导航:首页 > 污水知识 > uv1200测量废水总氮

uv1200测量废水总氮

发布时间:2024-07-09 12:59:35

1. 制药厂污水排放化学需氧量和总氮超标如何处理

一、制药废水的处理方法
制药废水的处理方法可归纳为以下几种:物化处理、化学处理 、生化处理 以及多种方法的组合处理等,各种处理方法具有各自的优势及不足。下面就来为大家详细介绍各种处理方法以及工艺的选择。
物化处理
根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。
(1) 混凝法
该技术是目前国内外普遍采用的一种水质处理方法,它被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展[3]。刘明华等[4]以其研制的一种高效复合型絮凝剂F-1处理急支糖浆生产废水,在 pH为6.5, 絮凝剂用量为300 mg/L时,废液的COD、SS和色度的去除率分别达到69.7%、96.4%和87.5%,其性能明显优于PAC(粉末活性炭)、聚丙烯酰胺(PAM)等单一絮凝剂。
(2) 气浮法
气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。
(3) 吸附法
常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示, 吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。
(4) 膜分离法
膜技术包括反渗透纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。朱安娜等采用纳滤膜对洁霉素废水进行分离实验,发现既减少了废水中洁霉素对微生物的抑制作用,又可回收洁霉素。
(5) 电解法
该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。李颖[8]采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。
化学处理
应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。
(1) 铁炭法
工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。楼茂兴等采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%,最终出水达到国家《污水综合排放标准》(GB8978—1996)一级标准。
(2) Fenton试剂处理法
亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大加强。以TiO2为催化剂,9 W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05 mg/L降至0.41 mg/L。
(3)氧化法
采用该法能提高废水的可生化性,同时对COD有较好的去除率。如Balcioglu等对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。
(4) 氧化技术
又称高级氧化技术,它汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果,主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。肖广全等[13]用超声波-好氧生物接触法处理制药废水,在超声波处理60 s,功率200 w的情况下,废水的COD总去除率达96%。
生化处理
生化处理技术是目前制药废水广泛采用的处理技术,包括好氧生物法、厌氧生物法、好氧-厌氧等组合方法。
(1) 好氧生物处理
由于制药废水大多是高浓度有机废水,进行好氧生物处理时一般需对原液进行稀释,因此动力消耗大,且废水可生化性较差,很难直接生化处理后达标排放,所以单独使用好氧处理的不多,一般需进行预处理。常用的好氧生物处理方法包括活性污泥法、深井曝气法、吸附生物降解法(AB法)、接触氧化法、序批式间歇活性污泥法(SBR法)、循环式活性污泥法(CASS法)等。
1.1深井曝气法
深井曝气是一种高速活性污泥系统,该法具有氧利用率高、占地面积小、处理效果佳、投资少、运行费用低、不存在污泥膨胀、产泥量低等优点。此外,其保温效果好,处理不受气候条件影响,可保证北方地区冬天废水处理的效果。东北制药总厂的高浓度有机废水经深井曝气池生化处理后,COD去除率达92.7%,可见用其处理效率是很高的,而且对下一步的治理极其有利,对工艺治理的出水达标起着决定性作用。
1.2AB法
AB法属超高负荷活性污泥法。AB工艺对BOD5、COD、SS、磷和氨氮的去除率一般均高于常规活性污泥法。其突出的优点是A段负荷高,抗冲击负荷能力强,对pH和有毒物质具有较大的缓冲作用,特别适用于处理浓度较高、水质水量变化较大的污水。杨俊仕等采用水解酸化-AB生物法工艺处理抗生素废水,工艺流程短,节能,处理费用也低于同种废水的化学絮凝-生物法处理方法。
1.3生物接触氧化法
该技术集活性污泥和生物膜法的优势于一体,具有容积负荷高、污泥产量少、抗冲击能力强、工艺运行稳定、管理方便等优点。很多工程采用两段法,目的在于驯化不同阶段的优势菌种,充分发挥不同微生物种群间的协同作用,提高生化效果和抗冲击能力。在工程中常以厌氧消化、酸化作为预处理工序,采用接触氧化法处理制药废水。哈尔滨北方制药厂采用水解酸化-两段生物接触氧化工艺处理制药废水,运行结果表明,该工艺处理效果稳定、工艺组合合理。随着该工艺技术的逐渐成熟,应用领域也更加广泛。
1.4SBR法
