1. 肥料厂污水含有哪些物质
化肥厂废水中常见的主要超标污染物指标为和总氰化物、硫化物、氨氮,废水水质回具有氨氮答含量高并且含有毒的总氰化物及硫化物。
氨氮是引起水体富营养化和污染环境的重要污染物质,国内几乎所有受到污染的水域中,氨氮都是主要的污染物之一。水体富营养化已经危害到农业、水产养殖业、旅游业等多行业,也对人们饮用水卫生和食品安全构成了很大的威胁。水体富营养化已经成为影响我国经济发展的重要因素。化肥工业废水中常含有高浓度氨氮,是废水中氨氮主要来源之一。
2. 废水中有机氯和氨氮的来源有哪些
废水中的有机氯和氨氮通常来自以下几个方面:
1. 工业废水:工业生产过程中,许多有机物和含氮废水都可能含有有机氯化合物和氨氮化合物,这些废水排放到环境中可能对环境产生不良影响。
2. 农业污染:农业生产中使用的化肥、农药等可能会在土壤和地下水的过程中转化为含有氨氮和有机氯的污染物。
3. 化学品制造:一些制造工艺需要使用含氯有机物,如果加工和处理不当,这些物质可能泄漏到环境中。
4. 市区污水:市册缺旁区污水州橡也可能包含有机氯和氨氮,这主要是因为人体代谢废物会释放出少量的该类污染物。
针对以上来源渠道,我们需要采取扮瞎适当的管理方法,控制废水的排放,并加强治理措施以减少环境污染。
3. 水体污染主要来源有哪些
水污染主要是由人类活动产生的污染物造成,它包括工业污染源,农业污染源和生活污染源三大部分。
工业废水是水域的重要污染源,具有量大、面积广、成分复杂、毒性大、不易净化、难处理等特点。
农业污染源包括牲畜粪便、农药、化肥等。农药污水中,一是有机质、植物营养物及病原微生物含量高,二是农药、化肥含量高。
农业污染源包括牲畜粪便、农药、化肥等。农药污水中,一是有机质、植物营养物及病原微生物含量高,二是农药、化肥含量高。
危害:
水体污染影响工业生产、增大设备腐蚀、影响产品质量,甚至使生产不能进行下去。水的污染,又影响人民生活,破坏生态,直接危害人的健康,损害很大。
多年来,中国水资源质量不断下降,水环境持续恶化,由于污染所导致的缺水和事故不断发生,不仅使工厂停产、农业减产甚至绝收,而且造成了不良的社会影响和较大的经济损失,严重地威胁了社会的可持续发展,威胁了人类的生存。
4. 农业污水的主要来源
其来源主要有农田径流、饲养场污水、农产品加工污水。污水中含有各种病原体、悬浮物专、化肥、农属药、不溶解固体物和盐分等。农业污水数量大、影响面广。污水中氮、磷等营养元素进入河流、湖泊、内海等水域,可引起富营养化;农药、病原体和其他有毒物质能污染饮用水源,危害人体健康;造成大范围的土壤污染,破坏生态系统平衡。为防治农业污水,目前主要是减少农田径流。
5. 农业污水的来源概括
农田径流
雨水或灌溉水流过农田表面后排出的水流,是农业污水的主要来源。农田径流中主要含有氮、磷、农药等污染物。
①氮:施用于农田而未被植物吸收利用或未被微生物和土壤固定的氮肥,是农田径流中氮素的主要来源。化肥以硝态氮和亚硝态氮形态存在时,尤其容易被径流带走(见化肥污染)。农田径流中的氮素还来自土壤的有机物、植物残体和施用于农田的厩肥等。一般土壤中全氮含量为0.075~0.3%,以表土层厚15厘米计,全氮含量每公顷为1500~6000公斤,每年矿化的氮每公顷约30~60公斤。不同地区和不同土壤上农田径流的含氮量有较大的差别。如英国田间排水中含铵态氮0.5毫克/升,硝态氮17毫克/升,每年径流量以100毫米计,铵态氮每公顷为0.5公斤,硝态氮为17公斤。瑞典农田径流中含铵态氮0.09毫克/升,硝态氮4.1毫克/升。有些地区硝态氮为20~40毫克/升,甚至达81.6毫克/升。
