导航:首页 > 污水知识 > 矿井废水分质管理

矿井废水分质管理

发布时间:2024-08-22 03:27:31

① 厂矿污水治理和环境除尘

煤矿污水处理厂设计探讨

为了加强煤矿污水治理,保护水环境,新建矿井非常重视环保建设,并投入了大量的资金。设计部门也对生活污水处理进行了多工艺、多方案比较与探索。针对目前煤矿污水处理中有关建设规模和工艺技术谈一些个人的看法。

1合理确定建设规模
对一个矿井来说,需根据矿井总体规划和排水规划,分期分批地建设污水管网和污水处理厂,要根据水环境保护的目标,分期实施,逐步到位。
(1)目前部分煤矿工业场地和居住区各建一座污水处理厂,两处征地,重复建设,投资增加,运行能耗高,管理费用高,技术力量分散,吨水处理成本高。一般来说,矿井工业场地和居住区相距不是很远,合建一座一定规模的污水处理厂更合理,考虑从居住区向工业场地排水,管道埋设太深,可在中间设置污水提升泵站,或者在工业场地与居住区中间地段征地建设污水处理厂。采取合建方式,不但可节省投资,且可大大降低运行成本。

(2)目前许多新建矿井设计中根据规范及全员效率,劳动定员数量较少,而实际建成后煤矿招聘大量的劳务人员,以及随着煤矿的发展,涌进大批的外来人员,使得煤矿的用水量增加,污水量也随之增大。因此,对于新建煤矿污水处理厂的设计,在建设规模时应考虑予留系数。
(3)由于煤矿污水水质水量变化较大,合理地确定设计的污水水量和污水水质,直接涉及工程的投资、运行费用和费用效益。生产污水与生活污水通盘考虑,不使留余地过大,避免增加投资、使设备闲置或低效运行。
2煤矿污水处理设计常用流程
一般来说,不同煤矿对出水的要求差异较大,应根据我国环保部门的要求确定处理程度,以确保出水水质。由于生活污水中的氮和磷对水体有富营养化的影响,污水处理要求有脱氮除磷的效果。
煤矿污水水质与一般城市污水性质类似,但不同于城市污水(城市污水中常包括部分工业废水)。其特征可概括为:水质水量变化较大,污染物浓度偏低,污水可生化性好,处理难度小。
煤矿污水处理厂设计时在80年代采用活性污泥法处理工艺的较多,由于污水中有机物含量太低,在运转过程中微生物得不到最低限度的营养物质,形不成活性污泥,运转不起来。氧化沟污水处理工艺,也存在同样的问题,回流活性污泥回流不起来,致使原氧化沟系统变成了附加曝气的带状平流沉淀池,达不到要求的处理目标。
90年代许多矿井采用二级生物接触氧化法处理煤矿生活污水,效果很好。此工艺的特点是能适应矿区低浓度、变化大的污水,同时投资省,操作维护也比活性污泥法简单,但该法对脱氮除磷效果较差。
90年代以来污水生物处理新工艺、新技术的研究开发应用取得了很大成就,许多新工艺应运而生,这些新工艺的共同特点是:高效、稳定、节能,并具有脱氮除磷等多功能。较典型的工艺有:
(1)A2/O工艺该工艺是厌氧,缺氧,好氧生物脱氮除磷工艺的简称,是70年代由美国专家在厌氧-好氧除磷工艺(A/O)的基础上开发的。
(2)SBR工艺序列间歇式活性污泥法的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。SBR实际上是出现最早的活性污泥法,70年代出现于美国,经过
20年的研究开发革新,将可变容积活性污泥法过程和生物选择器原理进行有机结合,成为改良型的SBR工艺。
(3)BAF工艺即曝气生物滤池工艺,是90年代初开发的新型微生物附着型污水处理技术,能同时完成生物处理与固液分离,通过调整滤池结构形式而成为具有脱氮除磷功能的组合工艺。
3BAF工艺处理煤矿污水
3.1工艺流程
曝气生物滤池是最先在欧美发展起来的在欧美和日本等发达国家广为流行,近些年来在我国已有数十家污水处理厂应用。如大连、慈溪、新会、杨凌,在山西的煤矿生活污水处理中也有应用。
该技术综合了过滤、吸附和生物代谢等多种净化作用。污水从滤池底部进入滤料层,滤料层下部设有供氧的曝气系统进行曝气,气水为同向流。在滤池中,有机物被微生物氧化分解,NH3-N被氧化成NO3-N;另外,由于在堆积的滤料层内和微生物膜的内部存在厌氧/缺氧环境,在硝化的同时实现部分反硝化,从滤池上部的出水可直接排出系统。
3.2工艺特点
BAF作为一种膜法污水处理新工艺,与传统活性污泥法和接触氧化法相比,具有以下的优点:
(1)具有较高的生物浓度和较高的有机负荷。曝气生物滤池采用粗糙多孔的球状滤料,为微生物提供了较佳的生长环境,易于挂膜及稳定运行,可在滤料表面和滤料间保持较多的生物量,单位体积内微生物量远远大于活性污泥法中的微生物量(可达10~15g/l),高浓度的微生物量使得BAF
的容积负荷增大,减少了池容积和占地面积,使基建费用大大
降低。
(2)工艺简单、出水水质好。由于滤料的机械截留作用以及滤料表面的微生物和代谢中产生的粘性物质形成的吸附作用,使得出水的SS很低,一般不超过15mg/l。因进行周期性的反冲洗,生物膜得以有效更新,表现为生物膜较薄,活性较高。有时即使生物处理发生故障,在短期内其物理作用机理仍可保证高质量的出水。BAF的处理出水不但可以满足排放标准,同时可用于回用
(3)抗冲击负荷能力强。由于整个滤池中分布着较高浓度的微生物,其对有机负荷、水力负荷的变化不象传统活性污泥那么敏感,同时无污泥膨胀问题。
(4)氧的传输效率高。曝气生物滤池中氧的利用率可达20%-30%,曝气量明显低于一般生物处理。其主要原因是:1因滤料粒径小,气泡在上升过程中不断被切割成小气泡,加大了气液接触面积,提高了氧的利用率;2气泡在上升过程中,由于滤料的阻挡和分割作用,使气泡必须经过滤料的缝隙,延长了其停留时间,同样有利于氧的传质;3理论研究表明,BAF中氧气可直接渗入生物膜,因而加快了氧气的传输速度,减少了供氧量。
(5)易挂膜、启动快。BAF调试时间短,一般只需7~12天,而且不需接种污泥,采用自然挂膜驯化。由于微生物生长在粗糙多孔的滤料表面,微生物不易流失,使其运行管理简单。BAF在短时间内不使用的情况下可关闭运行,一旦通水并曝气,可在很短时间内恢复正常运行,这一特点说明曝气生物滤池非常适合一些水量变化大的地区的污水处理。
(6)菌群结构合理。传统活性污泥法中,微生物分布相对均匀,而在BAF中从上到下形成了不同的优势菌种,因此使得除碳、硝化/反硝化能在一个池子中发生。
(7)自动化程度高。由于相关工业技术的发展,一些先进的自动化设备如液位传感器、在线溶氧测定仪、定时器、变频器及微电脑等产品的出现,使得曝气生物滤池系统运行管理自动化得以顺利实现。

