导航:首页 > 污水知识 > 重金属废水0排放

重金属废水0排放

发布时间:2024-08-13 06:00:33

废水指标要求0排放,如果0.06算不算0排放昵

废水零排放是来指工业水经源过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂。水中的盐类和污染物经过浓缩结晶以固体形式排出厂送垃圾处理厂填埋或将其回收作为有用的化工原料。
所谓零排放,是指无限地减少污染物和能源排放直至到零的活动。零排放,就其内容而言,一是要控制生产过程中不得已产生的能源和资源排放,将其减少到零;另一含义是将那些不得已排放出的能源、资源充分利用,最终消灭不可再生资源和能源的存在。
零排放的指标还全都是0,不超过标准就是零排放,0.06在标准内就算,超过就不算。
ps:本人就是做污水处理工程设计的,cod,bod,氨氮等这些污染物,实际上数值是不可能为0的。

Ⅱ 重金属废水怎么处理

使用重金属捕集剂用更快捷高效的方法去除重金属废水中的重金属物质,例回如镍、答铜等物质

|材料:重金属捕集剂 RS100、次氯酸钠

设计思路:

水样二:PH值为11.4,直接投加重捕剂 RS100为100ppm和300ppm进行对比试验,检测铜、镍、铁、银含量

水样三:先调碱至ph=9.5,去除大量的离子态重金属,取上清液100ml再加 重捕剂 RS100,待沉淀后取上清液检测铜、镍、铁、银含量

指导方案:原水调PH后加次氯酸钠破氰处理,沉淀30min

破氰沉淀后出水,加入100ppm 重捕剂 RS100,搅拌反应10min以上

加入100ppmPAC,快速搅拌混匀

加入5ppmPAM,搅拌混匀后沉淀30min

出水加盐酸(硫酸)回调PH至6-9

达标排放(Ni<0.5ppm;Cu<0,5ppm)(根据实际状况加入重金属捕集剂)对本水样中的重金属,重金属捕集剂 RS100在碱性条件下的去除率更高,建议在破氰沉淀后直接投加 弱水无极 重捕剂 RS100,二级沉淀出水再回调PH