②磷:土壤中全磷量为0.01~0.13%,水溶性磷为0.01~0.1ppm。土壤中的有机磷是不活动的,无机磷也容易被土壤固定。荷兰海相沉积粘土农田径流中含磷约0.06毫克/升,河流沉积物粘土农田径流中含磷约0.04毫克/升,从挖掘过泥炭的有机质含量丰富的土壤流出的径流中含磷量约0.7毫克/升,水稻田因渍水可使土壤中可溶性磷量增加,每年失磷较多,每公顷约为0.53公斤。
土壤中的氮、磷等营养元素,可随水和径流中的土壤颗粒流失。大部分耕地含磷0.1%、氮0.1~0.2%、碳1~2%,因此,农田土壤侵蚀1毫米,每公顷土壤的径流中有磷10公斤、氮10~20公斤和碳100~200公斤。
③农药:农田径流中农药的含量一般不高,流失量约为施药量的5%左右。如施药后短期内出现大雨或暴雨,第一次径流中农药含量较高。水溶性强的农药主要在径流的水相部分;吸附能力强的农药(如 2,4-D、三嗪等)可吸附在土壤颗粒上,随径流中的土壤颗粒悬浮在水中。
饲养场污水
牲畜、家禽的粪尿污水是农业污水的第二个来源。饲养场污水可作为厩肥,但是工业发达的国家往往弃置不用,造成环境污染问题。作为厩肥使用,大都采用面施的方法,如果厩肥中大量可溶性碳、氮、磷化合物还未与土壤充分发生作用前就出现径流,也会造成比化肥更严重的污染。目前,对于厩肥还没有完善的检测方法确定其营养元素的释放速度,以推算合理的用量和时间。因而,这类的径流污染是难以避免的。
饲养场牲畜粪尿的排泄量大,用未充分消毒灭菌的粪尿水浇灌菜地和农田,会造成土壤污染;粪尿被雨水流冲到河溪塘沟,会造成饮用水源污染。在饲养场临近河岸和冬季土地冻结的情况下,这种污水对周围水生、陆生生态系统的影响更大。
农产品加工污水
水果、肉类、谷物和乳制品的加工,以及棉花基本染色、造纸、木材加工等工业排出的污水是农业污水的第三个来源。在发达国家农产品加工污水量相当大,如美国食品工业每年排放污水约25亿吨,在各类污水中居第五位。
6. 养猪场的粪水是什么污水
养猪场的粪水是一种有机废水,主要来源于猪的粪便和尿液。它含有大量的氨氮、有机物、磷、钾等营养成分,但也含有大量的细菌、病毒和寄生虫等有害穗哗物质。如果不经过处理直接排放,会对环境造成污染和危害。
养猪场的粪水处理一直是一个难题,传统的处理方法往往存在着处理效果不佳、成本高昂等问题。而微生物技术则成为了一种新的解决方案,其处理效果显著,成本也较低,因此在养猪场中得到了广泛应用。
微生物技术是利用微生物的生物代谢作用,将有机废弃物转化为有碧迹用的物质的一种技术。在养猪场的粪水处理中,微生物技术主要采用了微生物菌剂的投放,通过菌剂中的微生物对粪水进行分解降解,从而达到净化水质的目的。
相比传统的处理方法,微生物技猜慧行术的处理效果更好。首先,微生物技术能够将粪水中的有机物质降解为无机物质,从而减少了对环境的污染。其次,微生物技术能够有效去除粪水中的氨氮、硫化氢等有害物质,从而保障了养猪场周边的环境质量。最后,微生物技术还能够提高粪水的肥效,将其转化为有机肥料,从而为农业生产提供了重要的资源。
除了处理效果好之外,微生物技术还具有成本低廉的优势。微生物菌剂的投放成本相对较低,同时微生物技术的处理过程也不需要过多的人力和物力投入,因此在养猪场中得到了广泛应用。