SBR法具有耐冲击负荷强、污泥活性高、结构简单、无需回流、操作灵活、占地少、投资省、运行稳定、基质去除率高、脱氮除磷效果好等优点,适合处理水量水质波动大的废水。用SBR工艺处理制药废水的试验表明:曝气时间对该工艺的处理效果有很大影响;设置缺氧段,尤其是缺氧与好氧交替重复设计,可明显提高处理效果;反应池中投加PAC的SBR强化处理工艺,可明显提高系统的去除效果。近年来该工艺日趋完善,在制药废水处理中应用也较多,采用水解酸化-SBR法处理生物制药废水,出水水质达到GB8978-1996一级标准。
(2)厌氧生物处理
目前国内外处理高浓度有机废水主要是以厌氧法为主,但经单独的厌氧方法处理后出水COD仍较高,一般需要进行后处理(如好氧生物处理)。目前仍需加强高效厌氧反应器的开发设计及进行深入的运行条件研究。在处理制药废水中应用较成功的有上流式厌氧污泥床(UASB)、厌氧复合床(UBF)、厌氧折流板反应器(ABR)、水解法等。
2.1UASB法
UASB反应器具有厌氧消化效率高、结构简单、水力停留时间短、无需另设污泥回流装置等优点。采用UASB法处理卡那霉素、氯酶素、VC、SD和葡萄糖等制药生产废水时,通常要求SS含量不能过高,以保证COD去除率在85%~90%以上。二级串联UASB的COD去除率可达90%以上。
2.2UBF法
买文宁等将UASB和UBF进行了对比试验,结果表明,UBF具有反应液传质和分离效果好、生物量大和生物种类多、处理效率高、运行稳定性强的特征,是实用高效的厌氧生物反应器。
2.3水解酸化法
水解池全称为水解升流式污泥床(HUSB),它是改进的UASB。水解池较之全过程厌氧池有以下优点:不需密闭、搅拌,不设三相分离器,降低了造价并利于维护;可将污水中的大分子、不易生物降解的有机物降解为小分子、易生物降解的有机物,改善原水的可生化性;反应迅速、池子体积小,基建投资少,并能减少污泥量。近年来,水解-好氧工艺在制药废水处理中得到了广泛的应用,如某生物制药厂采用水解酸化-二段式生物接触氧化工艺处理制药废水,运行稳定,有机物去除效果显著,COD、BOD5和SS的去除率分别为90.7%、92.4%和87.6%。
(3) 厌氧-好氧及其他组合处理工艺
由于单独的好氧处理或厌氧处理往往不能满足要求,而厌氧-好氧、水解酸化-好氧等组合工艺在改善废水的可生化性、耐冲击性、投资成本、处理效果等方面表现出了明显优于单一处理方法的性能,因而在工程实践中得到了广泛应用。如某制药厂采用厌氧-好氧工艺处理制药废水,BOD5去除率达98%,COD去除率达95%,处理效果稳定;采用微电解-厌氧水解酸化-SBR工艺处理化学合成制药废水,结果表明,整个串联工艺对废水水质、水量的变化具有较强的耐冲击能力,COD去除率可达86%~92%,是处理制药废水的一种理想的工艺选择;在对医药中间体制药废水的处理中采用水解酸化-A/O-催化氧化-接触氧化工艺,当进水COD为12 000 mg/L左右时,出水COD达300 mg/L以下;采用生物膜-SBR法处理含生物难降解物的制药废水,COD的去除率能达到87.5%~98.31%,远高于单独的生物膜法和SBR法的处理效果。
此外,随着膜技术的不断发展,膜生物反应器(MBR)在制药废水处理中的应用研究也逐渐深入。MBR综合了膜分离技术和生物处理的特点,具有容积负荷高、抗冲击能力强、占地面积小、剩余污泥量少等优点。采用厌氧-膜生物反应器工艺处理COD为25 000 mg/L的医药中间体酰氯废水,系统对COD的去除率均保持在90%以上;利用专性细菌降解特定有机物的能力,首次采用了萃取膜生物反应器处理含3,4-二氯苯胺的工业废水,HRT为2 h,其去除率达到99%,获得了理想的处理效果。尽管在膜污染方面仍存在问题,但随着膜技术的不断发展,将会使MBR在制药废水处理领域中得到更加广泛的应用。
二、制药废水的处理工艺及选择
制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的SS、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。
预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具体工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理-厌氧-好氧-(后处理)组合工艺。采用水解吸附—接触氧化—过滤组合工艺处理含人工胰岛素等的综合制药废水,处理后出水水质优于GB8978-1996的一级标准。气浮-水解-接触氧化工艺处理化学制药废水、复合微氧水解-复合好氧-砂滤工艺处理抗生素废水、气浮-UBF-CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。
三、制药废水中有用物质的回收利用
推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明显经济效益;某高科技制药企业用吹脱法处理甲醛含量极高的生产废水,甲醛气体经回收后可配成福尔马林试剂,亦可作为锅炉热源进行焚烧。通过回收甲醛使资源得到可持续利用,并且4~5年内可将该处理站的投资费用收回,实现了环境效益和经济效益的统一。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。
四、结语
关于处理制药废水的研究已有不少报道,但由于制药行业原料及工艺的多样性,排放的废水水质千差万别,所以制药废水并没有成熟统一的治理方法,具体选择哪种工艺路线取决于废水的性质。根据该废水的特点,一般应通过预处理以提高废水的可生化性并初步去除污染物,再结合生化处理。目前,开发经济、有效的复合水处理单元是亟待解决的问题。同时,应加强清洁生产的研究,并在处理前期考虑废水是否有回收利用的价值和适当的途径,以达到经济效益和环境效益的统一。
更多污水处理技术文章参考易净水网http://www.ep360.cn/