◆建议:沉淀效果对出水水质影响较大,建议适当延长沉淀时间以减小出水中悬浮物影响

Ⅲ 燃煤电厂脱硫废水在烟道中的蒸发及流动特性数值模拟

利用燃煤电厂尾部烟道的烟气余热来实现脱硫废水的喷雾蒸发是实现其零排放的有效途径,以国内某燃煤电厂330MW火力机组的烟道为研究对象,利用DPM模型对雾化液滴群在高温烟道内的蒸发及流动特性进行了研究,考察了不同雾化嘴角情况下液滴碰壁情况、不同负荷下液滴的蒸发情况,研究结果表明:在50%、75%、100%烟气负荷工况下,烟气温度越高、烟气速度越快,雾化液滴群完全蒸发所需时间越少,液滴最大蒸发时间在2.85~3.36s之间。在单烟道结构的最佳喷嘴雾化锥角为65°情况下,越靠近烟道内侧,涡的尺寸越大,越有利于促进喷嘴区的局部液滴群不断向其他区域扩散。
中国是以煤炭为主要能源的国家,2017年燃煤火力发电量占全年总发电量的67%。发电过程中煤炭燃烧产生的二氧化硫排放问题尤为引人关注,在一定的气象条件下产生复杂的化学反应,是形成雾霾和酸雨的重要前驱体。石灰石-石膏湿法烟气脱硫工艺应用最广,然而,循环浆液将持续富集来自烟气及脱硫剂中的重金属元素和氯离子,从而产生高浓度的脱硫废水,废水直接排放对环境产生负面影响。
如采用常规工艺进行废水零排放处理,则高浓度氯离子的腐蚀性对设备材质要求很高,造价昂贵。使用喷嘴将脱硫废水雾化为液滴群并喷入空气预热器至电除尘器间的烟道内,利用高温烟气与常温废水的传热作用实现脱硫废水的零排放,有投资少、工艺流程短、去除重金属离子、建设工期短、维护成本低等特点,被推荐为实现脱硫废水零排放的可行性技术。针对脱硫废水液滴群在烟气中蒸发与流动特性的优化是实现脱硫废水烟道蒸发零排放的关键。
目前,国内外对于脱硫废水烟道蒸发工艺的研究主要集中在以数值模拟的方式研究脱硫废水蒸发特性、流动特性两方面,同时,伴以一定的工程或实验数据作为参照。张子敬等研究认为喷雾液滴群蒸发特性受到液滴加热升温(传热过程)和喷雾液滴群在烟气中的扩散(传质过程)两方面的共同作用。Strotos G等建立了单个液滴在高温燃气中蒸发、运动过程的数学模型,获得了不同燃气温度和速度下液滴的蒸发规律。
冉景煜等对不同物性液滴在低温烟气环境中的运动,以及受热和蒸发过程中的传热传质特性进行了理论分析。李明波等通过计算流体动力学软件Fluent,对空气预热器出口至电除尘器入口段烟道内的烟气流动情况进行了模拟。
Laín等的以拉格朗日湍流颗粒分散体模型的建立为基础,提出携带稀薄粒子的气流在一定条件下,假设粒子为球体,只考虑曳力和重力作用。Young等应用离散多组分(DMC)燃料液滴模型对多组分燃料喷雾的蒸发进行了数值模拟。Pinto等研究了双流体喷嘴的喷雾干燥,成功地预测了干举碧燥时间和最终含水量随着初始液滴直径变化的趋势。
晋银佳等等提出深度过滤脱硫废水预处理工艺,将脱硫废水在雾化蒸发前进行固液深度分离预处理以解决硫废水中悬浮颗粒物堵塞问题。
国内外学者已对液滴蒸发的机理进行了深入研究,重点考察烟气温度、速度、液滴直径坦源、液滴速度对蒸发的影响,但是,不同雾化嘴角对脱硫废水蒸发的影响尚未有明确的解释,文中结合国内某燃煤电厂330MW机组空气预热器至电除尘器间的烟道中喷雾蒸发实现脱硫废水零排放工程实践,数值模拟不同烟气负荷和不同喷雾锥角对脱硫废水喷雾蒸发流动特性的影响。
1 方法与模型
脱让答态硫废水在烟道中喷雾蒸发属于典型的气液两相流流动,在数值模拟中以空气为连续相,以喷雾液滴为离散相,主要考虑连续相和离散相之间的相间运动和相互作用。首先,建立烟道的物理模型,根据连续相和离散相方程,以确定的边界条件进行相应数值模拟计算。
1. 1 物理模型
图1所示为空气预热器与电除尘器之间烟道和尺寸的物理模型。烟道分为入口段、下弯头、竖直段烟道、上弯头、异型弯头和水平烟道6个部分。采用ANSA软件对烟道几何模型进行网格划分,该烟道模型结构简单,流场结构均匀,在计算速度上采用有明显优势的全六面体网格,生成总网格数为200万。
经检验,该模型网格EquiSize Skew值在0~0.4之间的网格数占98.09%,网格划分质量较高。采用网格数分别为200万和300万和400万的网格进行无关化验证,对竖直段烟道内的6个点进行速度监测,3种网格计算结果相差不大,为了节省计算资源,选择网格数量约为200万的网格进行模拟,如图2所示。
1. 2 数学模型
1. 2. 1 连续相方程
在气液两相流动中,尽管控制方程独立,两相却是相互耦合的。液滴作为质量源、动量源和能量源被引入到气相方程中,并通过这些源项影响气相流场,气相流场又反过来通过其速度场、温度场、压力场等来影响液滴的本身状态。下列方程为气相控制方程,其表达式分别如下。
连续性方程:
2 结果与分析
2. 1 烟气负荷对液滴群蒸发及运动过程的影响
脱硫废水在锅炉尾部烟道中的雾化及流动、蒸发过程可分为初始阶段和稳态阶段。初始阶段,常温液滴群作为吸热蒸发的分布热汇,充分吸收烟气流的余热,所吸收的热量大部分用于液滴群温度的升高,同时,在烟气速度的影响下,该阶段的液滴群速度不断增大;在很短时间内,雾化液滴群即达到稳态阶段,此时,液滴群被烟气加热到稳定值,吸收的所有热量都用于液滴群蒸发,液滴群速度与来流烟气速度一致。
液滴群的蒸发效果主要由以下参数共同决定:气相温度、传输特性、液相温度、运动速度以及气液两相的传热、传递效率,分别选取330MW机组50%、75%、100%烟气负荷工况下,3种不同烟温( 120.3、125.1、128.9℃)及烟速( 9.19、11.56、14.64m/s)的气相条件对脱硫废水蒸发及流动特性的影响作定量分析,并结合传热传质理论加以解释。
图3显示了50%、75%、100%3种不同烟气负荷下,以不同的雾化锥角进行喷雾,运动液滴最大蒸发时间T的模拟结果, T值随烟气负荷的增加呈现近乎相同的线性下降趋势。随着负荷的增加烟气量增加,烟道烟气温度降低减少,蒸发时间减少,其中,50%、75%及100%烟气负荷工况运动液滴最大蒸发时间T分别在3.07~3.36s、2.85~3.04s和2.57~2.80s范围内。
选取喷嘴雾化锥角65°配置下的各烟气负荷颗粒运动轨迹,如图4所示。
液滴群颗粒皆能蒸发完全,100%烟气负荷对应的最大蒸发时间最短,50% 烟气负荷对应的最大蒸发时间最长,由此可见,对于相同粒径的液滴,气体环境温度越高、烟气速度越快,液滴群的汽化速率越高、蒸发效果越好。
其中,由于100%负荷下烟气速度相较于75%和50% 负荷时更快,则脱硫废水颗粒衰减后的速度仍然较快,若烟道长度不足,仍有蒸发不完全的可能性,从图中可看出,烟气速度的变化对液滴最大完全蒸发时间的影响较小,故在单烟道结构中,烟气温度对蒸发效果起主导作用。
若烟气温度升高,则气液两相的温差增大,气体环境向液滴群的传热增强,从而使液滴表面蒸发及传质扩散速率不断增大,因此,液滴温度持续升高,其到达临界蒸发温度所需时间变短,液滴自喷入烟道至完全蒸发的停留时间随烟气温度升高而逐渐减少。
2. 2 雾化锥角对液滴群蒸发及运动过程的影响
为定量分析雾化锥角对雾化液滴群流动特性的影响,定义被烟道壁面捕捉的液滴数量占液滴颗粒总数比为A0。A0值可反映出脱硫废水喷雾蒸发结晶后,在烟道内壁积灰的可能性大小。
图5显示了在20°、35°、50°、65°、80°、95°6种不同雾化锥角下在单烟道壁面被捕捉的液滴数量分数的模拟结果,A0值随雾化锥角的变化呈现近乎相同的先平稳下降、后明显上升趋势。
图5表明:在雾化锥角由20°至50°增加的过程中,A0值变化相对平稳,由于雾化角过小,液滴蒸发速度较慢,易撞击顶部水平烟道;当雾化锥角增加至65°,烟道捕捉的液滴数达到最小值,说明65°雾化锥角在烟道内壁积灰可能性最小;雾化锥角由65°至95°继续增大的过程中,A0值呈明显增加趋势,此时,由于雾化角过大液滴易撞击竖直烟道,但雾化锥角大于90°后,增加速率有所放缓,且有下降趋势,随着雾化角的增大,液滴蒸发速度变快,液滴碰壁的可能性变小。
当喷嘴雾化锥角过小时,相同工况下液滴蒸发较慢。当液滴进入水平烟道时,由于液滴的直径相对较大,随流能力也就越弱,液滴越撞击水平烟道形成积灰。当喷嘴雾化锥角过大时,液滴容易直接撞击竖直烟道形成积灰。因此,存在1个最佳的雾化锥角使液滴的碰壁数量最小,经过验证当雾化锥角为65°时撞击烟道的液滴数量最小。
单烟道结构75%烟气负荷工况下,最佳雾化锥角65°时,对于脱硫废水蒸发及流动特性的定量及烟道截面速度矢量图,如图6所示。
由图6可知,在喷雾蒸发的初始阶段,传质扩散及蒸发速率较快,喷雾对烟气的剪切卷吸形成了一个较大的不规则的涡。
由于烟道内侧的烟气体积流量较大,喷嘴截面沿烟气流动方向1m处烟气以较快的速度冲入对墙,造成其上部有较大压强差而形成回流,故越靠近烟道内侧,涡的形态越大,有利于促进喷嘴区的局部液滴群不断向其他区域扩散。随着蒸发及传质扩散的进一步均匀化,喷雾蒸发进入稳态阶段,烟道通流截面涡增大,截面涡的形态逐渐规则化,速度矢量场趋于稳定。
3 结 论
1 ) 50%、75%、100%3种烟气负荷工况下,在单烟道壁面被捕捉的液滴数量分数随雾化锥角的增加皆呈现先平稳下降、后明显上升趋势。
2)在20°、35°、50°、65°、80°、95°6种不同雾化锥角下运动液滴最大蒸发时间值随烟气负荷的增加呈现近乎相同的线性下降趋势。在最佳喷嘴雾化锥角65°配置下,对于相同粒径的液滴,气体环境温度越高、烟气速度越快,液滴群的汽化速率越高、蒸发效果越好。其中,烟气速度的变化对液滴最大完全蒸发时间的影响较小,烟气温度对蒸发效果起主导作用。脱硫废水喷雾后形成的液滴群可在烟道中完全蒸发。
3 )最佳雾化锥角配置下的速度矢量图显示,越靠近烟道内侧,涡的尺寸越大,有利于促进喷嘴区的局部液滴群不断向其他区域扩散;喷雾蒸发初始阶段的传质扩散及蒸发速率较快,速度矢量图呈现出一个较大的不规则的涡形态;喷雾蒸发稳态阶段烟道通流截面涡增大、形态逐渐规则化,速度矢量场趋于稳定。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