曝气生物滤池系统可以对进水水质、水量以及污水中溶解氧浓度进行在线检测,并通过PLC控制系统方便地调整曝气时间的长短,控制风机的供氧量,做到优化运行,PLC系统对滤池进行自动反冲洗。
(8)脱氮效果好。通过不同功能的滤池组合或同一滤池中的不同功能区分布,使滤池在除碳的同时可进行硝化和反硝化。其原理是通过对两组滤池或同一座滤池内分别人为地造成好氧、兼氧的生物环境,不仅能去除一般有机物和悬浮固体,而且具有较好脱氮功能。
在一级滤池(C/N池)和二级滤池(N池)中的曝气阶段需要不断调节溶解氧水平,使溶解氧达到较高水平(约2~3mgO2/l),而在DN池中使溶解氧达到较低水平(约0.2~0.5mgO2/)。
BAF工艺的缺点是需要定期反冲洗:
随着过滤的进行,滤料表面新产生的生物量越来越多,截留的SS不断增加,在开始阶段滤池水头损失增加缓慢,当固体物质积累达到一定程度,使水头损失达到极限水头损失或导致SS
发生穿透,此时就必须对滤池进行反冲洗,以除去滤床内过量的微生物膜及SS,恢复其处理能力。
4BAF工艺的出水回用
众所周知,水资源紧缺已经成为世界性问题。我国也同样面临水资源短缺的现实。污水再生利用是提高水资源综合利用率、缓解水资源短缺矛盾、减轻水体污染、实现有限水资源的可持续利用的有效途径之一。煤矿污水经过处理消毒后,可用于绿化、冲洗、工业用水。采用BAF工艺处理煤矿污水,出水水质稳定,优于一般传统生物处理工艺,其出水消毒处理后,就可以作为中水回用。
5结论
曝气生物滤池工艺具有体积小、占地省、效率高、出水水质好、流程简单、操作管理方便等特点,实际运行中可以实现中央集中控制和现场手动自动控制,经过多个工程实际应用,日趋已经成熟,其出水经消毒处理后可以达到中水回用的标准。据了解,目前我国每处理
,1m3污水直接投资在1000元左右,而采用BAF工艺处理则可控制在500元左右,且能节省近4/5的占地面积。煤矿污水水质水量变化较大,污染物浓度偏低,污水可生化性好,BAF
工艺比较适用。
作者简介
殷同伟,高级工程师,1964年出生,女。1986年7月毕业于中国矿业大学煤化工专业。现任中煤国际工程集团南京设计研究院环保所所长,主要从事煤矿、电厂环境影响评价及煤矿矿井水、生活污水处理等环保工程设计。

② 煤矿为什么会有地下水处理

一、 概述
煤炭在我国能源结构中占70%以上,煤炭开采过程中排放大量废水,若不经处理直接排放,势必对环境造成严重污染,同时造成水资源的大量浪费,无法实现循环经济的目标。据统计我国40%的矿区严重缺水,已制约了煤炭生产的发展。西北矿区多处于山区,水资源更为缺乏,地表水又多为间歇性河流,枯洪水季节流量相当悬殊,常年流量稀释能力差,排入河流的污水造成严重污染。因此,开发、管理、利用好煤矿水资源,对煤炭工业可持续发展具有重要意义。
1、煤废水污染严重

据包括10多位院士在内的专家学者鉴定通过的一项课题研究表明,山西每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄河水入晋工程的总引水量。专家呼吁,应当从技术、人才、资金投入和经营机制等多方面解决这一世纪难题,帮助山西省等煤炭主产区摆脱“产煤致旱、因煤致渴”的困扰。

这项关于山西省煤炭产业可持续发展的研究表明,山西省采煤造成严重的水资源破坏,加剧了水资源短缺问题。这项课题研究表明,山西每挖1吨煤损耗2.48吨的水资源。每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄工程的总引水量。因此,这对于山西这个人均水资源量仅占全国平均水平不到五分之一的地区来说是个非常严重的问题。

目前,由于煤炭开采对地下水系破坏非常严重。据统计,山西采煤对水资源的破坏面积已达20352平方公里,占全省总面积的13%。山西省大部分农村人畜吃水靠煤系裂隙水,而煤矿开采恰好破坏了该层段的含水层。据统计,全省由于采煤排水引起矿区水位下降,导致泉水流量下降或断流,使近600万人及几十万头大牲畜饮水严重困难。

2、煤炭采掘业废水治理技术问题

99%的采煤项目废水没有进行治理,从主观上应该说是环保监管不力。从客观上说是我们环保部门对采煤项目废水治理技术持谨慎态度。采煤废水治理技术多如牛毛,那种技术最适用、工艺最成熟、操作管理最方便、投资最省、运行费用最低,一直是我们环保部门在寻求的。由于采煤废水复杂多变,在同一矿井废水中,同时含有铁、锰等重金属,硫、氟、氯等非金属及有机污染物和悬浮物,有的矿井废水呈弱酸性(如织金县珠藏、凤凰山等),再就是即使是同一矿井,所采层不同,废水性质也不同,甚至是差别很大。这就给煤矿废水治理技术的选用带来很大的困难。通常情况是某一技术只能有效处理某一污染物,不可能把所有超标的污染物都处理好。一个煤矿不可能投入很多资金对污染物进行单项处理,这就是采煤废水治理在技术上的难点。有的业主自行修了一两个池子,把矿井废水往池子一放,就是对废水进行处理了。事实上不是这样简单,可能连悬浮物也处理不了,金属和非金属就更不可能处理了。

3、煤矿废水处理要求

1.1煤矿废水包括矿井涌水、煤场和矸石场淋溶废水等。在进行处理前,应先委托地区环境监测站进行监测,以监测资料作为废水处理工程设计的依据。DFMC煤矿废水治理技术和成套设备是目前经实践证明的实用技术,50万吨以下、小时涌水量50m3以下的煤矿可采用此技术和设备。对于酸性煤矿废水还需新增设备和药剂。煤矿废水经处理达标后尽可能循环使用,循环使用率不低于50%,经处理后排放的废水列为总量控制指标进行考核。

1.2新建煤矿必须执行“三同时”规定,试产三个月必须申请地区环保局验收,验收达标的发给排污许可证,不达标的停产治理。

1.3原有煤矿分期分批进行治理,2005年50%左右的原有煤矿治理完工并通过达标验收。列入家2005年治理计划的煤矿不治理的,依法予以处罚;治理不达标的,停产治理。治理计划由各县市环保局商煤炭局提出,报地区环保局综合平衡后以治理计划下达执行。

表1 某A煤矿废水处理监测结果 单位:mg/l

指标 排放

标准 处理前

浓度 超标倍数(倍) 处理后

浓度 比排放标准低(%) 悬浮物 70 258 2.7 11.5 83.6 铁 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 锰 2 0.13 未超标 0.1 —

表2某B煤矿废水处理监测结果单位:mg/ l

指标 排放

标准 处理前

浓度 超标 倍数 (倍) 处理后

浓度 比排放标准低(%) 悬浮物 70 318 3.5 4.5 93.6 铁 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 锰 2 0.37 未超标 0.18 — 1.4、煤矿废水中铁含量高,如浓度大于100mg/l,其处理设备投资和运行费用将要增加。因为铁含量过高,要达到1mg/l的排放标准,一级除铁是不行的,必须三至四级除铁。

1.5、酸度高的煤矿废水应使达标(6~9)。

1.6、煤矿要对煤场、矸石场进行硬化处理,建导流沟,把因大气降水产生的这一部分淋溶水引入废水处理系统进行处理。

1.7、 预防事故和自然因素引起的非正常排放

为预防因降暴雨致使废水次理池溢流,工程设计必须考虑废水处理池有足够的容积。为防止事故性排放,必须建事故调节池。四、煤矿生活废水处理要求洗煤厂和煤矿生活废水处理采用深圳开发研制的微型生活废水处理装置进行处理。生活废水经处理达标后可排放。五、煤矿废水治理技术选用

实践证明是可行的 DFMC煤矿废水治理技术和成套设备可选用。未经试点的技术只能试点,不能推广。经试点并由A地区环境监测站监测、提出监测报告,从治理效果、投资、运行费用等全面评价后由地区环保局决定是否推广。

二、废水主要处理技术

我国煤矿矿井水处理技术起始于上世纪70年代末,大多污水治理工作都只停留在为排放而治理。然而回用才是当今污水治理发展的必然趋势,将防治污染和回用结合起来,既可缓解水源供需矛盾,又可减轻地表水体受到污染。现国内使用的处理技术主要有:沉淀、混凝沉淀、混凝沉淀过滤等。处理后直接排放的矿井水,通常采用沉淀或混凝沉淀处理技术;处理后作为生产用水或其它用水的,通常采用混凝沉淀过滤处理技术;处理后作为生活用水,过滤后必须再经过除酚等对人体有害物质及消毒处理;有些含悬浮物的矿井水含盐量较高 ,处理后作为生活饮用水还必须在净化后再经过淡化处理。三、矿井水处理回用的条件

1、矿井废水的产生及特点

煤矿矿井废水包括:煤炭开采过程中地下地质性涌渗水到巷道为安全生产而排出的自然地下水,井下采煤生产过程中洒水、降尘、灭火灌浆、消防及液压设备产生的含煤尘废水。因此,它既具有地下水特征,但又受到人为污染。矿井废水的特性取决于成煤的地质环境和煤系低层的矿物化学成分,其中井田水文地质条件及充水因素对于矿井开采过程矿井废水的水质、水量有决定性的影响。因此,对矿井废水处理要考虑开采过程中水质、水量的变化。某矿区M煤矿矿井废水水质取矿井正常排水时井口水样,结果见表1。