2. 我国水污染情况及监测方法简述

(1) 污染源烟尘(粉尘)在线监测仪 用于在线监测污染源烟尘、工艺粉尘排放量(浓度或总量),包括测量相关参数:流量、O2、含湿量、温度等,是实现污染源排放总量监测的必备监测仪器。 (2) 烟气SO2、NOx在线监测仪 用于在线监测烟气中SO2、NOx含量,通过流量测量,实现总量监测。 (3) 环境空气地面自动监测系统 该系统用于空气质量周报、日报监测,主要监测项目有:SO2、NOx、CO、O3、PM10等。 (4) 酸雨自动采样器 自动采集降水样品,以便测定降水的pH值。 (5) PM10采样器 用于采集环境空气中空气动力学当量直径10μm以下的颗粒物。 (6) 固定和便携式机动车尾气监测仪 用于测定机动车排放尾气中CH、CO等含量。 2、污染源和环境水质监测仪器: (1) 污染源在线监测仪器 污染物排放的总量监测要求浓度与流量同步连续监测,在线测流和比例采样是总量监测的基本技术手段,对于重点污染源还需要配备在线监测仪器。 (2) 流量计 用于规范化的明渠污水排放口流量的在线连续监测仪器。 (3) 自动采样器 用于污染源排放口具有流量比例和时间比例两种方式的在线自动采样装置。 (4) 在线监测仪器 用于工业污染源或污水排放口的在线测分析仪器。监测主要项目有:COD、TOC、UV、NH4+-N、NO3-N、氰化物、挥发酚、矿物油、pH等,应具有自动校正和自动冲洗管路功能。 (5) 环境水质自动监测仪器 用于地表水环境质量指标的在线自动监测仪器。水质自动监测项目分为水质常规五参数和其它项目,水质常规五参数包括温度、pH、溶解氧(DO)、电导率和浊度,其它项目包括高锰酸盐指数、总有机碳(TOC)、总氮(TN)、总磷(TP)及氨氮(NH3-N)。 (6) 总有机碳(TOC)测定仪 总有机碳(TOC)是反应水体有机物含量的指标,可用于污染源或地表水的监测。 3、便携式现场应急监测仪器 便携式现场应急监测仪器,用于突发性环境污染事故监测,其主要特点为小型、便于携带及快速监测。 (1) 便携式分光光度计 用于现场监测的便携式分光光度计,测试组件一般包括氰化物、氨氮、酚类、苯胺类、砷、汞及钡等毒性强的项目。 (2) 小型有毒有害气体监测仪 用于现场有毒有害气体监测的小型便携式仪器,主要监测项目有CO、Cl2、H2S、SO2及可燃气监测等。 (3) 简易快速检测管 用于快速定量或半定量检测水中或空气中有害成分的现场用简易装置,主要监测项目有CO、Cl2、H2S、SO2、可燃气、氨氮、酚、六价铬、氟、硫化物及COD等。 4、电磁辐射和放射性监测仪器 (1) 全向宽带场强仪 用于测量某频率范围内的综合电磁场强。 (2) 频谱仪 用于测量不同频率电磁辐射的场强及谱分布。 (3) 工频场强仪 用于测量50HZ工频电磁场强度。 (4) 大面积屏栅电离室α谱仪 测量环境介质中α放射性核素的浓度。 (5) 全身计数器 用于监测职业工作者或公众的全身污染情况。 (6) 环境辐射剂量率仪 用于监测环境贯穿辐射水平。 四、重点研究的环境监测仪器和环境标准样品 1、环境遥感监测系统。用于监测大范围的环境污染状况与生态环境状况。如监测河上、海上溢油;监测各排污口排污状况;远距离监测污染源烟尘、烟气排放情况以及发生赤潮的面积、程度等。实现环境预报监测。 2、有机污染物自动连续监测系统。 3、光化学烟雾监测系统。 4、有机物环境标准样品(①挥发性卤代烃混合标样,②挥发性芳香烃混合标样,③多环芳烃混合标样,④苯胺类混合标样,⑤酞酸酯类混合标样,⑥有机磷农药混合标样,⑦有机氯农药混合标样,⑧含N、含P的有机农药混合标样,⑨半挥发性有机物混合标样,⑩挥发性有机物混合标样)等。 5、PM2.5采样器。 五、 发展环境监测仪器的政策措施 1、发展环境监测仪器及其设备是实现监测技术现代化,为环境保护和经济可持续发展提供准确信息的重要保证,国家鼓励研制开发和生产国家所需的监测仪器设备。 2、加强对环境监测仪器的开发和生产的宏观引导,加强对环境监测技术、监测仪器发展趋势的调查研究,适时制订环境监测仪器的发展规划和技术政策,明确环境监测的的需求和方向,指导和规范环境监测仪器的发展。 3、加强环境监测仪器的标准化工作。环境监测仪器是环境监测工作的物质基础,为保证环境监测数据的科学、准确、可比,应加强环境监测仪器标准的制订工作。将环境监测仪器标准纳入环境保护标准体系,与环境监测规范、环境分析、检测方法的制订工作统一规划,协调进行。通过制订统一的标准引导环境监测仪器的技术进步。 4、加强对环境监测仪器的监督管理,建立一批具有良好的技术基础和权威性的技术中介机构,对环境监测仪器的技术水平和质量状况进行检测,并向社会公布。对在环境监测中用于执法监测的环境监测专用仪器实行“准入”制度。 5、加强环境监测仪器的技术创新工作,加大对环境保护工作急需的监测技术的科研投入,把环境监测技术的开发列入环境科研重点领域。借助国家各种扶持政策,推进环境监测仪器的产业化和技术升级。 6、促进监测仪器科研与生产结合,鼓励环境监测仪器生产企业、大学和科研机构采取多种方式开展技术合作,加快环境监测技术的成果转化。 7、走引进、消化、吸收和国产化的道路。对我国目前生产技术落后,国外已有先进的成套技术的监测仪器,鼓励引进国外的关键技术,合资生产,再逐步实现国产化。 8、利用市场调控手段,促进环境监测仪器生产企业的重新组合,逐步改变监测仪器生产技术薄弱、投资分散、低水平重复、市场竞争力低的状况,实现适度规模化集约化生产,形成一批监测仪器生产的骨干企业。 9、根据环境监测能力建设规划,制订环境监测工作的相应法规,逐步在一些大中城市建立区域性的环境质量和污染源监测的自动化网络系统。通过组织实施环境监测自动化网络建设的示范工程,带动自动化环境监测网络系统的形成。扩大环境监测仪器设备的市场需求。 附:环境监测仪器分类 附件: 环境监测仪器分类 按使用领域环境监测用主要仪器设备分以下几类: 1、空气质量与污染源废气监测专用仪器: TSP采样器(大、中流量) PM10采样器(大、中流量)* PM2.5采样器** 粗(PM2.5-10)细(PM〈2.5)颗粒物双道采样器 空气颗粒物分级采样器 粉尘采样器 酸雨自动采样器* 气体采样器 气体监测仪(SO2、NOx、CO、O3、HCl、Cl2、CH等) 环境空气地面自动监测系统* 烟尘采样器 烟气采样器 烟尘在线自动监测系统* 烟气SO2在线自动监测系统* 烟气NOx在线自动监测系统* 烟气参数O2、湿度、压力、流速等在线自动监测系统 区域(如机场、交通干线、工业区)及重点污染源(如电厂、冶炼厂、建材厂的烟囱)连续监测系统**汽车尾气监测仪* 光化学烟雾监测系统** 2、环境水质与污水监测专用仪器: 水质采样器 污水采样器 COD测定仪 BOD5测定仪 油份浓度仪 溶解氧测定仪 色度计 浊度计 盐度计 总有机碳(TOC)测定仪* 总氮测定仪 总磷测定仪 氨测定仪 氰化物测定仪 游离氯测定仪 环境水质的自动监测系统* 污水测流和在线连续监测系统* 有机污染物自动连续监测系统** 3、环境污染事故应急监测仪器: 便携式气相色谱仪(带PID检测器,可在野外现场监测大部分有机污染物) 车载式X射线-荧光光谱仪(可用于土壤、固废现场金属污染调查) 车载式GC_MS仪 便携式分光光度计* 有毒有害气体监测器(Cl2、CO、可燃气、CH4、苯系物等)* 报警装置(CO、CH4、Cl2、H2S、汽油泄漏等) 简易快速检测管* 快速BOD测定仪 便携式溶解氧测定仪 流动监测车 4、其它要素监测仪器 噪声监测仪 噪声自动监测系统 振动监测仪 场强仪* 全向宽带场强仪* 宽带电磁场强仪* 工频场强仪* 大面积屏栅电离室α谱仪* 全身计数器* 环境辐射剂量率仪* 生态环境的遥感遥测系统 环保治理设施、监测仪器运行状态监视仪 5、实验室通用分析仪器及其设备 (1) 光学类仪器: 可见分光光度计 紫外分光光度计 荧光分光光度计 火焰光度计 原子吸收分光光度计 原子荧光光度计 等离子发射光谱仪 X-射线荧光光谱仪 (2) 电化学仪器: pH计 离子计 电位计 示波极谱仪 阳极溶出仪 库仑仪 电位滴定仪 电导仪 (3) 色谱类仪器 离

3. 工业废水的污水处理,在氨氮,总磷,总氮的测试中,能不能只用紫外可见分光光度计一个设备测量不用两个

可以的,现在有来紫外光源跟可见光一体机的,用起来很方便
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在 400~760nm 之间。单单用可见光就可以了
氨氮的最佳波长420nm,磷的最佳波长620nm
所以用可见光的就足够了