Ⅳ 化工废水重金属是不是一定要预处理再进处理站

含重金属废水处理:为使污水中所含的重金属达到排水某一水体或再次使用的水质要求,对其进行净化的过程。

目前,重金属废水处理的方法大致可以分为三大类:(1)化学法;(2)物理处理法;(3)生物处理法。

化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。
2.1.1化学沉淀法
化学沉淀法的原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除,包括中和沉淀法、硫化物沉淀法、铁氧体共沉淀法。由于受沉淀剂和环境条件的影响,沉淀法往往出水浓度达不到要求,需作进一步处理,产生的沉淀物必须很好地处理与处置,否则会造成二次污染。
2.1.2电解法
电解法是利用金属的电化学性质,金属离子在电解时能够从相对高浓度的溶液中分离出来,然后加以利用。电解法主要用于电镀废水的处理,这种方法的缺点是水中的重金属离子浓度不能降的很低。所以,电解法不适于处理较低浓度的含重金属离子的废水。
2.1.3螯合法[1]
螯合法又称高分子离子捕集剂法,是指在废水处理过程中通过投加适量的重金属捕集剂,利用捕集剂与金属离子铅、镉结合时形成相应的螯合物的原理实现铅、镉的去除分离。该反应能在常温和较大pH范围(3?11)下发生,同时捕集剂不受共存重金属离子的影响。因此该方法去除率高,絮凝效果佳,污泥量少且整合物易脱水。
2.1.4纳米重金属水处理技术
纳米材料因其比表面积远超普通材料,故同一种物质将会显示出不同的物化特型,很多新型的纳米材料都不断地在水处理行业中实验、实践。被环保部、科技部、工信部、财政部四部委联合审批立项为“2011年国家重大科技成果转化项目”———纳米水处理工艺及系列产品,在江西铜业股份有限公司应用取得了历史性的突破,填补了国内空白。
国内通常采用的重金属废水处理方法,包括石灰中和法和硫化法等。这些传统的处理工艺,虽然可以将废水中的重金属去除掉,但是处理效果并不稳定,处理后回收的清水水质仍难以确保稳定达标排放,而且还会产生二次污染。纳米重金属水处理技术不仅能使处理后的出水水质优于国家规定的排放标准且稳定可靠,投资成本和运行成本较低,与水中重金属离子反应快,吸附、处理容量是普通材料的10倍到1000倍,而且使沉淀的污泥量较传统工艺降低50%以上,污泥中杂质也少,有利于后续处理和资源回收。有数据显示,同样是每日处理300立方米重金属污水量,传统工艺每天要产生25吨石灰渣污泥,而采用纳米技术后每月只产生25吨纳米金属泥。尤其值得关注的是,这种污泥中的重金属单位含量提高了30倍。若以铜冶炼厂的废水处理为例,其回收的纳米铜泥品位已达到20%,完全可以作为铜矿资源再生利用。

物理处理法
物理处理法主要包含溶剂萃取分离、离子交换法、膜分离技术及吸附法。
2.2.1溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法。由于液液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。
2.2.2离子交换法
离子交换法是重金属离子与离子交换剂进行交换,达到去除废水中重金属离子的方法。常用的离子交换剂有阳离子交换树脂、阴离子交换树脂、螯合树脂等。几年来,国内外学者就离子交换剂的研制开发展开了大量的研究工作。随着离子交换剂的不断涌现,在电镀废水深度处理、高价金属盐类的回收等方面,离子交换法越来越展现出其优势。离子交换法是一种重要的电镀废水治理方法,处理容量大,出水水质好,可回收重金属资源,对环境无二次污染,但离子交换剂易氧化失效,再生频繁,操作费用高。
2.2.3膜分离技术
膜分离技术是利用一种特殊的半透膜,在外界压力的作用下,不改变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法,包括电渗析和隔膜电解。电渗析是在直流电场作用下,利用阴阳离子交换膜对溶液阴阳离子选择透过性使水溶液中重金属离子与水分离的一种物理化学过程。隔膜电解是以膜隔开电解装置的阳极和阴极而进行电解的方法,实际上是把电渗析与电解组合起来的一种方法。上述方法在运行中都遇到了电极极化、结垢和腐蚀等问题。
2.2.4吸附法
吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择,传统吸附剂是活性炭。还有黏土类吸附剂粉、煤灰吸附剂、生物质基材料和[1] 树脂基吸附材料。活性炭有很强吸附能力,去除率高,但活性炭再生效率低,处理水质很难达到回用要求,价格贵,应用受到限制。近年来,逐渐开发出有吸附能力的多种吸附材料。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+ 有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr 6+的去除率达到99%,出水中Cr 6+含量低于国家排放标准,具有实际应用前景。