M煤矿矿井废水污染物监测表

表1 单位:mg/L

序号 监测项目 日均值浓度范围 序号 监测项目 日均值浓度范围 1 肉眼可见物 微粒悬浮物 9 总氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 总磷 0.085~0.104 4 硫化物 1.09~1.67 12 粪大肠菌 260~393 5 悬浮物 360~500 13 铜 0.0207~0.0294 6 酚 0.006~0.051 14 铅 -- 7 BOD5 14.10~24.73 15 镉 -- 8 LAS 0.198~0.220 16 锌 0.0381~0.0407

通过网络调查和资料查找,收集了多年来某矿区有关矿井水和地下水的化验数据资料,以及环境监测站监测数据(表1)综合分析,该煤矿矿井废水含煤泥为主要悬浮物,有机物略有超标,粪大肠菌群超标,挥发酚超标。

2、矿井废水回用途径

煤矿矿井水处理后可作生产用水或生活用水,矿井生产用水主要是井下采掘设备液压用水、消防降尘洒水,生活用水主要是冲厕、洗浴水以及深度处理后用于饮用水。水质标准分别为:

a、防尘洒水《煤矿工业矿井设计规范》(GB50215-94)

SS≤150mg/L,粒径d<0.3mm;PH值为6~9;大肠菌群≤3个/L。

b、空压机、液压支柱用水水质SS≤10~200mg/L,粒径d <0.15mm;硬度(碳酸盐)2~7mg/L;pH值为6.5~9;浊度<20。

c、矿井洗浴水水质达到《地表水环境质量标准》(GB3838-2002)的Ⅲ类水体标准。

d、中水水质达到《生活杂用水水质标准》(CJ/T 48-1999)。

5、生活饮用水达到《生活饮用水卫生标准》(GB5749-85)。

四、处理工艺

从上表可知,M煤矿矿井废水处理工程的设计处理能力为800~1000m3/d,处理后作为生产和生活用水,采用混凝反应、过滤、活性炭吸附及消毒工艺,流程见图1。

图1矿井废水处理工艺流程

矿井废水由井下排水泵提升至灌浆水池,部分用于黄泥灌浆,其余废水自流进入曝气池,气浮除油后进入斜板沉淀池进行初步沉淀,由提升泵提升进入混凝沉淀设备,同时加入混凝剂,经过斜管沉淀后,将絮状物沉淀到底部而被去除,清水从上部溢流出水自流进入砂滤罐,出水自流进入清水池,清水池前投加二氧化氯进行杀菌消毒。砂滤罐的反冲冼水自流进入污泥池,上清液自流进入曝气池,以提高矿井废水资源的利用率。出水若用作生活用水,则砂滤罐出水进入活性炭吸附装置处理后流入清水池用作生活用水。

五、主要处理单元

1、预沉池曝气

矿井废水中含有少量的有机物,通过曝气接触氧化去除废水中的有机物。另外,井下液压支柱等设备产生少量油类,通过气浮除油,使废水中油类达标。

2、混凝沉淀

煤矿矿井水主要污染物为悬浮物,处理悬浮物主要采用混凝沉淀法,用铝盐或铁盐做混凝剂,混凝剂混合方式采用管道混合器混合。混凝沉淀装置采用倒喇叭口作为反应区,水流在反应区中流速逐渐降低,使废水和混凝剂药液的反应在反应器中逐渐全部完成。完全反应的废水流出反应区后开始形成混凝状物质,经过布水区进入斜管填料,由于斜管填料采用PVC六角峰窝状填料,利用多层多格浅层沉淀,提高了沉淀效率。将絮状物沉淀到底部而被去除,清水从上部溢流排出。

3、砂滤净化

矿井废水经混凝沉淀后,水中还含有较小颗粒的悬浮物和胶体,利用砂滤设备将悬浮颗粒和胶体截留在滤料的表面和内部空隙中,它是混凝沉淀装置的后处理过程,同时也是活性炭吸附深度处理过程的预处理。砂滤罐为重力式无阀滤池,采用自动虹吸原理达到反冲洗,不需要人工单独管理,操作简便,管理和维护方便。砂滤罐通常采用不同等级的石英砂多层滤料。

4、活性炭吸附

该煤矿矿井废水主要含有挥发酚,酚类属于高毒物质,它可以通过皮肤、粘膜、口腔进入人体内,低浓度可使细胞蛋白变性,高浓度可使蛋白质沉淀。长期饮用被酚污染的水源,会引起蛋白质变性和凝固,引起头晕、出疹、贫血及各种神经症状,甚至中毒。处理中水用作生活饮用水,必须用活性炭吸附装置处理。活性炭的比表面积可达800~2000m2/g,具有很强的吸附能力。该装置采用连续式固定床吸附操作方式,活性炭吸附剂总厚度达3.5m,废水从上向下过滤,过滤速度在4~15m/h,接触时间一般不大于30~60min。随着运行时间的推移,活性炭吸附了大量的吸附质,达到饱和丧失吸附能力,活性炭需更换或再生。

5、消毒

废水中含有一定的病菌、大肠菌群,处理后回用于洗浴时,若不经过消毒,对人体皮肤伤害严重。所以矿井废水处理后作为生活用水必须经过消毒处理,本工艺采用二氧化氯消毒,现场用盐酸和氯酸钠反应产生二氧化氯,二氧化氯无毒、稳定、高效、杀菌能力是氯的5倍以上。

六、处理工艺特点

1、以上可知A煤矿矿井废水处理工程是根据矿井水水质特点确定工艺技术参数,采用一次提升到混凝沉淀装置,再自流进入后续各处理构筑物,出水水质稳定可靠,动力设备较少,能耗较低。

2、采用混凝沉淀装置与砂滤罐相结合的工艺技术,主要处理构筑物采用组合式钢结构,具有占地面积小、使用寿命长、工程投资省、工艺简单、操作管理方便、运行成本低等特点。砂滤罐设计采用重力式无阀滤池,反冲洗完全自动,操作管理方便。

3、该煤矿矿井废水处理系统实现了自动加药、自动反冲洗的全过程监控,包括电控系统、上位监控系统和仪表检测系统。仪表检测系统包括加药流量、处理流量 、水池液位和加药箱液位、进水和出水浊度等连续自动检测。

③ 煤炭行业矿井废水经过三级处理后能够达到饮水水卫生标准主要工艺为隔油+混凝沉淀+机械过滤+超滤膜+反渗

你们的矿复井废水具体水质指制标我不太清楚,但是反渗透出水达到饮用水标准是没问题的。几个常见问题如下:
第一,反渗透膜的选取让人忐忑。国产的膜技术还不成熟,达不到高寿命、低维护的程度,但是进口膜价格很贵。为了保证出水水质,建议还是选用进口膜组件以及配套的高压泵(有些厂家国产泵子打进口铭牌,注意防范),以消除出口压力不稳造成的膜破坏和出水不稳定。
第二,反渗透要求必须满负荷运行(达到额定压力),这就要求进水的水量水质必须连续、稳定、均匀。

