1章 设计概论
1.1 设计任务
本次毕业设计的主要任务是完成某经济技术开发区A2/O 工艺处理城市污水设计。工程设计内容包括:
1.确定开发区排水体制,完成排水管网规划设计图;
2.进行污水处理厂方案的总体设计:通过调研收集资料,确定污水处理工艺方案;进行总体布局、竖向设计、厂区管道布置、厂区道路及绿化设计;完成污水处理厂总平面及高程设计图。
3.进行污水处理厂各构筑物工艺计算:包括初步设计和施工图设计(每位学生要求至少有一个构筑物的设计达到施工图深度)、设备选型,图中应有设备、材料一览表和工程量表。
4.进行辅助建筑物(包括鼓风机房、泵房、加药间、脱水机房等)的设计:包括尺寸、面积、层数的确定;完成设备选型和设备管道安装图。
1.2 开发区概况及自然条件
1.2.1 开发区概况
1.城市规划
江阴临港新城位于江阴市西部,东临主城区、北枕长江、西面和南面与常州接壤,下辖“两街、两镇、一办”:夏港街道、申港街道、利港镇、璜土镇、港口办事处,总计行政区划面积188平方公里,总人口约20万人。2005年12月, 临港新城被列入无锡在“十一五”期间重点建设的五大新城之一;2006年1月,临港新城开发建设正式启动;2006年9月,临港新城被国家发改委正式核准同时被省政府批准为省级经济开发区,命名为江苏江阴临港经济开发区。
江阴临港新城始终坚持“以港兴城、港以城兴、港城共荣、互动发展”的战略,全力打造苏锡常都市圈临港产业中心和江阴城市副中心。全面做好港口码头、临港产业、国际商务、现代服务、绿色生态等“五篇文章”,加快实施《临港新城培育四大千亿产业集群纲要》,推动经济与城市全面转型、同步提升。
产业是城市发展的根本。依托港口,发展低碳、新材料、机械装备、现代物流四大临港特色产业,全力培育千亿级产业集群是构筑临港新城新一轮区域经济发展比较优势,打造临港经济新增长极,实现可持续发展的必由之路。
2.地面水环境状况
在开发区范围内长江为主水体,根据江阴市环境监测中心站编制的《江阴临港经济技术开发区环境质量报告书》,在上述7 个水体中共布设监测点19 个,并分枯水期和平水期对其进行采样监测。长江水质检测结果为:在枯水期平均值超标的(按地面水环境质量三类标准GB383888)污染物主要有生化需氧量、亚硝
酸盐氮、凯式氮、总磷和大肠菌群等五项;在平水期平均值超标的主要有凯氏氮和总磷两项。其中枯水期BOD5 值最高值和平均值分别为6.42mg/L 和5mg/L ,分别超标0.6 倍和0.25 倍,亚硝酸盐氮最高值和平均值分别为0.26mg/L 和0.15mg/L ,分别超标0.73 和0.06 倍,凯式氮最高值和平均值分别为5.91mg/L 和3.91mg/L ,分别超标4.91 倍和3.91 倍,总磷最高值和平均值分别为0.197mg/L 和0.089mg/L,分别超标2.94 倍和0.78 倍, 大肠菌群最高值和平均值分别为920000个/升和191333 个/升,分别超标91 倍和18 倍;而平水期凯式氮最高值和平均值分别为0.083mg/L和0.073mg/L ,分别超标0.66倍和0.46倍。另外根据开发区地面水环境质量评价结果也可以看出,长江申港段污染负荷比最大,在枯水期超标的评价参数是生化需氧量、亚硝酸氮、凯式氮和总磷;在平水期超标的评价参数是总磷和凯式氮。
3.开发区排水现状及规划
开发区为新建区域,根据开发区排水总体规划,以采用雨污分流制的排水系统为宜。开发区范围内的雨水根据道路布置情况,依据道路控制高程分散排入现有明渠或湖汊入湖,开发区污水将汇集排入长江。目前开发区已初具规模,随着开发区的建设及工业企业的逐步开工,开发区的废水排放量将不断增多,对上述已被污染的长江申港段将进一步加大其污染负荷比,给开发区环境将带来严重的影响,也将直接影响到开发区的投资环境。另外,开发区位于长江江阴段上游,未经处理的污水直接排入长江,也将对武汉市江段的水质及饮用水源的安全造成威胁。因此,为优化投资环境,改善和提高城区生活环境质量,保证城市居民身体健康,决定修建分流制排水系统和开发区污水处理厂。