生物处理法
生物处理法是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法,包括生物吸附、生物絮凝、植物修复等方法。
2.3.1生物吸附
生物吸附法是指生物体借助化学作用吸附金属离子的方法。藻类和微生物菌体对重金属有很好的吸附作用,并且具有成本低、选择性好、吸附量大、浓度适用范围广等优点,是一种比较经济的吸附剂。用生物吸附法从废水中去除重金属的研究,美国等国家已初见成效。有研究者预处理假单胞菌的菌胶团后,将其固定在细粒磁铁矿上来吸附工业废水中Cu,发现当浓度高至100 mg/L时,除去率可达96%,用酸解吸,可以回收95%铜,预处理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受环境因素的影响,微生物对重金属的吸附具有选择性,而重金属废水常含有多种有害重金属,影响微生物的作用,应用上受限制等,所以还需再进行进一步研究。
2.3.2生物絮凝
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。生物絮凝法的开发虽然不到20年,却已经发现有17种以上的微生物具有较好的絮凝功能,如霉菌、细菌、放线菌和酵母菌等,并且大多数微生物可以用来处理重金属。生物絮凝法具有安全无毒、絮凝效率高、絮凝物易于分离等优点,具有广阔的发展前景。
2.3.3植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量, 以达到治理污染、修复环境的目的。植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸。利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀
或富集有毒金属: (2)利用金属积累植物或超积累植物降
低有毒金属活性,从而可减少重金属被淋滤到地下或通过
空气载体扩散: (3)利用金属积累植物或超积累植物将土
壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分。通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度。在植物修复技术中能利用的植物有藻类植物、草本植物、木本植物等。
藻类净化重金属废水的能力主要表现在对重金属具有很强的吸附力。褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%~90%。浩云涛等分离筛选获得了一株高重金属抗性的椭圆小球藻(Chlorella ellipsoidea),并研究了不同浓度的重金属铜、锌、镍、镉对该藻生长的影响及其对重金属离子的吸收富集作用。结果显示,该藻Zn 和Cd 具有很高的耐受性。对四种重金属的耐受能力依次为锌>镉>镍>铜。该藻对重金属具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+浓度72h处理,去除率分别达到40.93%、98.33%、97.62%、86.88%。由此可见,此藻类可应用于含重金属废水的处理。
草本植物净化重金属废水的应用已有很多报道。风眼
莲(Eichhoria crassipes Somis)是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属。张志杰等的研究结果表明,干重lkg的风眼莲在7~l0d可吸收铅3.797g、镉3.225g。周风帆等的 研究发现风眼莲对钴和锌的吸收率分别高达97%和80%。香蒲(Typhao rientaliS Pres1)也是一种净化重金属的优良草本植物,它具有特殊的结构与功能,如叶片成肉质、栅栏组织发达等。香蒲植物长期生长在高浓度重金属废水中形成特殊结构以抵抗恶劣环境并能自我调节某些生理活动, 以适应污染毒害。招文锐等研究了宽叶香蒲人工湿地系统处理广东韶关凡口铅锌矿选矿废水的稳定性。历时10年的监测结果表明,该系统能有效地净化铅锌矿废水。未处理的废水含有高浓度的有害金属铅、锌、镉经人工湿地后,出水口水质明显改善,其中铅、锌、镉的净化率分别达99.0%,97.%和94.9%,且都在国家工业污水的排放标准之下。此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等。
采用木本植物来处理污染水体,具有净化效果好,处理量大,受气候影响小,不易造成二次污染等优点,越来越受到人们的重视。胡焕斌等试验结果表明,芦苇和池杉两种植物对重金属铅和镉都有较强富集能力,而木本植物池杉比草本植物芦苇具有更好的净化效果。周青等研究了5种常绿树木对镉污染胁迫的反应,实验结果表明,在高浓度镉胁迫下,5种树木叶片的叶绿素含量、细胞质膜透性、过氧化氢酶活性及镉富集量等生理生化特性均产生明显变化,其中,黄杨、海桐,杉木抗镉污染能力优于香樟和冬青。以木本植物为主体的重金属废水处理技术,能切断有毒有害物质进入人体和家畜的食物链,避免了二次污染,可以定向栽培,在治污的同时,还可以美化环境,获得一定的经济效益,是一种理想的环境修复方法。