希望能帮到你。

④ 煤矿防治水管理规定

《煤矿防治水管理规定》已经于2009年8月17日由国家安全生产监督管理总局局长办公会议审议通过。本规定旨在加强煤矿的防治水工作,防止和减少水害事故,保障煤矿职工生命安全。根据《安全生产法》、《矿山安全法》、《国务院关于预防煤矿生产安全事故的特别规定》等法律、行政法规,制定本规定。
煤矿企业(矿井)、有关单位的防治水工作,适用本规定。防治水工作应当坚持预测预报、有疑必探、先探后掘、先治后采的原则,采取防、堵、疏、排、截的综合治理措施。
煤矿企业、矿井的主要负责人(含法定代表人、实际控制人,下同)是本单位防治水工作的第一责任人,总工程师(技术负责人,下同)具体负责防治水的技术管理工作。煤矿企业、矿井应当按照本单位的水害情况,配备满足工作需要的防治水专业技术人员,配齐专用探放水设备,建立专门的探放水作业队伍。
煤矿企业、矿井应当建立健全水害防治岗位责任制、水害防治技术管理制度、水害预测预报制度和水害隐患排查治理制度。煤矿企业、矿井应当编制本单位的防治水中长期规划和年度计划,并组织实施。
煤矿企业、矿井的井田范围内及周边区域水文地质条件不清楚的,应当采取有效措施,查明水害情况。在水害情况查明前,严禁进行采掘活动。发现矿井有透水征兆时,应当立即停止受水害威胁区域内的采掘作业,撤出作业人员到安全地点,采取有效安全措施,分析查找透水原因。
煤矿企业、矿井应当对职工进行防治水知识的教育和培训,保证职工具备必要的防治水知识,提高防治水工作的技能和抵御水灾的能力。煤矿企业、矿井应当加强防治水技术研究和科技攻关,推广使用防治水的新技术、新装备和新工艺,提高防治水工作的科技水平。
矿井水文地质类型划分为简单、中等、复杂、极复杂等4种。矿井水文地质类型应当每3年进行重新确定。当发生重大突水事故后,矿井应当在1年内重新确定本单位的水文地质类型。
矿井应当对本单位的水文地质情况进行研究,编制矿井水文地质类型划分报告,并确定本单位的矿井水文地质类型。矿井水文地质类型划分报告,由煤矿企业总工程师负责组织审定。
矿井水文地质类型划分报告,应当包括下列主要内容:矿井所在位置、范围及四邻关系,自然地理等情况;以往地质和水文地质工作评述;井田水文地质条件及含水层和隔水层分布规律和特征;矿井充水因素分析,井田及周边老空区分布状况;矿井涌水量的构成分析,主要突水点位置、突水量及处理情况;对矿井开采受水害影响程度和防治水工作难易程度评价;矿井水文地质类型划分及防治水工作建议。
矿井水文地质类型划分的依据包括:受采掘破坏或影响的含水层及水体;矿井及周边老空水分布状况;矿井涌水量或者突水量分布规律;矿井开采受水害影响程度以及防治水工作难易程度。
矿井应当建立水文地质信息管理系统,实现矿井水文地质文字资料收集、数据采集、图件绘制、计算评价和矿井防治水预测预报一体化。
当矿区或者矿井现有水文地质资料不能满足生产建设的需要时,应当针对存在的问题进行专项水文地质补充调查。矿区或者矿井未进行过水文地质调查或者水文地质工作程度较低的,应当进行补充水文地质调查。
水文地质补充调查范围应当覆盖一个具有相对独立补给、径流、排泄条件的地下水系统。水文地质补充调查除采用传统方法外,还可采用遥感、全球卫星定位、地理信息系统等新技术、新方法。
水文地质补充调查,应当包括下列主要内容:资料收集。收集降水量、蒸发量、气温、气压、相对湿度、风向、风速及其历年月平均值和两极值等气象资料。收集调查区内以往勘查研究成果,动态观测资料,勘探钻孔、供水井钻探及抽水试验资料;地貌地质的情况。调查收集由开采或地下水活动诱发的崩塌、滑坡、人工湖等地貌变化、岩溶发育矿区的各种岩溶地貌形态。对第四系松散覆盖层和基岩露头,查明其时代、岩性、厚度、富水性及地下水的补排方式等情况,并划分含水层或相对隔水层。查明地质构造的形态、产状、性质、规模、破碎带(范围、充填物、胶结程度、导水性)及有无泉水出露等情况,初步分析研究其对矿井开采的影响;地表水体的情况。调查与收集矿区河流、水渠、湖泊、积水区、山塘和水库等地表水体的历年水位、流量、积水量、最大洪水淹没范围、含泥砂量、水质和地表水体与下伏含水层的水力关系等。对可能渗漏补给地下水的地段应当进行详细调查,并进行渗漏量监测;井泉的情况。调查井泉的位置、标高、深度、出水层位、涌水量、水位、水质、水温、有无气体溢出、溢出类型、流量(浓度)及其补给水源,并素描泉水出露的地形地质平面图和剖面图;古井老窑的情况。调查古井老窑的位置及开采、充水、排水的资料及老窑停采原因等情况,察看地形,圈出采空区,并估算积水量;生产矿井的情况。调查研究矿区内生产矿井的充水因素、充水方式、突水层位、突水点的位置与突水量,矿井涌水量的动态变化与开采水平、开采面积的关系,以往发生水害的观测研究资料和防治水措施及效果;周边矿井的情况。调查周边矿井的位置、范围、开采层位、充水情况、地质构造、采煤方法、采出煤量、隔离煤柱以及与相邻矿井的空间关系,以往发生水害的观测研究资料,并收集系统完整的采掘工程平面图及有关资料;地面岩溶的情况。调查岩溶发育的形态、分布范围。详细调查对地下水运动有明显影响的补给和排泄通道,必要时可进行连通试验和暗河测绘工作。分析岩溶发育规律和地下水径流方向,圈定补给区,测定补给区内的渗漏情况,估算地下水径流量。对有岩溶塌陷的区域,进行岩溶塌陷的测绘工作。
矿区、矿井地面水文地质观测应当包括下列主要内容:进行气象观测。距离气象台(站)大于30 km的矿区(井),设立气象观测站。站址的选择和气象观测项目,符合气象台(站)的要求。距气象台(站)小于30 km的矿区(井),可以不设立气象观测站,仅建立雨量观测站;进行地表水观测。地表水观测项目与地表水调查内容相同。一般情况下,每月进行1次地表水观测;雨季或暴雨后,根据工作需要,增加相应的观测次数;进行地下水动态观测。观测点应当布置在下列地段和层位:对矿井生产建设有影响的主要含水层;影响矿井充水的地下水强径流带(构造破碎带);可能与地表水有水力联系的含水层;矿井先期开采的地段;在开采过程中水文地质条件可能发生变化的地段;人为因素可能对矿井充水有影响的地段;井下主要突水点附近,或者具有突水威胁的地段;疏干边界或隔水边界处。观测点的布置,应当尽量利用现有钻孔、井、泉等。观测内容包括水位、水温和水质等。对泉水的观测,还应当观测其流量。观测点应当统一编号,设置固定观测标志,测定坐标和标高,并标绘在综合水文地质图上。观测点的标高应当每年复测1次;如有变动,应当随时补测。
矿井应当在开采前的1个水文年内进行地面水文地质观测工作。在采掘过程中,应当坚持日常观测工作;在未掌握地下水的动态规律前,应当每7-10日观测1次;待掌握地下水的动态规律后,应当每月观测1-3次;当雨季或者遇有异常情况时,应当适当增加观测次数。水质监测每年不少于2次,丰、枯水期各1次。技术人员进行观测工作时,应当按照固定的时间和顺序进行,并尽可能在最短时间内测完,并注意观测的连续性和精度。钻孔水位观测每回应当有2次读数,其差值不得大于2 cm,取值可用平均数。测量工具使用前应当校验。水文地质类型属于复杂、极复杂的矿井,应当尽量使用智能自动水位仪观测、记录和传输数据。

⑤ 煤矿防治水管理规定(2)

第三节 井下水文地质观测

第二十六条 对新开凿的井筒、主要穿层石门及开拓巷道,应当及时进行水文地质观测和编录,并绘制井筒、石门、巷道的实测水文地质剖面图或展开图。

当井巷穿过含水层时,应当详细描述其产状、厚度、岩性、构造、裂隙或者岩溶的发育与充填情况,揭露点的位置及标高、出水形式、涌水量和水温等,并采取水样进行水质分析。

遇含水层裂隙时,应当测定其产状、长度、宽度、数量、形状、尖灭情况、充填程度及充填物等,观察地下水活动的痕迹,绘制裂隙玫瑰图,并选择有代表性的地段测定岩石的裂隙率。测定的面积:较密集裂隙,可取1-2 m2;稀疏裂隙,可取4-10 m2。其计算公式为

式中 KT--裂隙率,%;

A--测定面积,m2;

l--裂隙长度,m;

b--裂隙宽度,m。

遇岩溶时,应当观测其形态、发育情况、分布状况、有无充填物和充填物成分及充水状况等,并绘制岩溶素描图。

遇断裂构造时,应当测定其断距、产状、断层带宽度,观测断裂带充填物成分、胶结程度及导水性等。

遇褶曲时,应当观测其形态、产状及破碎情况等。

遇陷落柱时,应当观测陷落柱内外地层岩性与产状、裂隙与岩溶发育程度及涌水等情况,判定陷落柱发育高度,并编制卡片、附平面图、剖面图和素描图。

遇突水点时,应当详细观测记录突水的时间、地点、确切位置,出水层位、岩性、厚度,出水形式,围岩破坏情况等,并测定涌水量、水温、水质和含砂量等。同时,应当观测附近的出水点和观测孔涌水量和水位的变化,并分析突水原因。各主要突水点可以作为动态观测点进行系统观测,并应当编制卡片,附平面图和素描图。