综上所述,养猪场的粪水用微生物技术处理效果确实很好。微生物技术能够有效净化水质,去除有害物质,同时还能够提高粪水的肥效,为农业生产提供了重要的资源。因此,未来微生物技术将会在养猪场的粪水处理中得到更广泛的应用。
7. 废水中有哪些有机物
总体上分为颗粒状有机物和溶解性有机物,颗粒状有机物在普通显微镜下可以观察到,它包括有生命的有机体(浮游动植物、细菌菌团等)和无生命的有机物颗粒,后者在水中可逐渐沉降。溶解性有机物包括真溶液状态和胶体状态两种,又可分为类脂物质、氨基酸、烃类、碳水化合物、维生素及腐殖质等。主要的有机物有以下几种:(1)碳水化合物 天然水体中的碳水化合物包括各种单糖和复杂的多糖类,海水中碳水化合物的总浓度为200-600ug*L-1。天然水中碳水化合物主要来源于浮游植物的光合作用,它是许多微生物和水生生物的营养物,易被分解,其水解产物为五碳糖和六碳糖;(2)腐殖质 在天然水域和土壤中,尤其是泥碳和腐泥中,广泛存在着分子组成复杂、性质较为稳定、而化学成分不十分确定的一类有机化合物,通常称为腐殖质,显然是多种物质的综合体,它们中大部分的成分和结构至今尚不十分清楚,有些研究者认为,由于成因不同海水和淡水中腐殖质有所差异。但是这类物质基本均是动植物尸体经过一系列物理、化学和生物过程形成的。腐殖质通常可以看作是低聚物(相对分子质量为300-30000),含有酚羟基和羟基,有较低数量的脂族羟基。根据其在碱x性和酸性溶液中的溶解度,腐殖质通常划分为以下三种:①腐殖酸,在碱性溶液中溶解,但酸化后即沉淀;②富里酸,这是腐殖质中在酸化水溶液中存在的部分,也是在整个pH范围内都溶解的部分;③腐黑物,以酸或碱都不能提取的部分。这三种腐殖质结构相似,但相对分子质量和官能团含量不同,富里酸相对分子质量可能低于腐殖酸和腐黑物,但亲水基团较多。Schnitzer根据分级分离和降解研究指出,富里酸是由酚和苯羧酸以氢键结合而成,形成聚合物结构,具有相当的稳定性。子对河水中腐殖酸盐的凝聚作用有关。
(3)类脂化合物 类脂化合物是能被非极性或弱极性有机溶剂萃取的组分,如长链脂肪酸、脂肪酸酯或蜡酯、长链醇、磷脂、甾族化合物等,萃取时,虽然烃类可同时被萃取,但习惯上将它们另归一类。
(4)含氮有机物 水体中含氮有机物主要是氨基酸和多肽,氨基酸是蛋白质的基本组成单元,其主要来源于浮游生物的代谢和分解产物,它能为异养微生物提供有机物质和能源,通常存在于淡水、海水中的是低分子量的氨基酸(如甘氨酸,丙氨酸和丝氨酸等),总氨基酸含量一般为10-100ug/L。此外水体中存在的含氮化合物还有尿素、嘌
呤和尿嘧啶等,它们也是水生生物的降解产物。
(5)烃类 烃类能与类脂物同时被有机溶剂萃取,在环境污染的监测中,水体中烃类有其特殊的重要性。石油烃类的存在与人类活动有关,进入水体中的石油可导致水体缺氧,从而造成对生物的威胁,而卤代烃类农药和多氯联苯是人工合成物,而自然界中又不存在分解这些化合物的酶类,因此它们在水体中滞留时间很长,不易被分解,具有很高的生物毒性。
(6)维生素 在天然水体中已检出的维生素有硫胺素(维生素B1)、钴胺素(维生素B12)和生物素(维生素H),它们在水体中的含量极微,但与生物生长关系十分密切。(7)其它化合物 除了上述几种主要化合物外,在水体中已检出的还有丙酮、丁酮、甲乙酮、丁醛、糠醛、核酸、甲烷、乙烷、丙烷、乙酸乙酯和某些刺激素和生长抑制剂等有机化合物。