Ⅳ 如何处理工业污水

工业污水处理方法x0dx0a重金属废水x0dx0a重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。x0dx0a重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属;其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。x0dx0a对重金属废水的处理,通常可分为两类;一是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等;二是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些方法应根据废水水质、水量等情况单独或组合使用。含氰废水x0dx0a含氰废水主要来自电镀、煤气、焦化、冶金、金属加工、化纤、塑料、农药、化工等部门。含氰废水是一种毒性较大的工业废水,在水中不稳定,较易于分解,无机氰和有机氰化物皆为剧毒性物质,人食入可引起急性中毒。氰化物对人体致死量为0.18,氰化钾为0.12g,水体中氰化物对鱼致死的质量浓度为0.04一0.1mg/L。x0dx0a含氰废水治理措施主要有:x0dx0a1、改革工艺,减少或消除外排含氰废水,如采用无氰电镀法可消除电镀车间工业废水。x0dx0a2、含氰量高的废水,应采用回收利用,含氰量低的废水应净化处理方可排放。x0dx0a回收方法有酸化曝气—碱液吸收法、蒸汽解吸法等。x0dx0a治理方法有碱性氯化法、电解氧化法、加压水解法、生物化学法、生物铁法、硫酸亚铁法、空气吹脱法等。其中碱性氯化法应用较广,硫酸亚铁法处理不彻底亦不稳定,空气吹脱法既污染大气,出水又达不到排放标准.较少采用。x0dx0a食品工业废水x0dx0a食品工业原料广泛,制品种类繁多,排出废水的水量、水质差异很大。废水中主要污染物有:1、漂浮在废水中固体物质,如菜叶、果皮、碎肉、禽羽等;2、悬浮在废水中的物质有油脂、蛋白质、淀粉、胶体物质等;3、溶解在废水中的酸、碱、盐、糖类等:4、原料夹带的泥砂及其他有机物等;5、致病菌毒等。x0dx0a食品工业废水的特点是有机物质和悬浮物含量高,易腐败,一般无大的毒性。其危害主要是使水体富营养化,以致引起水生动物和鱼类死亡,促使水底沉积的有机物产生臭味,恶化水质,污染环境。x0dx0a食品工业废水处理除按水质特点进行适当预处理外,一般均宜采用生物处理。如对出水水质要求很高或因废水中有机物含量很高,可采用两级曝气池或两级生物滤池,或多级生物转盘.或联合使用两种生物处理装置,也可采用厌氧—需氧串联的生物处理系统。x0dx0a造纸工业废水x0dx0a造纸废水主要来自造纸工业生产中的制浆和抄纸两个生产过程。制浆产生的废水,污染最为严重。洗浆时排出废水呈黑褐色,称为黑水,黑水中污染物浓度很高,BOD高达5—40g/L,含有大量纤维、无机盐和色素。漂白工序排出的废水也含有大量的酸碱物质。x0dx0a抄纸机排出的废水,称为白水,其中含有大量纤维和在生产过程中添加的填料和胶料。x0dx0a造纸工业废水的处理应着重于提高循环用水率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。例如浮选法可回收白水中纤维性固体物质,回收率可达95%,澄清水可回用;燃烧法可回收黑水中氢氧化钠、硫化钠、硫酸钠以及同有机物结合的其他钠盐。中和法调节废水pH值;混凝沉淀或浮选法可去除废水中悬浮固体;化学沉淀法可脱色;生物处理法可去除BOD,对牛皮纸废水较有效;湿式氧化法处理亚硫酸纸浆废水较为成功。此外,国内外也有采用反渗透、超过滤、电渗析等处理方法。x0dx0a印染工业废水x0dx0a印染工业用水量大,通常每印染加工1吨纺织品耗水100一200吨,其中80%一90%以印染废水排出。常用的治理方法有回收利用和无害化处理。x0dx0a一、回收利用x0dx0a1、废水可按水质特点分别回收利用,如漂白煮炼废水和染色印花废水的分流,前者可以对流洗涤.一水多用,减少排放量;x0dx0a2、碱液回收利用,通常采用蒸发法回收,如碱液量大,可用三效蒸发回收,碱液量小,可用薄膜蒸发回收;x0dx0a3、染料回收.如士林染料可酸化成为隐巴酸,呈胶体微粒.悬浮于残液中,经沉淀过滤后回收利用。x0dx0a二、无害化处理x0dx0a1、物理处理法有沉淀法和吸附法等。沉淀法主要去除废水中悬浮物;吸附法主要是去除废水中溶解的污染物和脱色。x0dx0a2、化学处理法有中和法、混凝法和氧化法等。中和法在于调节废水中的酸碱度,还可降低废水的色度;混凝法在于去除废水中分散染料和胶体物质;氧化法在于氧化废水中还原性物质,使硫化染料和还原染料沉淀下来。x0dx0a3、生物处理法有活性污泥、生物转盘、生物转筒和生物接触氧化法等。x0dx0a为了提高出水水质,达到排放标准或回收要求.往往需要采用几种方法联合处理。x0dx0a化学工业废水工业废水x0dx0a化学工业废水主要来自石油化学工业、煤炭化学工业、酸碱工业、化肥工业、塑料工业、制药工业、染料工业、橡胶工业等排出的生产废水。化工废水污染防治的主要措施是:x0dx0a一级处理主要分离水中的悬浮固体物、胶体物、浮油或重油等。可采用水质水量调节、自然沉淀、上浮和隔油等方法。x0dx0a二级处理主要是去除可用生物降解的有机溶解物和部分胶体物,减少废水中的生化需氧量和部分化学需氧量,通常采用生物法处理。经生物处理后的废水中,还残存相当数量的COD,有时有较高的色、嗅、味,或因环境卫生标准要求高,则需采用三级处理方法进一步净化。x0dx0a三级处理主要是去除废水中难以生物降解的有机污染物和溶解性无机污染物。常用的方法有活性炭吸附法和臭氧氧化法,也可采用离子交换和膜分离技术等。各种化学工业废水可根据不同的水质、水量和处理后外排水质的要求,选用不同的处理方法。x0dx0a酸碱废水x0dx0a酸性废水主要来自钢铁厂、化工厂、染料厂、电镀厂和矿山等,其中含有各种有害物质或重金属盐类。碱性废水主要来自印染厂、皮革厂、造纸厂、炼油厂等。酸碱废水中,除含有酸碱外,常含有酸式盐、碱式盐以及其他无机物和有机物。酸碱废水具有较强的腐蚀性,需经适当治理方可外排x0dx0a治理酸碱废水一股原则是:x0dx0a1、高浓度酸碱废水,应优先考虑回收利用,根据水质、水量和不同工艺要求,进行厂区或地区性调度,尽量重复使用:如重复使用有困难,或浓度偏低,水量较大,可采用浓缩的方法回收酸碱。x0dx0a2、低浓度的酸碱废水,如酸洗槽的清洗水,碱洗槽的漂洗水,应进行中和处理。 对于中和处理,应首先考虑以废治废的原则。如酸、碱废水相互中和或利用废碱(渣)中和酸性废水,利用废酸中和碱性废水。在没有这些条件时,可采用中和剂处理。x0dx0a选矿废水x0dx0a选矿废水具有水量大,悬浮物含量高,含有害物质种类较多的特点。其有害物质是重金属离子和选矿药剂。选矿废水主要通过尾矿坝可有效地去除废水中悬浮物,重金属和浮选药剂含量也可降低。如达不到排放要求时,应作进一步处理,常用的处理方法有:x0dx0a1、去除重金属可采用石灰中和法和焙烧白云石吸附法;x0dx0a2、主除浮选药剂可采用矿石吸附法、活性炭吸附法;x0dx0a3、含氰废水可采用化学氧化法。x0dx0a冶金废水x0dx0a冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有冷却水、酸洗废水、洗涤废水(除尘、煤气或烟气)、冲渣废水、炼焦废水以及由生产中凝结、分离或溢出的废水等。