对于大中型煤矿发生300 m3/h以上的突水、小型煤矿发生60 m3/h以上的突水,或者因突水造成采掘区域和矿井被淹的,应当将突水情况及时上报所在地煤矿安全监察机构和地方人民政府负责煤矿安全生产监督管理的部门、煤炭行业管理部门。

按照突水点每小时突水量的大小,将突水点划分为小突水点、中等突水点、大突水点、特大突水点等4个等级:

(一)小突水点:Q≤60 m3/h;

(二)中等突水点:60 m3/h

(三)大突水点:600 m3/h

(四)特大突水点:Q>1800 m3/h。

第二十七条 矿井应当加强矿井涌水量的观测工作和水质的监测工作。

矿井应当分井、分水平设观测站进行涌水量的观测,每月观测次数不少于3次。对于出水较大的断裂破碎带、陷落柱,应当单独设立观测站进行观测,每月观测1-3次。对于水质的监测每年不少于2次,丰、枯水期各1次。涌水量出现异常、井下发生突水或者受降水影响矿井的雨季时段,观测频率应当适当增加。

对于井下新揭露的出水点,在涌水量尚未稳定或尚未掌握其变化规律前,一般应当每日观测1次。对溃入性涌水,在未查明突水原因前,应当每隔1-2 h观测1次,以后可适当延长观测间隔时间,并采取水样进行水质分析。涌水量稳定后,可按井下正常观测时间观测。

当采掘工作面上方影响范围内有地表水体、富水性强的含水层、穿过与富水性强的含水层相连通的构造断裂带或接近老空积水区时,应当每日观测涌水情况,掌握水量变化。含水层富水性的等级标准见附录二。

对于新凿立井、斜井,垂深每延深10 m,应当观测1次涌水量。掘进至新的含水层时,如果不到规定的距离,也应当在含水层的顶底板各测1次涌水量。

当进行矿井涌水量观测时,应当注重观测的连续性和精度,采用容积法、堰测法、浮标法、流速仪法或者其他先进的测水方法。测量工具和仪表应当定期校验,以减少人为误差。

第二十八条 当井下对含水层进行疏水降压时,在涌水量、水压稳定前,应当每小时观测1-2次钻孔涌水量和水压;待涌水量、水压基本稳定后,按照正常观测的要求进行。疏放老空水的,应当每日进行观测。

第四节 水文地质补充勘探

第二十九条 矿井有下列情形之一的,应当进行水文地质补充勘探工作:

(一)矿井主要勘探目的层未开展过水文地质勘探工作的;

(二)矿井原勘探工程量不足,水文地质条件尚未查清的;

(三)矿井经采掘揭露煤岩层后,水文地质条件比原勘探报告复杂的;

(四)矿井经长期开采,水文地质条件已发生较大变化,原勘探报告不能满足生产要求的;

(五)矿井开拓延深、开采新煤系(组)或者扩大井田范围设计需要的;

(六)矿井巷道顶板处于特殊地质条件部位或者深部煤层下伏强充水含水层,煤层底板带压,专门防治水工程提出特殊要求的;

(七)各种井巷工程穿越强富水性含水层时,施工需要的。

第三十条 水文地质补充勘探工程量布置,应当满足相应的工作程度,并达到防治水工作的要求。

矿井进行水文地质补充勘探时,应当对包括勘探矿区在内的区域地下水系统进行整体分析研究;在矿井井田以外区域,应当以水文地质测绘调查为主;在矿井井田以内区域,应当以水文地质物探、钻探和抽(放)水试验等为主。

矿井水文地质补充勘探工作应当根据矿井水文地质类型和具体条件,综合运用水文地质补充调查、地球物理勘探、水文地质钻探、抽(放)水试验、水化学和同位素分析、地下水动态观测、采样测试等各种勘查技术手段,积极采用新技术、新方法。

矿井水文地质补充勘探应当编制补充勘探设计,经煤矿企业总工程师组织审查后实施。补充勘探设计应当依据充分、目的明确、工程布置针对性强,并充分利用矿井现有条件,做到井上、井下相结合。

水文地质补充勘探工作完成后,应当及时提交成果报告或者资料,由煤矿企业总工程师组织审查、验收。

第五节 地面水文地质补充勘探

第三十一条 矿井进行水文地质钻探时,每个钻孔都应当按照勘探设计要求进行单孔设计,包括钻孔结构、孔斜、岩芯采取率、封孔止水要求、终孔直径、终孔层位、简易水文观测、抽水试验、地球物理测井及采样测试、封孔质量、孔口装置和测量标志要求等。

钻孔施工主要技术指标,应当符合下列要求:

(一)以煤层底板水害为主的矿井,其水文地质补充勘探钻孔的终孔深度,以揭露下伏主要含水层段为原则;

(二)所有勘探钻孔均进行水文测井工作。对有条件的,可以进行流量测井、超声成像、钻孔电视探测等,配合钻探取芯划分含、隔水层,为取得有关参数提供依据;

(三)主要含水层或试验段(观测段)采用清水钻进。遇特殊情况需改用泥浆钻进时,经钻孔施工单位地质部门同意后,可以采用低固相优质泥浆,并采取有效的洗孔措施;

(四)钻孔孔径视钻孔目的确定。抽水试验孔试验段孔径,以满足设计的抽水量和安装抽水设备为原则;水位观测孔观测段孔径,应当满足止水和水位观测的要求;

(五)抽水试验钻孔的孔斜,满足选用抽水设备和水位观测仪器的工艺要求;

(六)钻孔取芯钻进,并进行岩芯描述。岩芯采取率:岩石大于70%;破碎带大于50%;黏土大于70%;砂和砂砾层大于30%。当采用水文物探测井,能够正确划分地层和含(隔)水层位置及厚度时,可以适当减少取芯;

(七)在钻孔分层(段)隔离止水时,通过提水、注水和水文测井等不同方法,检查止水效果,并作正式记录;不合格的,重新止水;

(八)除长期动态观测钻孔外,其余钻孔都使用高标号水泥浆封孔,并取样检查封孔质量;

(九)观测孔竣工后,进行抽水洗孔,以确保观测层(段)不被淤塞。

水文地质钻孔应当做好简易水文地质观测,其技术要求参照相关规程、规范进行。对没有简易水文地质观测资料的钻孔,应当降低其质量等级或者不予验收。

水文地质观测孔,应当安装孔口装置和长期观测测量标志,并采取有效措施予以保护,保证坚固耐用、观测方便;遇有损坏或堵塞时,应当及时进行处理。

第三十二条 生产矿井水文地质补充勘探的抽水试验质量,应当达到有关国家标准、行业标准的规定。

抽水试验的水位降深,应当根据设备能力达到最大降深,降深次数不少于3次,降距合理分布。当受开采影响导致钻孔水位较深时,可以仅做1次最大降深抽水试验。在降深过程的观测中,应当考虑非稳定流计算的要求,并适当延长时间。

对水文地质复杂型或者极复杂型的矿井,如果采用小口径抽水不能查明水文地质、工程地质(地面岩溶塌陷)条件时,可以进行井下放水试验;如果井下条件不具备的,应当进行大口径、大流量群孔抽水试验。采取群孔抽水试验,应当单独编制设计,经煤矿企业总工程师组织审查同意后实施。

大口径群孔抽水试验的延续时间,应当根据水位流量过程曲线稳定趋势而确定,一般不少于10 日;当受开采疏水干扰,导致水位无法稳定时,应当根据具体情况研究确定。

为查明受采掘破坏影响的含水层与其他含水层或者地表水体等之间有无水力联系,可以结合抽(放)水进行连通(示踪)试验。

抽水前,应当对试验孔、观测孔及井上、井下有关的水文地质点,进行水位(压)、流量观测。必要时,可以另外施工专门钻孔测定大口径群孔的中心水位。

第三十三条 对于因矿井防渗漏研究岩石渗透性,或者因含水层水位很深致使无法进行抽水试验的,可以进行注水试验。

注水试验应当编制试验设计。试验设计包括试验层段的起、止深度;孔径及套管下入层位、深度及止水方法;采用的注水设备、注水试验方法,以及注水试验质量要求等内容。

注水试验施工主要技术指标,应当符合下列要求:

(一)根据岩层的岩性和孔隙、裂隙发育深度,确定试验孔段,并严格做好止水工作;