1.2.2 开发区的自然条件
1.气象资料
开发区属亚热带季风气候,全年四季分明,日照充足,雨量充沛,其气象特征如下:
(1) 气温
年平均气温:15.1℃;最高气温:38.3℃;最低气温:-3.4℃。
(2)降水量
年平均降水量:1108.5mm ;年平均降雨天数:105.2 天。
(3) 湿度
年平均相对湿度:72%
(4)降雪
24 小时最大积雪深度:15.0cm(2008年南方雪灾) 。
年降雪日:一般在10 日以内
(5)风
全年主导风向为东北偏北,冬季以北风和东偏北为主,夏季多为东南风。
年平均风速:2.7m/s ;最大风速:19.1m/s 。
(6)雾日数
年平均雾日数:28.4 日;年最小雾日数:10 日。
(7)蒸发量
年平均蒸发量:1294mm 。
1.2.3 设计水量与水质
⒈ 设计水量
污水量标准包括生活污水和工业污水两部分。开发区的综合用水量定为625升/人.日,综合污水量按照给水量标准的80%计,则平均污水量标准为500 升/人.日。
按近期规划人口10 万人计算,则该污水处理厂的近期设计污水量为:平均日25000m3/d 。
2.污水水质及净化要求
原污水水质:COD 320mg/L,BOD5 150mg/L,SS 200mg/L,TN 35 mg/L,NH3-N 15mg/L,TP 4 mg/L。
污水经处理后应符合以下具体要求:
CODCr≤60mg/L,BOD5≤20mg/L,SS≤20mg/L,TN ≤15 mg/L,NH3-N≤5mg/L,TP 1 mg/L。
第2 章总体设计
2.1 排水体制
在城市和工业企业中通常有生活污水、工业废水和雨水,排水系统,也就是将城镇的污水、废水和雨水系统有组织地排除与处理的工程设施。排水系统通常由排水管网和污水处理厂组成。这些污废水是用一个管渠系统还是用两个、三个管渠系统来排,构成了不同的排除方式,称之为排水系统的体制。
2.1.1 合流制排水系统
目前我国大多数城市排水体制为合流制,合流制排水系统就是将生活污水、工业废水和雨水用一个管渠系统汇集排除的系统。这种体制有下面两种方式:
1.合流制
这种方式是将管渠系统分成若干排出口,将混合污水不经任何处理直接就近排八水体。这是一种合流制排水方式,国内外许多老城市几乎者是采用这种简单的排水方式。在过去,工业尚不发达,人口少,污水相对不大,采取水体的自净作用,这种排水体制被长期采用。但是在当今,科技的发展,人口增加,使污水不断增加,水质也日趋复杂,从环保卫生上来看,合流制是水环境污染的主要原因,所以在目前情况就不宜再采用这种排水体制。
2.1.2 截流式合流制
这种方式就是在江河岸边修建截流干管,并在合流干管与截流干管交汇设置溢流井。晴天时,混合污水全部由截流干管送至污水处理厂处理后排放;雨天时,当混合水是超过截流干管输水能力后,其超出部分通过溢流并泄八水体。这种体制对带有较多悬浮物的初期雨水和污水都进行处理,对保护水体是有利的,但周期性地给水体带来一定程度的污染,很明显,同为合流制,它又前者优越。这种方式,对一些旧城合流制排水系统改造是可以考虑加以采用的。
2.1.3 分流制排水系统
当生活污水、工业废水和雨水用两个或两个以上排水管渠排除时,称为分流制排水系统。其中排除生活污水,工业废水的系统称为污水排水系统;排除雨水的系统称为雨水排水系统。这种体制又有两种方式:

1.完全分流制
将城市生活污水及工业废水排到污水系统和雨水排入到雨水系统的体制为分流制。污水排至污水处理厂进行处理,雨水直接排入水体,对于新建城市、新的开发区和新建住宅小区,大都采用这种形式,分流制系统是把城市污水全部送到污水处理厂处理后排放水体,对环保卫生及防止水体污染方面无疑是比较好的排水体制。
2.不完全分流制
只建污水排水系统,未建雨水排水系统,雨水沿着地面、道路边沟和明渠泄入水体。对于常年少雨、气候干燥的城市可采用这种制。
2.1.4 排水体制的比较
排水体制的选择直接影响到对环境的污染。直泄式合流制是不经任何处理把混合污水排入水体,其对水体污染的严重性是不言而喻的,截流式合流制能将晴天时全部生活和工业废水及降雨时较脏的初期雨水截走,送往污水处理厂,这对保护水体是有利的,但在暴雨时,仍有部分混合污水通过溢流井进入水体,造成污染。分流制排水系统,将城市污水全部送至污水厂处理,但初期雨水未经处理直接排入水体,是其不足之处。一般情况下,分流制比截流式合流制在防止水体污染方面更为优越,而且较灵活,较易适应发展的需要,因此应用较广泛。
从基建投资方面来看,合流制只需一套管渠系统,其断面尺寸与完全分流制的雨水管渠基本相同,虽然合流制在污水泵站及处理厂规模上要大一些,造价要高一些,但在总体造价还是低于完全分流制,大约要低20-40%。不完全分流制由于没有雨水排水系统,所以其投资最省,施工期最短,发挥效益也快,所以对于一般新建地区,地形坡度比较好,雨水又能沿坡度流入水体,为节约初期投资,可先采用不完全分流制,以后随着建设的发展,再逐步造雨水管渠。
从维护管理方面来看,合流制管渠维护管理较简单,对于管渠中的沉积物也可利用雨天的大流是来冲刷,但污水泵站、处理厂因晴雨天的排水量变化幅度较大,增加了运行管理上复杂性。相比之下分流制污水管渠和污水处理厂,流量变化不大,不致产生沉淀物,有利于污水处理厂和管渠的运行管理。
2.1.5 排水体制选择
选择排水体制时,应当根据当地的实际条件和环保要求,通过技术经济比较来确定。
1.新建城市
(1)对于新建城市,当地形有利,在城市发展初期,可采用不完全分流制。人卫生角度上看,虽然雨水沿着地面流动,会带入一些污染物质进入水体,但由于最肮脏的生活污水已用污水管渠收集并加以处理,因此不致于对环境卫生产生很大影响;从经济上看,由于只建污水管渠,造价可大为降低,这在城市发展初期具有很大经济意义;从技术上看,由于已预留雨水管渠的位置,它可随城市发展逐步增设雨水管渠,成为较理想的完全分流制。
(2)对于建设水平要求较高且面积较大的开发区城市,应采用完全分流制。
2.旧城改造和扩建
旧城排水系统的改造和扩建,应在原排水体制的基础上加以考虑。
旧城排水系统,一般均为没有污水处理厂的合流制排水系统,污水就近排入水体,
没有预留埋设其他管线的地方。因此要将它改造为完全分流制,这在经济上要花费一笔可观的费用,在技术上也十分困难,往往难以实现。且附近水体又缺乏足够的自净能力时,才可考虑改建成其他体制。
3.因此,对某城区排水系统的改造和扩建工程中,采用具有截流制合流制排水系统为宜,截流后污水排入到污水处理厂进行处理。总之,影响排水体制的因素较多,我们应立足于本地实际条件,同时考虑
污水管排水能力发展的余地,使城市排水体制更加合理完善。根据该经济开发区的较为平坦的地势因素,故管道敷设主要以管长最短为原则,沿街道敷设,一起送入污水处理厂处理后排入长江。
2.2 污水处理厂设计规模
污水量标准包括生活污水和工业污水两部分。开发区的综合用水量定为625 升/人.日,综合污水量按照给水量标准的80%计,则平均污水量标准为500 升/ 人.日。
按近期规划人口10 万人计算,则该污水处理厂的近期设计污水量为:平均日25000m3/d。
第3 章污水处理厂设计
3.1 污水处理厂址选择
污水厂厂址选择应遵循下列各项原则
1、应与选定的工艺相适应
2、尽量少占农田
3、应位于水源下游和夏季主导风向下风向
4、应考虑便于运输
5、充分利用地形
本开发区在总体规划、专业规划及开发区建设中,已按自然地形,用地规划预留了污水处理厂位置。
3.2 污水污泥处理工艺选择
3.2.1 水质
根据《江阴临港新城经济开发区污水处理厂可行性研究报告》及江阴临港新城经济技术开发区委员会“污水处理厂可行性研究报告评审会专家组意见”,开发区管委会参照类似地区的污水水质及国家《污水综合排放标准》(GB18918-2002) 提出污水处理厂进、出水水质指标列于表3.1 污水处理厂进、出水水质指标
单位:毫克/升 表3.1