Ⅵ 论重金属工业污水的处理

一 重金属工业污水传统药剂处理的特性
重金属工业污水的重要污染物为重金属,在实际处理过程中需要对重金属进行析出和脱离。由于重金属不易被自热生物降解,在重金属工业污水处理中,多采用将目的物生成不溶于水的状态后加以处理的方法。这也就是传统的改质处理技术。在重金属工业污水改质中,需要采用石油成分或石油分解物等药剂作为改质的原料,使得重金属与之反应,得以固化析出。在处理过程中,改质剂的母体具有强烈的疏水性,在与亲水性基团进行结合时很容易成为水溶性分子,从而使得重金属类和改质剂生成固态化合物。因此,重金属工业污水处理的效果在很大程度上取决于对改质剂的合理选择。
二 重金属工业污水处理的工艺流程
在重金属工业污水传统药剂处理中,改质剂对污水中的重金属进行捕收、脱除后还可以进行回收处理。在经过相应的再生装置再生后,仍可以返回使用。这就使得污水处理的成本大大降低,更有利于资源的节约和充分利用。因此,重金属工业污水处理的工艺流程可以表示为:
(1)改质工序?原水从贮水槽导入搅拌槽,对水溶液中的重金属按克分子比1:0.1~3添肆唯宽加相当的改质剂。此时,改质剂立即捕收重金属类。水溶液的PH值按规定值调整,然后泵送至泡沫塔。(2)泡沫处理工序?从泡沫塔底部压人空气,将捕收了重金属的改质剂以泡沫方式脱除回收。(3)再生工序?通过PH调整等简单的处理后,使改质剂再生,然后反覆使用。
三 重金属工业污水处理的新技术
随着科学技术的发展,重金属工业污水处理技术也得到了较大的提升,在不断深化研究过程中,涌现出来新的处理技术,新的药剂被应用于重金属工业污水处理中显现出良好的效果。
(1)新型改质剂对重金属工业污水的处理
就重金属工业污水处理新技术的优势来看,其所使用改质剂的性能特点主要表现在:能溶于水;捕收重金属后产生强起抱力;捕裂亮收重金属后仍能溶解于水中;吹人空气后,捕收了重金属的改质剂,靠其起饱力形成抱沫,并与混存的悬浊物也共同连续地脱除回收,回收率在90~100%之间;对从弱酸性到强碱性的废水都可广泛使用;对污水中溶存的有机物悬浊物不必预先处理;处理时间短,10~20分钟;能选择地捕收不同重金属等诸多方面。用泡沫处理装置对重金属工业污水进行处理的效率相对较高,并能实现改质剂能再生反覆使用的目标。
(2)电化学方法和纳米光催化氧化对重金属污水的处理
在重金属工业污水处理过程中,电化学方法和纳米光催化氧化技术的应用是通过具有导电性和光敏性的廉价特殊的电极材料,将电化学方法和纳米光催化氧化进行有机结合,实现对中重金属工业污水进行有效处理的方法,主要针对有机物高浓度、高毒性、高色度和难生化的重金属污水处理。在对重金属进行脱离的同时,电化学方法和纳米光催化氧化相结合的方法能够除去工业废水中的有机毒物,更具有脱色的作用,从而达到对工业污水多种物质进行处理的效果。
四 重金属工业污水处理其他方法分析
以碱性物质析出、沉淀重金属,以有机化合物析出、泡沫附着重金属,以及以离子交换剂吸附或溶媒抽提重金属的方法进行重金属工业污水处理是目前重金属工业污水处理的常用手段。在污水问题解决过程中,生产费用、脱除率、二次污染、操作性能等特点的不同,使得各处理方法有着各自的优势和弊端。本文从以下几个方面进行了简要分析。
(1)从水溶液中析出溶解的重金属后以浮选脱除的方法?1)与共沉剂或硫化剂反应,生成的析出物用浮选脱除的方法用氢氧化高铁作共沉剂,硫化钠作硫化剂,这些药剂单独或讲用,从水中析出重金属后,添加浮选药剂进行浮选。2)呈氢氧化物析出,析出物用浮选脱除的方法。加碱使重金属呈氢氧化物析出,用烷基苯磺酸钠作浮选药剂浮选分离。3)和黄药反应,析出物用浮选脱除的方法山。加入黄药,析出气抱吸附性反应物浮选分离。4)用其他药剂处理析出,将析出物浮选脱除的方法。其中有氨基十八烷二叛酸钠,酞化氨基酸的氨化物,a一磺基十二烷酸钠、单烷基磷酸,脂肪酸二梭酸钠、二硫代氨基甲酸钠,十六烷三甲基澳化按等和重金属离子反应,对其析出物进行浮选的研究报告。
(2)溶媒萃取法?例如,溶于己烷等有机溶媒中的二甲基乙二肪、高分子量胺等和溶于水溶液中的重金属离子反应,将反应物萃取到有机溶媒中的方法。
(3)溶媒萃取和浮选法联山大合法?加入药剂与水中溶解的重金属盐反应,生成难溶于水的反应物,在反应物吸附在气泡上浮出后,使其溶解在不与水混合的上层有机溶媒中借以脱除的方法。
(4)利用离子交换剂等吸附剂脱除的方法?利用沸石,离子交换树脂,烷基苯磺酸钠等的离子交换能除去水溶液中重金属离子的方法。除此之外,还有使用天然叙永石和超微鳞片,硝基腐殖酸,纤维素硫代叛酸,二苯硫代偕腆踪一类构造的赘合树脂,氯化乙烯原料活性炭,骨炭,氮化活性炭,硅酸钙等吸附重金属离子脱除的方法。
此外,用耐汞性细菌将汞化合物分解脱除的方法以及蒙脱石与黄药饼用析出沉淀脱除也是重金属五十处理常用的方法之一。
五 结语
工业废水的排放是造成自然资源和环境污染的重要因素之一,对于生态环境的可持续发展有着严重的影响。特别是重金属工业污水,其肆意排放对于人类的生存有着巨大的危害,其难以自然降解的特点使得重金属工业污水的有效处理的重要性尤为突出。因此,我们必须在不断深化研究的基础上,重视对重金属工业污水处理技术的研发,从而提高重金属工业污水处理的社会经济效益。
相信经过以上的介绍,大家对论重金属工业污水的处理也是有了一定的认识。欢迎登陆中达咨询,查询更多相关信息。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

Ⅶ 重金属污染是指什么,都有哪些

重金属指相对密度大于5的金属(一般指密度大于4.5克/厘米3的金属),就一般情况而言,造成土壤污染的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。重金属的污染物通过各种途径进入土壤,造成土壤严重污染。

目前,全世界平均每年排放汞约1.5万吨、铜为340万吨、铅为500万吨、锰为1500万吨、镍为100万吨,造成了各国程度不同的土壤重金属污染。土壤重金属污染直接影响到土壤质别、水质状况、作物生长、农业产量、农产品品质等。由于重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使他们失去活性,也可能在人体的某些器官中累积,造成慢性中毒,轻者发生怪病(如日本的水俣病、骨痛病等),重者就会死亡。因此重金属对食品安全性的影响十分重要。从这一点上讲,充分认识土壤重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点,进行重金属污染的治理,已经成为世界各国广泛重视的问题。