(二)注水试验前,彻底洗孔,以保证疏通含水层,并测定钻孔水温和注入水的温度;

(三)注水试验正式注水前及正式注水结束后,进行静止水位和恢复水位的观测。

第三十四条 物探工作布置、参数确定、检查点数量和重复测量误差、资料处理等,应当符合有关国家标准、行业标准的规定。

进行物探作业前,应当根据勘探区的水文地质条件、被探测地质体的地球物理特征和不同的工作目的等因素确定勘探方案。进行物探作业时,可以采用多种物探方法进行综合探测。

物探工作结束后,应当提交相应的综合成果图件。物探成果应当与其他勘探成果相结合,经相互验证后,可以作为矿井采掘设计的依据。

第六节 井下水文地质勘探

第三十五条 井下水文地质勘探应当遵守下列规定:

(一)采用井下物探、钻探、监测、测试等手段;

(二)采用井下与地面相结合的综合勘探方法;

(三)井下勘探施工作业时,保证矿井安全生产,并采取可靠的安全防范措施。

第三十六条 矿井有下列情形之一的,应当在井下进行水文地质勘探:

(一)采用地面水文地质勘探难以查清问题,需在井下进行放水试验或者连通(示踪)试验的;

(二)煤层顶、底板有含水(流)砂层或者岩溶含水层,需进行疏水开采试验的;

(三)受地表水体和地形限制或者受开采塌陷影响,地面没有施工条件的;

(四)孔深或者地下水位埋深过大,地面无法进行水文地质试验的。

第三十七条 井下水文地质勘探应当符合下列要求:

(一)钻孔的各项技术要求、安全措施等钻孔施工设计,经矿井总工程师批准后方可实施;

(二)施工并加固钻机硐室,保证正常的工作条件;

(三)钻机安装牢固。钻孔首先下好孔口管,并进行耐压试验。在正式施工前,安装孔口安全闸阀,以保证控制放水。安全闸阀的抗压能力大于最大水压。在揭露含水层前,安装好孔口防喷装置;

(四)按照设计进行施工,并严格执行施工安全措施;

(五)进行连通试验,不得选用污染水源的示踪剂;

(六)对于停用或者报废的钻孔,及时封堵,并提交封孔报告。

第三十八条 放水试验应当遵循下列原则:

(一)编制放水试验设计,确定试验方法、各次降深值和放水量。放水量视矿井现有最大排水能力而确定,原则上放水试验能影响到的观测孔应当有明显的水位降深。其设计由煤矿企业总工程师组织审查批准;

(二)做好放水试验前的准备工作,固定人员,检验校正观测仪器和工具,检查排水设备能力和排水线路;

(三)放水前,在同一时间对井上下观测孔和出水点的水位、水压、涌水量、水温和水质进行一次统测;

(四)根据具体情况确定放水试验的延续时间。当涌水量、水位难以稳定时,试验延续时间一般不少于10-15 日。选取观测时间间隔,应当考虑到非稳定流计算的需要。中心水位或者水压与涌水量进行同步观测;

(五)观测数据及时登入台账,并绘制涌水量--水位历时曲线;

(六)放水试验结束后,及时进行资料整理,提交放水试验总结报告。

第三十九条 对于受水害威胁的矿井,采用常规水文地质勘探方法难以进行开采评价时,可以根据条件采用穿层石门或者专门凿井进行疏水降压开采试验。

进行疏水降压开采试验,应当符合下列规定:

(一)有专门的施工设计,其设计由煤矿企业总工程师组织审查批准;

(二)预计最大涌水量;

(三)建立能保证排出最大涌水量的排水系统;

(四)选择适当位置建筑防水闸门;

(五)做好钻孔超前探水和放水降压工作;

(六)做好井上下水位、水压、涌水量的观测工作。

第四十条 矿井可以根据本单位的实际,采用直流电法(电阻率法)、音频电穿透法、瞬变电磁法、电磁频率测深法、无线电波透视法、地质雷达法、浅层地震勘探、瑞利波勘探、槽波地震勘探方法等物探方法,并结合钻探方法对资料进行验证。

第四章 矿井防治水

第一节 地面防治水

第四十一条 矿井应当查清矿区及其附近地面水流系统的汇水、渗漏情况,疏水能力和有关水利工程等情况;了解当地水库、水电站大坝、江河大堤、河道、河道中障碍物等情况;掌握当地历年降水量和最高洪水位资料,建立疏水、防水和排水系统。

第四十二条 矿井井口和工业场地内建筑物的标高,应当高于当地历年最高洪水位。

如果在山区,除符合本条第一款的规定外,还应当避开可能发生泥石流、滑坡的地段。

矿井井口及工业场地内建筑物的标高低于当地历年最高洪水位的,应当修筑堤坝、沟渠或者采取其他防排水措施。

第四十三条 当矿井井口附近或者塌陷区内外的地表水体可能溃入井下时,应当采取安全防范措施。

严禁开采煤层露头的防隔水煤(岩)柱。

在地表容易积水的地点,应当修筑沟渠,排泄积水。修筑沟渠时,应当避开露头、裂隙和导水岩层。特别低洼地点不能修筑沟渠排水的,应当填平压实。如果低洼地带范围太大无法填平时,应当采取水泵或者建排洪站专门排水,防止低洼地带积水渗入井下。

当矿井受到河流、山洪威胁时,应当修筑堤坝和泄洪渠,防止洪水侵入。

对于排到地面的矿井水,应当妥善处理,避免再渗入井下。

对于漏水的沟渠(包括农田水利的灌溉沟渠)和河床,应当及时堵漏或者改道。地面裂缝和塌陷地点应当及时填塞。进行填塞工作时,应当采取相应的安全措施,防止人员陷入塌陷坑内。

在有滑坡危险的地段,可能威胁煤矿安全时,应当采取防止滑坡措施。

第四十四条 严禁将矸石、炉灰、垃圾等杂物堆放在山洪、河流可能冲刷到的地段,以免冲到工业场地和建筑物附近或者淤塞河道、沟渠。

第四十五条 对于正在使用的钻孔,应当按照规定安装孔口盖。对于报废的钻孔,应当及时封孔,防止地表水或含水层的水流入井下。观测孔、注浆孔、电缆孔、与井下或者含水层相通的钻孔,其孔口管应当高出当地最高洪水位。

第四十六条 报废的立井应当填实封堵,或者在井口浇注1个大于井筒断面的坚实的钢筋混凝土盖板,并设置栅栏和标志。

报废的斜井应当填实封堵,或者在井口以下斜长20 m处砌筑1座砖、石或者混凝土墙,再用泥土填至井口,并加砌封墙。

报废的平硐,应当从硐口向里用泥土填实至少20 m,再砌封墙。报废井口的周围有地面水影响的,应当设置排水沟。

封填报废的立井、斜井和平硐时,应当做好隐蔽工程记录,并填图归档。

第四十七条 矿井应当与气象、水利、防汛等部门进行联系,建立灾害性天气预警和预防机制。煤矿应当及时掌握可能危及煤矿安全生产的暴雨洪水灾害信息,密切关注灾害性天气的预报预警信息;及时掌握汛情水情,采取安全防范措施;加强与周边相邻矿井信息沟通,发现矿井出现异常情况时,立即向周边相邻矿井进行预警。

第四十八条 矿井应当安排专人负责对本井田范围内可能波及的周边废弃老窑、地面塌陷坑、采动裂隙以及可能影响矿井安全生产的水库、湖泊、河流、涵闸、堤防工程等重点部位进行巡视检查。当接到暴雨灾害预警信息和警报后,应当实施24 h不间断巡查。在矿区每次降大到暴雨的前后,应当派专业人员及时观测矿井涌水量变化情况。

第四十九条 矿井应当建立暴雨洪水可能引发淹井等事故灾害紧急情况下及时撤出井下人员的制度,明确启动标准、指挥部门、联络人员、撤人程序等。当发现暴雨洪水灾害严重可能引发淹井时,应当立即撤出作业人员到安全地点。经确认隐患完全消除后,方可恢复生产。

第五十条 矿井在雨季前,应当全面检查防范暴雨洪水引发事故灾难防范措施的落实情况。对检查出的事故隐患,应当落实责任,并限定在汛期前完成整改。防治水工程应当有专门设计,工程竣工后由矿井总工程师负责组织验收。