序号

项目

原污水质

出水水质

1

BOD5

160

20

2

CODCr

400

60

3

SS

125

20

4

TN

45

20

5

NH3—N

28

8(15)

6

TP

5

1

3.2.2 污水、污泥处理工艺选择
1. 处理工艺流程选择应考虑的因素
污水处理厂的工艺流程系指在保证处理水达到所要求的处理程度的前提下,所采用的污水处理技术各单元的有机组合。
在选定处理工艺流程的同时,还需要考虑各处理单元构筑物的形式,两者互为制约,互为影响。污水处理工艺流程的选定,主要以下列各项因素作为依据。
① 污水的处理程度
② 工程造价与运行费用
③ 当地的各项条件
④ 原污水的水量与污水流入工程
该污水处理厂日处理能力约2.5万吨,属于中小规模的污水处理厂。按《城市污水处理和污染防治技术政策》要求推荐,20万t/d规模大型污水厂一般采用常规活性污泥法工艺,10-20万t/d污水厂可以采用常规活性污泥法、氧化沟、SBR、AB法等工艺,小型污水厂还可以采用生物滤池、水解好氧法工艺等。对脱磷脱氮有要求的城市,应采用二级强化处理,如A2 /O工艺,A/O工艺,SBR及其改良工艺,氧化沟工艺,以及水解好氧工艺,生物滤池工艺等。
A2O工艺污水处理量:25000m3/d
氧化沟工艺污水处理量:3000m3/d
SBR工艺污水处理量:5000m3/d
2.适合于中小型污水处理厂的除磷脱氮工艺
该污水处理厂要求对原水中的氮、磷有比较好的去除,应采用二级强化处理。根据《城市污水处理和污染防治技术政策》推荐,以及国内外工程实例和丰富的经验,比较成熟的适合中小规模具有除磷、脱氮的工艺有:AA /O 工艺,A/O 工艺,SBR及其改良工艺,氧化沟及其改良工艺。A/O工艺、AA/O工艺、各种氧化沟工艺、SBR工艺这些从活性污泥法派生出来的工艺都可以实现除碳、除氮、除磷三种流程的组合,都是比较实用的除磷脱氮工艺。
一、A2O处理工艺