食品生产中人为不安全因素在20世纪60至70年代,澳大利亚、美国、德国等国家就开始了对土壤重金属污染的研究。我国对重金属污染的研究起步于20世纪80年代,研究的主要方向集中在土壤重金属的生态效应、临界含量地带性分异规律和分区等问题上。大气中重金属的沉降、工业废水的灌溉以及金属矿山酸性废水污染,都加重了土壤的重金属污染。

1.超标的铅

从2006年8月末开始,甘肃徽县水阳乡陆续有八九百人到西安西京医院进行血铅检测,其中373人为儿童。这些儿童中,90%以上血铅超标,最高者血铅含量619微克/升,超标数倍(铅中毒即连续2次静脉血铅水平等于或高于200微克/升),被诊断为重度铅中毒,而成人中血铅超标也很普遍。当地村民认为,位于水阳乡新寺村旁的一家铅锭冶炼厂是“罪魁祸首”。2006年9月12日甘肃省政府召开的新闻发布会,经过调查组初步监测,造成甘肃省陇南市徽县水阳乡334名儿童血铅超标事故的徽县有色金属冶炼有限责任公司周边400米范围内土地已经全部被污染。甘肃省环保局联合调查组已经责成当地政府对遗存污染源进行进一步清理,彻底拆除冶炼生产的其他附属设施,对拆除的有关设施不得转移,以免造成新的污染;粗铅冶炼废渣属于危险废渣,对临时渣场堆存的废渣以及厂区内存渣、周围道路铺垫渣也要进行清理。

铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘和肢体酸痛等;有的口中有金属味,动脉硬化、消化道溃疡和眼底出血等症状也与铅污染有关。小孩铅中毒则出现发育迟缓、食欲不振、行走不便和便秘、失眠;若是小学生,还伴有多动、听觉障碍、注意力不集中、智力低下等现象。这是因为铅进入人体后通过血液侵入大脑神经组织,使营养物质和氧气供应不足,造成脑组织损伤所致,严重者可能导致终身残废。成年人铅中毒后经常会出现:疲劳、情绪消沉、心脏衰竭、腹部疼痛、肾虚、高血压、关节疼痛、生殖障碍、贫血等症状。孕妇铅中毒后会出现流产、新生儿体重过轻、死婴、婴儿发育不良等严重后果。

铅中毒预防和检测工作非常重要。可是铅中毒后的症状往往非常隐蔽难以被发现,所以目前最可靠的方法就是血检。

有效地防止铅中毒,是当今科学家正在探索、攻克的课题之一。但作为个人,加强防范、进行自我保护是十分重要的。首先不要使用含铅材料做饮食用具,最好不要用彩釉陶瓷制品盛装酸性食物和饮料;蔬菜水果食用前要洗净,能去皮的要去皮;平时多吃柠檬、卷心菜、海藻、海参、草鱼、柿子和大蒜等蔬菜、水果,以利于解毒、排铅。

2.汞中毒

20世纪50年代初,在日本九州岛南部熊本县的一个叫水俣镇的地方,出现了一些患口齿不清、面部发呆、手脚发抖、精神失常的病人,这些病人经久治不愈,就会全身弯曲,悲惨死去。这个镇有4万居民,几年中先后有1万人不同程度的患有此种病,其后附近其他地方也发现此类病症。经数年调查研究,于1956年8月由日本熊本国立大学医学院研究报告证实,这是由于居民长期食用了八代海水俣湾中含有汞的海产品所致,该事件被认为是一起重大的工业灾难。

汞也称水银,是我们常用的温度表里显示多少度的银白色金属,它是一种剧毒的重金属,具有较强的挥发性。汞对于生物的毒性不仅取决于它的浓度,而且与汞的化学形态以及生物本身的特征有密切关系。一般认为,汞是通过海洋生物体表(皮肤和鳃)的渗透或摄入含汞的食物进入体内的。汞进入海洋的主要途径是工业废水、含汞农药的流失以及含汞废气的沉降。此外,含汞的矿渣和矿浆也是其来源之一。

科学试验证实,人体血液中汞的安全浓度为1微克/10毫升,当到达5~10微克/10毫升时,就会出现明显中毒症状。经计算,如果一个人每天食用200克含汞0.5毫克/千克的鱼,人体所摄入的汞量恰好在此安全范围内。然而,经测定水俣湾的海产品汞的含量高达每千克几十毫克,已大大超标。此外,人们每天还要搭配其他食品,其中也可能含有一定量的汞,这样全天摄入的总量就更是大大超过安全限度标准了。

汞极易于由环境中的污染物通过各种途径对食品造成污染,直接影响人们的饮食安全,危害人体的健康。汞是蓄积作用较强的元素,主要在动物体内蓄积。湖泊、沼泽中的水生植物、水产品易蓄积大量的汞。鱼是汞的天然浓缩器,鱼龄越大,体内蓄积的汞就越多。20世纪50年代后期,农业上使用含汞杀螨剂以来,汞对土壤、自然水系、大气的污染日益严重。工厂排放含汞的废水,是水体污染的主要来源。我国生活饮用水水质卫生标准规定汞不超过0.001毫克/升。

3.镉污染

20世纪初期开始,人们发现日本中部地区的富山县水稻普遍生长不良。1931年又出现了一种怪病,患者大多是妇女,病症表现为腰、手、脚等关节疼痛。病症持续几年后,患者全身各部位会发生神经痛、骨痛现象,行动困难,甚至呼吸都会带来难以忍受的痛苦。到了患病后期,患者骨骼软化、萎缩,四肢弯曲,脊柱变形,骨质松脆,就连咳嗽都能引起骨折。患者不能进食,疼痛无比,常常大叫“痛死了!”“痛死了!”有的人因无法忍受痛苦而自杀。这种病由此得名为“骨痛病”或“痛痛病”(Itai?Itai Disease)。1946—1960年,日本医学界从事综合临床、病理、流行病学、动物实验和分析化学的人员经过长期研究后发现,“骨痛病”是由于神通川上游的神冈矿山废水引起的镉中毒。据记载,由于工业的发展,富山县神通川上游的神冈矿山从19世纪80年代成为日本铝矿、锌矿的生产基地。神通川流域从1913年开始炼锌,“骨痛病”正是由于炼锌厂排放的含镉废水污染了周围的耕地和水源而引起的。