第二节 防隔水煤(岩)柱的留设

第五十一条 相邻矿井的分界处,应当留防隔水煤(岩)柱。矿井以断层分界的,应当在断层两侧留有防隔水煤(岩)柱。

第五十二条 受水害威胁的矿井,有下列情况之一的,应当留设防隔水煤(岩)柱:

(一)煤层露头风化带;

(二)在地表水体、含水冲积层下和水淹区邻近地带;

(三)与富水性强的含水层间存在水力联系的断层、裂隙带或者强导水断层接触的煤层;

(四)有大量积水的老窑和采空区;

(五)导水、充水的陷落柱、岩溶洞穴或地下暗河;

(六)分区隔离开采边界;

(七)受保护的观测孔、注浆孔和电缆孔等。

第五十三条 矿井应当根据矿井的地质构造、水文地质条件、煤层赋存条件、围岩物理力学性质、开采方法及岩层移动规律等因素确定相应的防隔水煤(岩)柱的尺寸。防隔水煤(岩)柱的尺寸要求见附录三。

矿井防隔水煤(岩)柱应当由矿井地测机构组织编制专门设计,经矿井总工程师组织有关单位审查批准后实施。

第五十四条 矿井防隔水煤(岩)柱一经确定,不得随意变动。严禁在各类防隔水煤(岩)柱中进行采掘活动。

第五十五条 开采水淹区下的废弃防隔水煤(岩)柱时,应当彻底疏放上部积水。严禁顶水作业。

第五十六条 有突水历史或带压开采的矿井,应当分水平或分采区实行隔离开采。在分区之前,应当留设防隔水煤(岩)柱并建立防水闸门,以便在发生突水时,能够控制水势、减少灾情、保障矿井安全。

第三节 排水系统

第五十七条 矿井应当配备与矿井涌水量相匹配的水泵、排水管路、配电设备和水仓等,确保矿井能够正常排水。

点击下页分享更多煤矿防治水管理规定

⑥ 煤矿防治水管理规定

《煤矿防治水规定》已经2009年8月17日国家安全生产监督管理总局局长办公会议审议通过,下面我给大家介绍关于煤矿防治水管理规定的相关资料,希望对您有所帮助。

煤矿防治水管理规定如下

第一章 总 则

第一条 为加强煤矿的防治水工作,防止和减少水害事故,保障煤矿职工生命安全,根据《安全生产法》、《矿山安全法》、《国务院关于预防煤矿生产安全事故的特别规定》等法律、行政法规,制定本规定。

第二条 煤矿企业(矿井)、有关单位的防治水工作,适用本规定。

现行煤矿安全规程、规范、标准等有关防治水的内容与本规定不一致的,依照本规定执行。

第三条 防治水工作应当坚持预测预报、有疑必探、先探后掘、先治后采的原则,采取防、堵、疏、排、截的综合治理措施。

第四条 煤矿企业、矿井的主要负责人(含法定代表人、实际控制人,下同)是本单位防治水工作的第一责任人,总工程师(技术负责人,下同)具体负责防治水的技术管理工作。

第五条 煤矿企业、矿井应当按照本单位的水害情况,配备满足工作需要的防治水专业技术人员,配齐专用探放水设备,建立专门的探放水作业队伍。

水文地质条件复杂、极复杂的煤矿企业、矿井,除符合本条第一款规定外,还应当设立专门的防治水机构。

第六条 煤矿企业、矿井应当建立健全水害防治岗位责任制、水害防治技术管理制度、水害预测预报制度和水害隐患排查治理制度。

第七条 煤矿企业、矿井应当编制本单位的防治水中长期规划和年度计划,并组织实施。

第八条 煤矿企业、矿井的井田范围内及周边区域水文地质条件不清楚的,应当采取有效措施,查明水害情况。在水害情况查明前,严禁进行采掘活动。

发现矿井有透水征兆时,应当立即停止受水害威胁区域内的采掘作业,撤出作业人员到安全地点,采取有效安全措施,分析查找透水原因。

第九条 煤矿企业、矿井应当对职工进行防治水知识的教育和培训,保证职工具备必要的防治水知识,提高防治水工作的技能和抵御水灾的能力。

第十条 煤矿企业、矿井应当加强防治水技术研究和科技攻关,推广使用防治水的新技术、新装备和新工艺,提高防治水工作的科技水平。

水文地质条件复杂、极复杂的煤矿企业、矿井,应当装备必要的防治水抢险救灾设备。

第二章 矿井水文地质类型划分及基础资料

第一节 矿井水文地质类型划分

第十一条 根据矿井受采掘破坏或者影响的含水层及水体、矿井及周边老空水分布状况、矿井涌水量或者突水量分布规律、矿井开采受水害影响程度以及防治水工作难易程度,矿井水文地质类型划分为简单、中等、复杂、极复杂等4种(见表2-1)。

表2-1 矿井水文地质类型

分类依据 类 别

简单 中等 复杂 极复杂

受采掘破坏或影响的含水层及水体 含水层性质及补给条件 受采掘破坏或影响的孔隙、裂隙、岩溶含水层,补给条件差,补给来源少或极少 受采掘破坏或影响的孔隙、裂隙、岩溶含水层,补给条件一般,有一定的补给水源 受采掘破坏或影响的主要是岩溶含水层、厚层砂砾石含水层、老空水、地表水,其补给条件好,补给水源充沛 受采掘破坏或影响的是岩溶含水层、老空水、地表水,其补给条件很好,补给来源极其充沛,地表泄水条件差

单位涌水量q(L•s-1•m-1) q≤0.1 0.15.0

矿井及周边老空水

分布状况 无老空积水 存在少量老空积水,位置、范围、积水量清楚 存在少量老空积水,位置、范围、积水量不清楚 存在大量老空积水,位置、范围、积水量不清楚

矿井涌水量

(m3•h-1) 正常Q1

最大Q2 Q1≤180

(西北地区Q1≤90)

Q2≤300

(西北地区Q2≤210) 180

(西北地区90

300

(西北地区210

(西北地区180

1 200

(西北地区600

2 100) Q1>2 100

(西北地区Q1>1 200)

Q2>3 000

(西北地区Q2>2 100)

突水量Q3(m3•h-1) 无 Q3≤600 6001 800

开采受水害

影响程度 采掘工程不受水害影响 矿井偶有突水,采掘工程受水害影响,但不威胁矿井安全 矿井时有突水,采掘工程、矿井安全受水害威胁 矿井突水频繁,采掘工程、矿井安全受水害严重威胁

防治水工作

难易程度 防治水工作简单 防治水工作简单或易于进行 防治水工程量较大,难度较高 防治水工程量大,难度高

注:1.单位涌水量以井田主要充水含水层中有代表性的为准。

2.在单位涌水量q,矿井涌水量Q1、Q2和矿井突水量Q3中,以最大值作为分类依据。

3.同一井田煤层较多,且水文地质条件变化较大时,应当分煤层进行矿井水文地质类型划分。

4.按分类依据就高不就低的原则,确定矿井水文地质类型。

第十二条 矿井应当对本单位的水文地质情况进行研究,编制矿井水文地质类型划分报告,并确定本单位的矿井水文地质类型。矿井水文地质类型划分报告,由煤矿企业总工程师负责组织审定。

矿井水文地质类型划分报告,应当包括下列主要内容:

(一)矿井所在位置、范围及四邻关系,自然地理等情况;

(二)以往地质和水文地质工作评述;

(三)井田水文地质条件及含水层和隔水层分布规律和特征;

(四)矿井充水因素分析,井田及周边老空区分布状况;

(五)矿井涌水量的构成分析,主要突水点位置、突水量及处理情况;

(六)对矿井开采受水害影响程度和防治水工作难易程度评价;

(七)矿井水文地质类型划分及防治水工作建议。

第十三条 矿井水文地质类型应当每3年进行重新确定。当发生重大突水事故后,矿井应当在1年内重新确定本单位的水文地质类型。

重大突水事故,是指突水量首次达到300m3/h以上或者造成死亡3人以上的突水事故。

第二节 矿井防治水基础资料

第十四条 矿井应当编制井田地质报告、建井设计和建井地质报告。井田地质报告、建井设计和建井地质报告应当有相应的防治水内容。

第十五条 矿井应当按照规定编制下列防治水图件:

(一)矿井充水性图;

(二)矿井涌水量与各种相关因素动态曲线图;

(三)矿井综合水文地质图;

(四)矿井综合水文地质柱状图;