(1)A2/O 处理工艺是Anaerobic-Anoxic-Oxic 的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称,A2/O 工艺是在厌氧-好氧除磷工艺的基础上开发出来的,该工艺同时具有脱氮除磷的功能。
(2)A2/O 工艺的特点:
A:厌氧、缺氧、好氧三种不同的环境条件和不同种类的微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷功能;
B:在同时脱氮除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其它工艺。
C:在厌氧-缺氧-好氧交替运行下,丝状菌不会大量繁殖,SVI 一般小于100,不会发生污泥膨胀。
D:污泥中含磷量高,一般为2.5%以上。
由于该设计对脱氮除磷有要求故选取二级强化处理,并且污水处理量25000m3/d。所以A2O工艺符合要求。因为这种工艺具有较好的除P脱N功能;具有改善污泥沉降性能的作用的能力,减少的污泥排放量;具有提高对难降解生物有机物去除效果,运行效果稳定;技术先进成
熟,运行稳妥可靠;管理维护简单,运行费用低;沼气可回收利用;国内工程实例多,容易获得工程设计和管理经验技术先进成熟,运行稳妥可靠,最为重要的是该工艺总水力停留时间少于其他同类工艺,节省基建费用,占地面积相对较小,在市场经济的形势下,寸土寸金,该工艺无疑具有非常大的吸引力。
3.A2/O 法同步脱氮除磷工艺的原理:
A2/O 分为三大部分,分别为厌氧、缺氧、好氧区。原污水从进水井内首先进入厌氧区,同步进入的还有从沉淀池排出的含磷回流污泥,本反应器的主要功能是释放磷,同时部分有机物进行氨化。污水经过第一厌氧反应器进入缺氧反应器,本反应器的首要功能是脱氮,硝态氮是通过内循环由好氧反应器送来的,循环的混合液量较大,一般为2Q(Q——原污水流量)。混合液从缺氧反应器进入好氧反应器——曝气器,这一反应器单元是多功能的,去触BOD ,硝化和吸收磷等项反应都在本反应器内进行。这三项反应都是重要的,混合液中含有NO3-N ,污泥中含有过剩的磷,而污水中的BOD 则得到去除。流量为2Q的混合液从这里回流缺氧反应器。
选定核心构筑物后,本设计的工艺流程也就相应确定了。
3.3 主要生产构筑物工艺设计
3.3.1 进水泵房
污水进水泵房由格栅间、泵房组成(泵房配电间设于离泵房不远的地方,具体布置见污水厂平面总体布置图,另外厂内另设有集中变配电间、中控室)。
⑴ 格栅间平面尺寸:长×宽=7.15 米×6.60 米,地下深6.53 米,为钢筋砼结构,格栅间内设三道进口粗格栅,两道为机械格栅,另一道为人工辅助格栅。机械格栅宽1.00 米,高2.70 米,栅条间隙20 毫米,安装倾角600 ,机械除渣。人工格栅(在机械格栅检修时做应急用)宽2.00 米,高2.70 米,栅条间隙、安装倾角均同机械格栅。
⑵ 泵房采用半地下室钢筋砼结构,平面尺寸:长× 宽=8.00 米× 16.60 米,地下埋深6.78 米,采用立式污水泵抽升污水,泵房内设五台型号为250QW700—11—37 的立式污水泵(四用一备)。单泵流量为690 米3/时,扬程为11.5 米,转速970 转/分,电机功率37 千瓦。每台泵出水管上设微阻缓闭止回阀,起吊设备采用电动单梁起重机,最大起重量为2 吨。
3.3.2 细格栅和沉砂池
共设两道进口细格栅,安装在出水井与沉砂池的连接渠道上,用于去除进厂污水中较大的漂浮物和悬浮物,以保证后续处理工艺的安全运行。细格栅(一期)分两组设置,每组设2 道进口机械弧形细格栅(旋转角为90。)及1 道人工应急格栅(国产),渠宽为1.3m,栅隙宽为10mm,最大过栅流速为0.9m/s 。格栅的运行由格栅前、后水位差自动控制。栅渣由设于平台面以下的国产无轴螺旋输送器输出后外运处置。沉砂池采用了旋流式沉砂池(分两组设2 池,型号旋流式沉砂池Ⅱ7),单池直径为3.05m、池深为3.13m,采用气提排砂,在排砂之前有一气洗过程,这使得排出的砂含有机物较少,有利于污水的后续生物处理及泥砂的处置。由两座沉砂池排出的泥砂经2 台国产的砂水分离器处理后外运处置。
3.3.3 A2/O 池
A2/O 生物池分两组(共2 座),污泥负荷为0.12kgBODs/(kgMLSS·d),污泥浓度为3.3 g/L,单池平面尺寸为51.80m×38.7m(包括隔墙厚度),池深为5.2 m(有效水深为4.5 m),每池分三区即厌氧区、缺氧区及好氧区,厌氧区设4台、缺氧区设4 台进口潜水搅拌机,单台搅拌机的功率为2.3 kW。好氧区设有2938 个进口膜式微孔曝气器,曝气量为1~3m3 /( h × 个)。每池设有3 根进气总管,每根总管设有1 个进口电动空气调节蝶阀(用于调节供氧量)。A2/O 工艺需有大量的混合液回流(一般为处理水量的2~4 倍),这使得其能耗较高。为此,在设计时结合了循环流式生物池的特点,采用了类似氧化沟循环流式水力特征的池型,省去了混合液回流以降低能耗,同时在该池中独辟厌氧区除磷及设置前置反硝化区脱氮等有别于常规氧化沟的池体结构,充氧方式采用高效的鼓风微孔曝气、智能化的控制管理,这大大提高了氧的利用率,在确保常规二级生物处理效果的同时,经济有效地去除了氮和磷。该系统较常规A2/O 工艺降低能耗约0.045(kW·h)/m3。