镉是重金属,是对人体有害的物质。人体中的镉主要是由于被污染的水、食物、空气通过消化道与呼吸道摄入体内的,大量积蓄就会造成镉中毒。神冈的矿产企业长期将没有处理的废水排放注入神通川,致使高浓度的含镉废水污染了水源。用这种含镉的水浇灌农田,稻秧生长不良,生产出来的稻米成为“镉米”。“镉米”和“镉水”把神通川两岸的人们带进了“骨痛病”的阴霾中。1961年,富山县成立了“富山县地方特殊病对策委员会”,开始了国家级的调查研究。1967年研究小组发表联合报告,表明“骨痛病”主要是由于重金属尤其是镉中毒引起的。1968年开始,患者及其家属对金属矿业公司提出民事诉讼,1971年审判原告胜诉。被告不服上诉,1972年再次判决原告胜诉。

环境中的镉可通过水生生物的养殖进入食品。作物的根系可吸收土壤中的镉,镉污染地区的蔬菜粮食等食物中的镉含量远高于无污染地区。镉在人体积蓄作用,潜伏期可长达10~30年。镉被人体吸收后,在体内形成镉硫蛋白,选择性地蓄积于肾、肝中。其中,肾脏可吸收进入体内近1/3的镉,是镉中毒的“靶器官”。其他脏器如脾、胰、甲状腺和毛发等也有一定量的蓄积。镉在体内可与含羟基、氨基、硫基的蛋白质分子结合,使许多酶系统受到抑制,从而影响肝、肾器官中酶系统的正常功能。由于镉损伤肾小管,病者出现糖尿、蛋白尿和氨基酸尿。特别是使骨骼的代谢受阻,造成骨质疏松、萎缩、变形等一系列症状。

平时多饮水,多喝淡盐水,多吃紫菜、海带,有利于防治镉中毒。根据世界卫生组织的建议,每人每周接触的镉不应超过每千克体重7微克。各国对工业排放“三废”中的镉都做出了极为严格的规定。应注意呼吸系统或肾脏损害为主的临床表现和尿镉测定,以及早诊断和排除镉中毒,并给予积极的处理。

4.有害的砷

砷污染中毒事件或导致的公害病(慢性砷中毒)已屡见不鲜。如在英国曼彻斯特因啤酒中添加含砷的糖,造成6000人中毒和71人死亡。日本森永奶粉公司,因使用含砷中和剂,引起12100多人中毒,130人因脑麻痹而死亡。典型的慢性砷中毒在日本宫崎县吕久砷矿附近,因土壤中含砷量高达300~838毫克/千克,致使该地区小学生慢性中毒。日本岛根县谷铜矿山居民也有慢性中毒患者。我国规定居民区大气砷的日平均浓度为3微克/立方米,饮用水中砷最高容许浓度为0.04毫克/升,地表水包括渔业用水为0.04毫克/升。

作为氮家族的一员,砷是无臭无味的半金属,自然存在于岩石和土壤中。它可以与其他元素合成有机和无机砷,而后者毒性更强,在水中更常见。含砷废水、农药及烟尘都会污染土壤。砷在土壤中累积并由此进入农作物组织中。砷对农作物产生毒害作用最低浓度为3毫克/升,对水生生物的毒性亦很大。砷和砷化物一般可通过水、大气和食物等途径进入人体,造成危害。

砷进入人体内被吸收后,破坏了细胞的氧化还原能力,影响细胞正常代谢,引起组织损害和机体障碍,可直接引起中毒死亡。如果将砷作用于人体局部,最初有刺激症状,久之出现组织坏死。砷对黏膜具有刺激作用,可直接损害毛细血管。经黏膜(包括阴道)或皮肤吸收的砷及化合物,主要沉积在毛发、指甲、骨、肝和肾等器官。常人服入三氧化二砷0.01~0.05克,即可中毒,出现中毒症状;服入0.06~0.2克,即可致死;在含砷化氢为1毫克/升的空气中,呼吸5~10分钟,可发生致命性中毒。世卫组织认为,长期饮用含砷量超过10毫克/升的水可导致砷中毒,这是一种导致皮肤紊乱、坏疽以及肾癌和膀胱癌的慢性病。

由于砷与毛发、指甲皮肤的角化组织有亲和力,无论是慢性砷中毒或急性砷中毒,只要其中毒后尚存活一周以上,便可从毛发中发现较多含量的砷。而头发中的微量元素与人血中的成分比较相似,它能准确地反映出人体内部新陈代谢的状况。而血液的各种成分都是来自周围环境以及在此环境中产生的食物。

对于砷中毒者可用二巯基丙磺酸钠或二巯基丁二酸钠等解毒药对症治疗。治理砷污染,首先不要将高砷水用来灌溉,其次不要让在受到砷污染的土壤上种植的植物进入食物链。对于已经受到污染的土壤,可以用植物来进行环境修复。

总的来说,控制重金属对食品的污染首先要从源头上把关,严格控制工业“三废”和城市生活垃圾对农业环境的污染。其次,加快推行标准化生产,加强农产品质量安全关键控制技术研究与推广,加大无公害农产品生产技术标准和规范的实施力度。第三,加强食品安全监督与检验,强化质量管理,完善食品安全检验检测体系。另外,还要加强食品安全教育,提高公众环保意识,加强群众监督,共同保护自然生态环境,维护人体健康。

阅读全文

与重金属废水0排放相关的资料

热点内容
厕所污水ph如何测 浏览:975
用隔奶垫会回奶吗 浏览:193
污水酸碱度检测的重要性 浏览:686
净水机为什么要加消毒液 浏览:436
pcb电镀哪些设备需要排污水 浏览:987
三合一过滤要24小时开 浏览:702
玻璃钢树脂瓦防火吗 浏览:352
净水器反渗透 浏览:776
村里饮水机的水怎么感觉苦呢 浏览:956
某污水处理厂葡萄糖投加试验 浏览:388
和森活净化器远程控制怎么设置 浏览:793
不饱和聚酯树脂延时加固化 浏览:91
日本核污水对中国哪些城市有影响 浏览:964
渗透汽化膜技术处理废水 浏览:867
农村每人每天用水量和污水量 浏览:935
柠檬酸除垢剂清除管道 浏览:385
反渗透入口铁含量 浏览:501
上海水质超滤膜 浏览:626
柠檬酸除垢剂可以洗银壶 浏览:644
银川第五污水处理厂规模 浏览:571