(五)矿井水文地质剖面图。

其他有关防治水图件由矿井根据实际需要编制。

矿井应当建立数字化图件,内容真实可靠,并每半年对图纸内容进行修正完善。

矿井水文地质主要图件内容及要求见附录一。

第十六条 矿井应当建立下列防治水基础台账:

(一)矿井涌水量观测成果台账;

(二)气象资料台账;

(三)地表水文观测成果台账;

(四)钻孔水位、井泉动态观测成果及河流渗漏台账;

(五)抽(放)水试验成果台账;

(六)矿井突水点台账;

(七)井田地质钻孔综合成果台账;

(八)井下水文地质钻孔成果台账;

(九)水质分析成果台账;

(十)水源水质受污染观测资料台账;

(十一)水源井(孔)资料台账;

(十二)封孔不良钻孔资料台账;

(十三)矿井和周边煤矿采空区相关资料台账;

(十四)水闸门(墙)观测资料台账;

(十五)其他专门项目的资料台账。

矿井防治水基础台账,应当认真收集、整理,实行计算机数据库管理,长期保存,并每半年修正1次。

第十七条 新建矿井应当按照矿井建井的有关规定,在建井期间收集、整理、分析有关矿井水文地质资料,并在建井完成后将资料全部移交给生产单位。

新建矿井应当编制下列主要图件:

(一)水文地质观测台账和成果;

(二)突水点台账、记录和有关防治水的技术总结,以及注浆堵水记录和有关资料;

(三)井筒及主要巷道水文地质实测剖面;

(四)建井水文地质补充勘探成果;

(五)建井水文地质报告(可与建井地质报告合在一起)。

第十八条 矿井在废弃关闭之前,应当编写闭坑报告。闭坑报告应当包括下列主要内容:

(一)闭坑前的矿井采掘空间分布情况,对可能存在的充水水源、通道、积水量和水位等情况的分析评价;

(二)闭坑对邻近生产矿井安全的影响和采取的防治水措施。

闭坑报告(包括图纸资料)应当报所在地煤炭行业管理部门备案。

第十九条 矿井应当建立水文地质信息管理系统,实现矿井水文地质文字资料收集、数据采集、图件绘制、计算评价和矿井防治水预测预报一体化。

第三章 水文地质补充调查与勘探

第一节 水文地质补充调查

第二十条 当矿区或者矿井现有水文地质资料不能满足生产建设的需要时,应当针对存在的问题进行专项水文地质补充调查。矿区或者矿井未进行过水文地质调查或者水文地质工作程度较低的,应当进行补充水文地质调查。

第二十一条 水文地质补充调查范围应当覆盖一个具有相对独立补给、径流、排泄条件的地下水系统。

第二十二条 水文地质补充调查除采用传统方法外,还可采用遥感、全球卫星定位、地理信息系统等新技术、新方法。

第二十三条 水文地质补充调查,应当包括下列主要内容:

(一)资料收集。收集降水量、蒸发量、气温、气压、相对湿度、风向、风速及其历年月平均值和两极值等气象资料。收集调查区内以往勘查研究成果,动态观测资料,勘探钻孔、供水井钻探及抽水试验资料;

(二)地貌地质的情况。调查收集由开采或地下水活动诱发的崩塌、滑坡、人工湖等地貌变化、岩溶发育矿区的各种岩溶地貌形态。对第四系松散覆盖层和基岩露头,查明其时代、岩性、厚度、富水性及地下水的补排方式等情况,并划分含水层或相对隔水层。查明地质构造的形态、产状、性质、规模、破碎带(范围、充填物、胶结程度、导水性)及有无泉水出露等情况,初步分析研究其对矿井开采的影响;

(三)地表水体的情况。调查与收集矿区河流、水渠、湖泊、积水区、山塘和水库等地表水体的历年水位、流量、积水量、最大洪水淹没范围、含泥砂量、水质和地表水体与下伏含水层的水力关系等。对可能渗漏补给地下水的地段应当进行详细调查,并进行渗漏量监测;

(四)井泉的情况。调查井泉的位置、标高、深度、出水层位、涌水量、水位、水质、水温、有无气体溢出、溢出类型、流量(浓度)及其补给水源,并素描泉水出露的地形地质平面图和剖面图;

(五)古井老窑的情况。调查古井老窑的位置及开采、充水、排水的资料及老窑停采原因等情况,察看地形,圈出采空区,并估算积水量;

(六)生产矿井的情况。调查研究矿区内生产矿井的充水因素、充水方式、突水层位、突水点的位置与突水量,矿井涌水量的动态变化与开采水平、开采面积的关系,以往发生水害的观测研究资料和防治水措施及效果;

(七)周边矿井的情况。调查周边矿井的位置、范围、开采层位、充水情况、地质构造、采煤方法、采出煤量、隔离煤柱以及与相邻矿井的空间关系,以往发生水害的观测研究资料,并收集系统完整的采掘工程平面图及有关资料;

(八)地面岩溶的情况。调查岩溶发育的形态、分布范围。详细调查对地下水运动有明显影响的补给和排泄通道,必要时可进行连通试验和暗河测绘工作。分析岩溶发育规律和地下水径流方向,圈定补给区,测定补给区内的渗漏情况,估算地下水径流量。对有岩溶塌陷的区域,进行岩溶塌陷的测绘工作。

第二节 地面水文地质观测

第二十四条 矿区、矿井地面水文地质观测应当包括下列主要内容:

(一)进行气象观测。距离气象台(站)大于30 km的矿区(井),设立气象观测站。站址的选择和气象观测项目,符合气象台(站)的要求。距气象台(站)小于30 km的矿区(井),可以不设立气象观测站,仅建立雨量观测站;

(二)进行地表水观测。地表水观测项目与地表水调查内容相同。一般情况下,每月进行1次地表水观测;雨季或暴雨后,根据工作需要,增加相应的观测次数;

(三)进行地下水动态观测。观测点应当布置在下列地段和层位:

1.对矿井生产建设有影响的主要含水层;

2.影响矿井充水的地下水强径流带(构造破碎带);

3.可能与地表水有水力联系的含水层;

4.矿井先期开采的地段;

5.在开采过程中水文地质条件可能发生变化的地段;

6.人为因素可能对矿井充水有影响的地段;

7.井下主要突水点附近,或者具有突水威胁的地段;

8.疏干边界或隔水边界处。

观测点的布置,应当尽量利用现有钻孔、井、泉等。观测内容包括水位、水温和水质等。对泉水的观测,还应当观测其流量。

观测点应当统一编号,设置固定观测标志,测定坐标和标高,并标绘在综合水文地质图上。观测点的标高应当每年复测1次;如有变动,应当随时补测。

第二十五条 矿井应当在开采前的1个水文年内进行地面水文地质观测工作。在采掘过程中,应当坚持日常观测工作;在未掌握地下水的动态规律前,应当每7-10日观测1次;待掌握地下水的动态规律后,应当每月观测1-3次;当雨季或者遇有异常情况时,应当适当增加观测次数。水质监测每年不少于2次,丰、枯水期各1次。

技术人员进行观测工作时,应当按照固定的时间和顺序进行,并尽可能在最短时间内测完,并注意观测的连续性和精度。钻孔水位观测每回应当有2次读数,其差值不得大于2 cm,取值可用平均数。测量工具使用前应当校验。水文地质类型属于复杂、极复杂的矿井,应当尽量使用智能自动水位仪观测、记录和传输数据。

点击下页分享更多煤矿防治水管理规定

阅读全文

与矿井废水分质管理相关的资料

热点内容
反渗透膜对镍的处理效果 浏览:752
废水管一般使用什么管材 浏览:967
万家乐热水器去除水垢 浏览:937
挥发酚高浓度样品需要蒸馏 浏览:249
RO膜不健康 浏览:505
水冷冷凝器水垢厚度 浏览:7
尊驰换汽油滤芯多少钱 浏览:943
美的空气净化器怎么解儿童锁 浏览:835
安装厨下净水机配什么阀门 浏览:759
双显示器提升工作效率 浏览:928
环氧树脂固化后属于塑性材料吗 浏览:105
联动回膛有啥用 浏览:880
从北安回大庆用隔离吗 浏览:294
小米空气净化器怎么除甲醛 浏览:890
污水浇地都卖给你们了 浏览:303
细胞器在蒸馏水中会涨破吗 浏览:899
汉斯顿净水器网上卖的多少钱一台 浏览:40
ro膜出水示意图 浏览:167
餐饮废水条款 浏览:107
世韩低压反渗透膜 浏览:191