G. 毕业设计:基于单片机的污水处理系统模糊控制器的设计,希望高手帮助

基于单片机的污水处理系统模糊控制器的设计
【摘要】:为了获得安全可靠、高效经济的污水处理监控系统,可以利用单片机作为整个监控系统的下位机,通过RS485串口通信协约实现与中控室的微机上位机的数据通讯共享,形成现地与中控结合的联合站污水处理监控系统。
【关键词】: ATC单片机 污水处理 监控系统 计量测量
【分类号】:X703;TP277
【正文】:
工业生产生活过程中会产生含有大量化合物的污水,如果未经任何处理或仅采用非常简单的沉淀过滤即排放于自然界,将会对周围的生态环境造成了巨大的破坏,给当地居民的日常生活带来严重的危害。近几年,随着企业环保意识的加强,企业均对其内部不合理的污水处理装置进行了升级改造.
工业生产生活过程中会产生含有大量化合物的污水,如果未经任何处理或仅采用非常简单的沉淀过滤即排放于自然界,将会对周围的生态环境造成了巨大的破坏,给当地居民的日常生活带来严重的危害。近几年,随着企业环保意识的加强,企业均对其内部不合理的污水处理装置进行了升级改造,其中污水处理自动监控系统改造就是企业污水处理项目中的一个重要环节。

传统的污水处理系统是采用电气继电器的控制方式,所采集的数据信号通常含有较大的误差,同时在现地操作时,需要直接接触各类强电开关,给运行人员心理造成不安全的因素。利用单片机作为监控系统的下位机系统,将各分散单元的数据信号同一采集分析,并把对应的数据信息通过RS485通讯系统传输给中控微机,实现对污水处理系统现地与中控室联合监控的目的,不仅可以减少运行人员的数量,节约生产成本和资源消耗.
在分析数据通讯的准确性时,我们发现,由于外界干扰或电压波动等原因,PC机和单片机之间的通讯可能会出现错误,如接收缓冲区溢出、网络端口超速等。这些都可能引起运行错误。为此,在程序中添加错误处理子程序。通过通讯控件的OnComm事件可以捕捉和处理错误,具体在通讯过程中所发生的通讯错误信息是CommEvent属性返回的。当CommEvent属性值发生改变时,表明有通讯错误,就会产生OnComm事件。同时,可以利用自动引发OnComm事件的特点在接收过程中加入状态显示码。这样可以监视通讯线路状态,得到单片机和主机及单片机和单片机之间的通讯进程。

4、结束语

本文在项目开发过程中形成,系统投入运行后,效果良好。基于组态王与单片机的通讯系统,具有较高的使用价值,值得在工业控制中推广。

阅读全文

与污水处理的毕业设计题目相关的资料

热点内容
有关丙烯酸树脂的论文 浏览:605
废水在线数据国家规定 浏览:579
净水器水很慢怎么解决 浏览:67
萃取蒸馏实验装置图 浏览:262
空气净化器的3m级是指什么意思 浏览:464
净水器为什么老是自动停 浏览:358
宠物饮水机什么品牌好 浏览:968
净水机换过滤器怎么会有水 浏览:482
零净水燃气热水器怎么使用 浏览:169
离子交换开水能喝 浏览:854
a3换空气滤芯多少钱 浏览:485
反渗透水处理设备退税 浏览:201
海南树脂玩具定制 浏览:625
烧烤净化器净化不了是怎么回事 浏览:782
生态污水处理湿地面积多少 浏览:45
废水净水器怎么样 浏览:260
工业废水中酸度的测定 浏览:133
污水处理厂tn值超标怎么处理 浏览:860
廊坊市一体化污水处理设备 浏览:872
离子交换设备的反洗置换 浏览:776