4. GB11893—89

水质 总磷的测定 钼酸铵分光光度法
Water quality-Determination of total phosphorus-
Ammonium molybdate spectrophotometric method
GB 11893-89
批准日期 1989-09-01 实施日期 1991-09-01
1 主题内容与适用范围
本标准规定了用过硫酸钾(或硝酸-高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。
总磷包括溶解的、颗粒的、有机的和无机磷。
本标准适用于地面水、污水和工业废水。
取25mL试料,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。
在酸性条件下,砷、铬、硫干扰测定。
2 原理
在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。
3 试剂
本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。
3.1 硫酸(H2SO4),密度为1.84g/mL。
3.2 硝酸(HNO3),密度为1.4g/mL。
3.3 高氯酸(HClO4),优级纯,密度为1.68g/mL。
3.4 硫酸(H2SO4),1:1。
3.5 硫酸,约c(1/2H2SO4)=1mo1/L:将27mL硫酸(3.1)加入到973mL水中。
3.6 氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至1000mL。
3.7 氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至1000mL。
3.8 过硫酸钾,50g/L溶液:将5g过硫酸钾(K2S2O8)溶解干水,并稀释至100mL。
3.9 抗坏血酸,100g/L溶液:溶解10g抗坏血酸(C6H8O6)于水中,并稀释至100mL。
此溶液贮于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。
3.10 钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中。溶解0.35g酒石酸锑钾[KSbC4H4O7· 1 H2O]于100mL水中。在不断搅拌下把钼酸铵溶液徐徐加到300mL硫酸(3.4)中,加酒石酸锑钾溶液并且混合均匀。
此溶液贮存于棕色试剂瓶中,在冷处可保存二个月。
3.11 浊度-色度补偿液:混合两个体积硫酸(3.4)和一个体积抗坏血酸溶液(3.9)。使用当天配制。
3.12 磷标准贮备溶液:称取0.2197±0.001g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移至1000mL容量瓶中,加入大约800mL水、加5mL硫酸(3.4)用水稀释至标线并混匀。1.00mL此标准溶液含50.0μg磷。
本溶液在玻璃瓶中可贮存至少六个月。
3.13 磷标准使用溶液:将10.0mL的磷标准溶液(3.12)转移至250mL容量瓶中,用水稀释至标线并混匀。1.00mL此标准溶液含2.0μg磷。
使用当天配制。
3.14 酚酞,10g/L溶液:0.5g酚酞溶于50mL95%乙醇中。
4 仪器
实验室常用仪器设备和下列仪器。
4.1 医用手提式蒸汽消毒器或一般压力锅(1.1~1.4kg/cm2)。
4.2 50mL具塞(磨口)刻度管。
4.3 分光光度计。
注:所有玻璃器皿均应用稀盐酸或稀硝酸浸泡。
5 采样和样品
5.1 采取500mL水样后加入1mL硫酸(3.1)调节样品的pH值,使之低于或等于1,或不加任何试剂于冷处保存。
注:含磷量较少的水样,不要用塑料瓶采样,因易磷酸盐吸附在塑料瓶壁上。
5.2 试样的制备:
取25mL样品(5.1)于具塞刻度管中(4.2)。取时应仔细摇匀,以得到溶解部分和悬浮部分均具有代表性的试样。如样品中含磷浓度较高,试样体积可以减少。
6 分析步骤
6.1 空白试样
按(6.2)的规定进行空白试验,用水代替试样,并加入与测定时相同体积的试剂。
6.2 测定
6.2.1 消解
6.2.1.1 过硫酸钾消解:向(5.2)试样中加4mL过硫酸钾(3.8),将具塞刻度管的盖塞紧后,用一小块布和线将玻璃塞扎紧(或用其他方法固定),放在大烧杯中置于高压蒸汽消毒器(4.1)中加热,待压力达1.1kg/cm2,相应温度为120℃时、保持30min后停止加热。待压力表读数降至零后,取出放冷。然后用水稀释至标线。
注:如用硫酸保存水样。当用过硫酸钾消解时,需先将试样调至中性。
6.2.1.2 硝酸-高氯酸消解:取25mL试样(5.1)于锥形瓶中,加数粒玻璃珠,加2mL硝酸(3.2)在电热板上加热浓缩至10mL。冷后加5mL硝酸(3.2),再加热浓缩至10mL,放冷。加3mL高氯酸(3.3),加热至高氯酸冒白烟,此时可在锥形瓶上加小漏斗或调节电热板温度,使消解液在锥形瓶内壁保持回流状态,直至剩下3~4mL,放冷。
加水10mL,加1滴酚酞指示剂(3.14)。滴加氢氧化钠溶液(3.6或3.7)至刚呈微红色,再滴加硫酸溶液(3.5)使微红刚好退去,充分混匀。移至具塞刻度管中(4.2),用水稀释至标线。
注:①用硝酸-高氯酸消解需要在通风橱中进行。高氯酸和有机物的混合物经加热易发
生危险,需将试样先用硝酸消解,然后再加入硝酸-高氯酸进行消解。
②绝不可把消解的试作蒸干。
③如消解后有残渣时,用滤纸过滤于具塞刻度管中,并用水充分清洗锥形瓶及滤
纸,一并移到具塞刻度管中。
④水样中的有机物用过硫酸钾氧化不能完全破坏时,可用此法消解。
6.2.2 发色
分别向各份消解液中加入1mL抗坏血酸溶液(3.9)混匀,30s后加2mL钼酸盐溶液(3.10)充分混匀。
注:①如试样中含有浊度或色度时,需配制一个空白试样(消解后用水稀释至标线)然
后向试料中加入3mL浊度-色度补偿液(3.11),但不加抗坏血酸溶液和钼酸盐溶液。然
后从试料的吸光度中扣除空白试料的吸光度。
②砷大于2mg/L干扰测定,用硫代硫酸钠去除。硫化物大于2mg/L干扰测定,
通氮气去除。铬大于50mg/L干扰测定,用亚硫酸钠去除。
6.2.3 分光光度测量
室温下放置15min后,使用光程为30mm比色皿,在700nm波长下,以水做参比,测定吸光度。扣除空白试验的吸光度后,从工作曲线(6.2.4)上查得磷的含量。
注:如显色时室温低于13℃,可在20~30℃水花上显色15min即可。
6.2.4 工作曲线的绘制
取7支具塞刻度管(4.2)分别加入0.0,0.50,1.00,3.00,5.00,10.0,15.0mL磷酸盐标准溶液(3.14)。加水至25mL。然后按测定步骤(6.2)进行处理。以水做参比,测定吸光度。扣除空白试验的吸光度后,和对应的磷的含量绘制工作曲线。
7 结果的表示
总磷含量以C(mg/L)表示,按下式计算:

式中:m——试样测得含磷量,μg;
V——测定用试样体积,mL。
8 精密度与准确度
8.1 十三个实验室测定(采用6.2.1.1消解)含磷2.06mg/L的统一样品。
8.1.1 重复性
实验室内相对标准偏差为0.75%。
8.1.2 再现性
实验室间相对标准偏差为1.5%。
8.1.3 准确度
相对误差为+1.9%。
8.2 六个实验室测定(采用6.2.1.2消解)含磷量2.06mg/L的统一样品。
8.2.1 重复性
实验室内相对标准偏差为1.4%。
8.2.2 再现性
实验室间相对标准偏差为1.4%。
8.2.3 准确度
相对误差为1.9%。
质控样品主要成分是乙氨酸(NH2CH2COOH)和甘油磷酸钠( )。
附加说明:
本标准由国家环境保护局标准处提出。
本标准由北京市环保监测中心和上海市环境监测中心负责起草。
本标准主要起草人袁玉璐、姚元。
本标准委托中国环境监测总站负责解释。

水质总氮的测定 碱性过硫酸钾消解紫外分光光度法 GB11894-89

Water quality-Determination of total nitrogen-Alkaline potassium persiflage digestion-UV spectrophotometric method
GB 11894-89

--------------------------------------------------------------------------------

1 主题内容与适用范围
1.1 主题内容
本标准规定了用碱性过硫酸钾在120~124℃消解、紫外分光光度测定水中总氮的方法。
1.2 适用范围
本标准适用于地面水、地下水的测定。本法可测定水中亚硝酸盐氮、硝酸盐氨、无机铵盐、溶解态氨及大部分有机含氮化合物中氮的总和。
氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。
本方法的摩尔吸光系数为1.47×103L·mo1-1·cm-1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
某些有机物在本法规定的测定条件下不能完全转化为硝酸盐时对测定有影响。
2 定义
2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3 原理
在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。并且在此过程中有机物同时被氧化分解。可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按式(1)求出校正吸光度A:
A=A220-2A275………………………………………………(1)
按A的值查校准曲线并计算总氮(以NO3-N计)含量。
4 试剂和材料
除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1 水,无氨。按下述方法之一制备;
4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
4.1.2 蒸馏法:在1000mL蒸馏水中,加入0.10mL硫酸(p=1.84g/mL)。并在全玻璃蒸馏器中重蒸馏,弃去前50mL馏出液,然后将馏出液收集在带有玻璃塞的玻璃瓶中。
4.2 氢氧化钠溶液,200g/L:称取20m氢氧化钠(NaOH),溶于水(3.1)中,稀释至100mL。
4.3 氢氧化钠溶液,20g/L:将(4.2)溶液稀释10倍而得。
4.4 碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2OB),另称取15g氢氧化钠(NaOH),溶于水(4.1)中,稀释至1000mL,溶液存放在聚乙烯瓶内,最长可贮存一周。
4.5 盐酸溶液,1+9。
4.6 硝酸钾标准溶液。
4.6.1 硝酸钾标准贮备液,CN=100mg/L:硝酸钾(KNO3)在105~110℃烘箱中干燥3h,在干燥器中冷却后,称取0.7218g,溶于水(4.1)中,移至1000mL容量瓶中,用水(4.1)稀释至标线在0~10℃暗处保存,或加入1~2mL三氯甲烷保存,可稳定6个月。
4.6.2 硝酸钾标准使用液,CN=10mg/L:将贮备液用水(4.1)稀释10倍而得。使用时配制。
4.7 硫酸溶液,1+35。
5 仪器和设备
5.1 常用实验室仪器和下列仪器。
5.2 紫外分光光度计及10mm石英比色皿。
5.3 医用手提式蒸气灭菌器或家用压力锅(压力为1.1~1.4kg/cm2),锅内温度相当于120~124℃。
5.4 具玻璃磨口塞比色管,25mL。
所用玻璃器皿可以用盐酸(1+9)或硫酸(1+35)浸泡,清洗后再用水(4.1)冲洗数次。
6 样品
6.1 采样
在水样采集后立即放入冰箱中或低于4℃的条件本保存,但不得超过24h。
水作放置时间较长时,可在1000mL水样中加入约0.5mL硫酸(p=1.84g/mL),酸化到pH小于2,并尽快测定。
样品可贮存在玻璃瓶中。
6.2 试样的制备
取实验室样品(6.1)用氢氧化钠溶液(4.3)或硫酸溶液(4.7)调节pH至5~9从而制得试样。
如果试样中不含悬浮物按(7.1.2)步骤测定,试样中含悬浮物则按(7.1.3)步骤测定。
7 分析步骤
7.1 测定
7.1.1 用无分度吸管取10.00mL试样(CN超过100?g时,可减少取作量并加水(4.1)稀释至10mL)置于比色管中。
7.1.2 试样不含悬浮物时,按下述步骤进行。
a.加入5mL碱性过硫酸钾溶液(4.4),塞紧磨口塞用布及绳等方法扎紧瓶塞,以防弹出。
b.将比色管置于医用手提蒸气灭菌器中,加热,使压力表指针到1.1~1.4kg/cm2,此时温度达120~124℃后开始计时。或将比色管置于家用压力锅中,加热至顶压阀吹气时开始计时。保持此温度加热半小时。
c.冷却、开阀放气,移去外盖,取出比色管井冷至室温。
d.加盐酸(1+9)1mL,用无氨水稀释至25mL标线,混匀。
e.移取部分溶液至10mm,石英比色皿中,在紫外分光光度计上,以无氨水作参比,分别在波长为220与275nm处测定吸光度,并用式(1)计算出校正吸光度A。
7.1.3 试样含悬浮物时,先按上述7.1.2中a至d步骤进行,然后待澄清后移取上清液到石英比色皿中。再按上述7.1.2中e步骤继续进行测定。
7.2 空白试验
空白试验除以10mL水(4.1)代替试料外,采用与测定完全相同的试剂、用量和分析步骤进行平行操作。
注:当测定在接近检测限时,必须控制空白试验的吸光度Ab不超过0.03,超过此值,要检查所用水、试剂、器皿和家用压力锅或医用手提灭菌器的压力。
7.3 校准
7.3.1 校准系列的制备:
a.用分度吸管向一组(10支)比色管(5.4)中,分别加入硝酸盐氮标准使用溶液(4.6.2)0.0,0.10,0.30,0.50,0.70,1.00,3.00,5.00,7.00,10.00mL。加水(4.1)稀释至10.00mL。
b.按7.1.2中a至e步骤进行测定。
7.3.2 校准曲线的绘制:
零浓度(空白)溶液和其他硝酸钾标准使用溶液(4.6.2)制得的校准系列完成全部分析步骤,于波长220和275nm处测定吸光度后,分别按下式求出除零浓度外其他校准系列的校正吸光度As和零浓度的校正吸光度Ab及其差值Ar
As=As220-2As275 ………………………………………………(2)
Ab=Ab220-2Ab275………………………………………………(3)
Ar=As-Ab ……………………………………………………(4)
式中:AS220——标准溶液在220nm波长的吸光度;
AS275——标准溶液在275nm波长的吸光度;
Ab220——零浓度(空白)溶液在220nm波长的吸光度;
Ab275——零浓度(空白)溶液在275nm波长的吸光度。
按Ar值与相应的NO3-N含量(微克)绘制校准曲线。
8 结果的表示
8.1 计算方法
按式(1)计算得试样校正吸光度Ar,在校准曲线上查出相应的总氮?g数,总氮含量(mg/L)按下式计算:

式中:m——试样测出含氮量,微克;
V——测定用试样体积,mL。
9 精密度与准确度
9.1 重复性
21个实验室分别测定了亚硝酸钠,氨基丙酸与氯化铵混合样品;CW604氨氮标准样品;L-谷氨酸与葡萄糖混合作品。上述三种作品含氮量分别为1.49,2.64和1.15mg/L,其分析结果如下:
各实验室的室内相对标准偏差分别为2.3,1.6和2.5%。室内重复测定允许精密度分别为0.074,0.092和0.063mg/L。
9.2 再现性
上述实验室对上述三种统一合成样品测定。实验室间相对标准偏差分别为3.1%,1.1%和4.2%;再现性相对标准偏差分别为4.0%,1.9%和4.8%;总相对标准偏差分别为3.8,1.9和4.9%。
9.3 准确度
上述实验室对上述三种统一合成样品测定,实验室内均值相对误差分别为6.3%,2.4%和8.7%。
室内单内相对误差分别为7.5%,3.8%和9.8%。实验室平均回收率置信范围分别为99.0±6.4%,99.0±5.1%和101±9.4%。

附加说明:
本标准由国家环境保护局规划标准处提出。
本标准由上海市环境监测中心负责起草。
本标准起草人戴克慧。
本标准委托中国环境监测总站负责解释。

5. 污水处理中使用草酸对出水水质(总氮、总磷、氨氮、COD)有影响吗草酸加在转盘滤池中了

污水处理中使用草酸对出水水质(总氮、总磷、氨氮、COD)有影响吗?草酸加在转盘滤池中了
答:草酸是无色无臭的透明结晶或白色粉末。有毒。溶于水、酒精及醚中。二水物也是无色晶体。比重1.653,熔点101℃,在干燥的空气中或加热时则失去水分成为白色粉末。
草酸可用于铁锈污染消除剂(草酸与铁作用,生成可溶性的草酸铁,容易被水洗去,故可除去织物上所沾染的铁迹)。
草酸铁络合物法是一种新的高级氧化技术,是对光Feton法的发展,在处理高浓度难降解有机废水方面效果优于UV/Fe^2+/H2O2法、UV/H2O2法、TiO2法和WO3法等,因其具有一定的利用太阳能的潜力。
我是做污水处理的,有问题可以找我

6. 环境监测站实习总结

环境监测站实习总结

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以有效锻炼我们的语言组织能力,不如立即行动起来写一份总结吧。你所见过的总结应该是什么样的?以下是我为大家收集的环境监测站实习总结,仅供参考,大家一起来看看吧。

环境监测站实习总结1

没有相关工作经验,可能是大部分研究生就业的一个先天不足的劣势。而研究生校外专业实践可以积累工作经验,帮助我们获得相对优势,在竞聘过程中社会实践的经历和经验肯定比传统的专业实习、参与项目更具有说服力。

另外还可以增加就业机会,一方面实践单位就是用人单位,实践的过程就是试用的过程;

另一方面研究生在实践中可以收集就业信息或者直接与用人单位接触。

研究生校外社会实践是一个锻炼交际能力,学会与人和谐相处、有效沟通的绝佳机会。在报到实践单位以后,就要积极地适应学习和生活环境,融入单位群体当中去,虚心学习,和睦相处;良好的社交心理素质与人际交往技巧不是与生俱来的,只能从个人社会化的过程中学习和体会。另外通过自己的亲身经历,结合实践中不同阶层人士的奋斗经历和成功案例,还可以准确定位自己的社会角色,帮助自己做出阶段性的职业规划和长期的人规划。

环境监测是环境保护的"耳目",通过测试获取的监测数据是描述和评价环境质量的基础资料,也是环境执法、监督、决策、管理、服务的依据。从原始数据的获取、记录到运算、整理过程中,环境监测站的团队精神和认真细心的工作态度值得我们学习。作为一名研究生要脚踏实地,勤于观察,善于学习,不断提高从日常试验数据中敏锐捕捉有效信息的本领和分析问题、解决问题的能力,避免科研试验中哪怕是个小小环节负面影响到最终客观"产品"的可能。

环境监测技术是在环境分析等学科的基础上发展起来的。近年来国家为了有效从源头上控制污染,推行了清洁生产,环境监测站要想对企业的环境污染情况及时跟踪监测,熟悉企业的生产工艺就能够帮助他们更好的了解排放污染物的生产环节,并去监测污染物的排放情况。

学科交叉促进了监测技术的更新进步,生产工艺和设备的革新换代。现在我们在试验研究中,交叉学科技术的互动利用也许能够减小试验成本,快捷高效地让思路豁然开朗难题迎刃而解。社会经济的快速发展带来的环境风险问题,环境污染物种类和结构出现了新的变化,特别是复杂的有毒有害有机污染物,科学及时准确监测与否,事关人民群众的生命安全,于此涉及到的环境污染物的'监测分析方法也应得到丰富完善,由于三级监测站的监测科研能力有限,研究生社会实践给我们提供了合作的支点,同时为我们之间架起了科学研究交流的桥梁,我们可以利用高等学校科研院所的技术仪器设备等优势,在相关学科的领域内加强与环境监测站的合作,解答他们监测科研实际工作中遇到的技术等难题,不断合作研究、改进、完善,并把这些好的方法和好的经验在有关期刊上公开发表,与广大的一线监测科研技术人员和相关的研究人员交流受益,不断推进实现监测分析方法的先进性、标准性、规范性。

看过"环境监测站实习总结"的人还看了:

环境监测站实习总结2

7月15日至8月15日,我在##市##县环境监测站参加暑期研究生社会实践学习。按照环境监测站对《##县环境监测站计量认证及监测能力建设》实践项目的总体计划安排,与相关人员从环境监测标准、监测点位、采样技术、测试方法、监测数据、监测质量管理等方面进行了环境监测管理和技术上的交流学习、探讨互动。另外还学习了##县环境监测站关于计量认证、实验室资质认证和质量管理体系建设的《质量手册》和《监测站工作程序性文件》,加深了对监测程序的了解认识。

此次暑期社会实践对我研究生阶段的学习工作大有裨益,以下是对社会实践长丰环境监测站之行的认识、体会、心得,与大家分享。

古人曰:"纸上得来终觉浅,绝知此事要躬行",研究生社会实践给我提供了一个接触基层感受实际的宝贵机会去促进专业学习,在实践中见世面,增才干。基层社会能够反馈给我们社会得需求并指导我们进行相关研究,为我们的科学研究选题和立项提供丰富的背景素材。通过校外专业实践,切实了解专业的社会需求点,以及自己知识结构中需要加强提高的部分,返回校园后能针对性地补充和钻研,这样就可以在解决实际问题中不断提高并实现服务社会的本领。实践出真知,研究生应把自己的所学专业理论融入到实践中并接受检验,在实践中成长成才。

环境监测站实习总结3

一。实习目的:

认识实习是学生大学学习很重要的实践环节。实习是每一个大学生的必修课,它不仅能让我们学到很多在课堂上根本就学不到的知识,还能使我们开阔视野,增长见识,为我们以后更好把所学的知识运用到实际工作中打下坚实的基础。

学习环境工程专业快一年了,但对于这个专业将来所要从事的工作却还十分模糊,通过这次认识实习,使我已经对这个专业所要从事的工作有了一个大致的了解。

二。实习的具体内容:

(一)长江水利委员会长江三峡水文水资源勘测局

实习时间:20xx年6月20日上午

1。概况:

长江三峡水文水资源勘测局是国家二级监测站,共监测30个项目,同等级别的监测站整个长江干流共有7个,主要负责水文水资源勘测、干流及主要支流水文、河道、泥沙、水质基本资料收集,在水文水资源监测与评价、水资源论证、水环境监测、水质分析、水量计算、水文气象预报、水文分析计算、防洪等方面,技术设备先进,实力雄厚。

2。处理工艺:

该监测站拥有较多实验室,根据其功能不同可分为:生化室,无菌室,质控室,消解室,天平室,仪器一,二,三室,原子荧光室,原子吸收室,气象色谱室,泥沙分析室,泥沙天平室。每个实验室配有相关的仪器。

其中日常监测项目包括常规五参数(水温,ph,溶解氧,电导率,浊度),氨氮,化学需氧量,高锰酸盐指数,总有机碳(toc),总氮,总磷,硝酸盐氮,磷酸盐,氰化物,氟化物,氯化物,酚类,油类,汞等的重金属,粪大肠杆菌,细菌总数。

而且该监测站设备齐全,比如说有gm—0。35隔膜真空泵,pxd—12数字式离子计,aa—400原子吸收仪,afs—900原子荧光分光光度计,气相色谱仪,测汞仪,测油仪,ddsj—380电导率仪,phsj—4a7ph计,离子色谱仪,uv—754紫外可见分光光度计,7—225型可见分光光度计,ae200电子天平,gpi—2气体净化仪,ldzx—40bi立体式自动电热压力蒸汽器,yxz型自动恒温水浴锅,psh525生化培养箱,tg16—ws高速离心机,bod5恒温培养箱,摩尔元素系列超纯水机,bod—220b快速测仪,z—原子吸收仪等一系列高级仪器。据高站长说,其中价值在百万以上的仪器不在少数。

3。监测站工作流程:

质量体系运行→业务合同受理→编制计划、程序→环境设施确认→仪器设备确认保证在有效期内使用→人员确认→采样送样→样品接收、处理→领出样品,按标准(作用指导书)检测→数据、记录控制→报告编制→服务客户

(二)宜昌水文站

实习时间:20xx年6月20日上午

1。概况:

宜昌水文站坐落在长江边,它被誉为国家一级水文站,世界教科文组织一级站,在世界上也占有相当重要的地位,同时它悠久的历史也为自身增添了不小的魅力。该站始建于民国时期,是我国最早的,同时也是最重要的几个水文站之一,并且在1998年抗洪期间发挥了极其重要的作用。该站从运行之日起,就开始在水文方面发挥重要作用,至今已为我们留下了许多宝贵的数据。比如:

1153年7月31日59。5m 1220xx年8月1日58。47 m

1560年8月25日58。45 m 1788年7月23日57。5 m

1796年7月18日56。81 m 1620xx年7月18日56。67 m

1860年7月18日58。32 m 1870年7月20日59。5 m

1896年9月4日55。92 m 19xx年8月14日55。14 m

1920年7月17日55。33 m 1931年8月10日55。02 m

1945年9月6日55。71 m 1954年8月7日55。73 m

水文站是观测及搜集河流、湖泊、水库等水体的水文、气象资料的基层水文机构。水文站观测的水文要素包括水位、流速、流向、波浪、含沙量、水温、冰情、地下水、水质等;气象要素包括降水量、蒸发量、气温、湿度、气压和风等。按测验项目分为观测水位、流量或兼测其他项目的水文站;只观测水位,或兼测降水量的水位站;只观测降水量的雨量站;只测水质的水质站;只测地下水的地下水井观测站;测量河流泥沙的泥沙站;观测水面蒸发和陆面蒸发的蒸发站。中国把水文站按性质分为基本站和专用站。前者的任务是收集实测资料,提供探索基本水文规律的资料,满足水资源评价、水文计算、水文情报、水文预报和水文科学研究的需要。

1。工艺流程:

该站在主要是在一公里的江面上布了10个监测点,在水深30公分的地方采一个样本,然后开始分析。

(三)长江南津关水质自动监测站

实习时间:20xx年6月21日上午

1。概况:

xx年1月,国家环境监测总站于宜昌市南津关开始着手建设一个水质自动监测站,对长江流域南津关断面的水质进行实时监测。xx年1月15日开始了试运行,目前由国家总站交付给该站托管运行。监测项目有高锰酸盐指数、总有机碳、氨氮、ph、电导率、浊度、溶解氧、水温。于xx年总站又增加了总磷、总氮和粪大肠菌群这三个监测项目,使得检测项目更趋于完善。

2。工艺流程:

该监测站通过实施地表水的自动监测,可以实施水质的实时连续监测和远程监测,达到及时掌握主要流域重点断面水体的水质状况,实现预警报重大或流域水质污染事故,解决跨行政区域的水污染事故纠纷。水质自动监测站的监测频次可以根据情况连续监测或每几小时监测一次,管理人员可以通过控制软件自行设定。目前采用4小时采样分析一次的频次,每天每个监测可以得到6个监测结果,这些数据通过通过电话线传送到各站点附近环境监测站,便于自动监测的维护,管理人员及时了解其运行状况,数据通过卫星传送方式传送到中国环境监测总站,使国家环保管理部门及时了解各重点断面的水质状况。

水质自动监测技术是一个集分析仪器、取水、控制及数据传输与处理的系统工程,整个水质自动监测系统由以下部分组成:

1、自动监测站的站房;

2、外部采水系统;

3、配水系统及内部水样的预处理;

4、仪器部分;

5、通信及控制系统;

6、中心软件;

7、辅助设施。

(四)双汇集团宜昌厂区的污水处理站

实习时间:20xx年6月22日上午

1。概况:

双汇集团是我国著名企业,也是全国五百强之一,但有个不可否认的事实就是,它同时也是一个排污大户,因此我国对它的污水排放也有着严格的标准,这次我们参观的就是其宜昌厂区内部的一个污水处理站。宜昌这个厂区虽然不大,但在其整个生产工艺当中全部含有生产废水,因此它也是宜昌的一个重点治理单位。所以,在xx年,宜昌市政府责令该厂建立了这个污水处理站,共投资700—800万元,由林站长一手组建,日处理能力2200吨。经处理后,其废水cod含量达到国家级排放标准,小于100mg/l,处理效率达到97%—98%。

2。处理工艺:

活性污泥法,又叫生化处理法,厌氧和耗氧,活性污泥法工艺是应用最广泛的废水好氧生化处理技术。

3。处理工艺流程:

浓度很高的废水先从隔山池进入,所谓隔山池既为网状物,先去除废水中体积较大的木块等;然后到达初沉池;第三步到调节池,起到的作用是水大的时候就不可能前部进到里面去,只能在里面呆在,水少的时候就先在里面存在,等到水大的时候在进去还有一个就是预酸化的作用,使废水的ph值在某一个值上面;然后在通过泵把废水提升到气浮池,其作用就是对废水充气,使其进行充分耗氧,在这个池中还要加高效的消毒剂、降解剂聚氯化铝,作用是去除油、重金属和一部分盐;第五步就到厌氧池,目的是把废水里面所有的氧分去掉,因为有些微生物在没有氧的情况下可以消耗其他的微生物,厌氧池就是利用这样的原理来处理废水中其他的微生物;第六步进入耗氧池,也就是曝气池,是为了对废水充分的进行充氧,把活性污泥在里面充分的进行消解、繁殖;第七步进入二沉池,起到活性污泥和废水分离的作用,二沉池的污泥又回到曝气池里再用;最后进入到消毒池,然后排放。

(五)宜昌市第四自来水厂

实习时间:20xx年6月23日上午

1。概况

该厂是七十年代立的项,八十年代中期竣工的,使用的是八十年代的自来水生产工艺,也就是比较先进的自动化工艺。宜昌市有四个自来水厂,一水厂就是三峡大学用的,在电视塔旁的那个山上,成立于解放前,但工艺较为老化。二水厂在杨岔路那个地方,是在六十年代修的。后来由于宜昌市的发展,又先后修了第三、第四水厂。

2。工艺:

从关庄水库抽取水源,用管道输送至一级泵房(取水泵房)并在一级泵房前加氯以杀灭藻类、植物和贝类动物。再通过一级泵房将水送至厂内处理系统中。通常经过混合(在水源水中加入适量的氯化铝,俗称矾)反应、沉淀、过滤、消毒等处理工艺,每一工艺配以相应的构筑物(如沉淀池、滤池、清水池等),滤后消毒一般是加氯和氨,投加了消毒剂的水经清水池、并在池内停留一小时左右就成为合格的饮用水,再经过二级泵房(输水泵房)加压输送到城市管网中,供生活饮用和生产使用。

(六)宜化化工

实习时间:20xx年6月24日上午

1。概况:

该厂是我们此次认识实习的最后一站,同时也是重要的一站,因为对于废气的处理也是我们环境工程专业所研究的一项重要内容。厂内的废气处理装置相当先进,除尘率可达95%。

2。工艺:

脱硫除尘。先通过静电除尘,静电除尘设备是利用静电力从气流中分离悬浮粒子的一种方法,且分离尘粒耗能低,一般处理1000m 3 /h的含尘气体所耗电能只为0。1—0。8kw。h,气压损失也很小。因为相对大的静电力作用在粒子上,即使对极微小的粒子也能有效捕集,因此除尘效果非常好,除尘率达95%以上。

三。实习心得:

通过了这次认识实习,我对环境工程已经有了初步的认识,也对自己的就业前景充满了希望。因为人类的生存要依赖环境,而保护环境这一重任即将落到我们肩上,因此我们必须认真学习专业知识并掌握好所学的专业知识,在实践中磨练自己,使得所学到的专业知识可以融会贯通,懂得学以致用,让自己成为一名合格的环境工作者、一名合格的环境工程师!

;

7. 水环境检测一般用什么设备

1、空气和废气监测仪器:
(1) 污染源烟尘(粉尘)在线监测仪
用于在线监测污染源烟尘、工艺粉尘排放量(浓度或总量),包括测量相关参数:流量、O2、含湿量、温度等,是实现污染源排放总量监测的必备监测仪器。
(2) 烟气SO2、NOx在线监测仪
用于在线监测烟气中SO2、NOx含量,通过流量测量,实现总量监测。
(3) 环境空气地面自动监测系统
该系统用于空气质量周报、日报监测,主要监测项目有:SO2、NOx、CO、O3、PM10等。
(4) 酸雨自动采样器
自动采集降水样品,以便测定降水的pH值。
(5) PM10采样器
用于采集环境空气中空气动力学当量直径10μm以下的颗粒物。
(6) 固定和便携式机动车尾气监测仪
用于测定机动车排放尾气中CH、CO等含量。

2、污染源和环境水质监测仪器:
(1) 污染源在线监测仪器
污染物排放的总量监测要求浓度与流量同步连续监测,在线测流和比例采样是总量监测的基本技术手段,对于重点污染源还需要配备在线监测仪器。
(2) 流量计
用于规范化的明渠污水排放口流量的在线连续监测仪器。
(3) 自动采样器
用于污染源排放口具有流量比例和时间比例两种方式的在线自动采样装置。
(4) 在线监测仪器
用于工业污染源或污水排放口的在线测分析仪器。监测主要项目有:COD、TOC、UV、NH4、NO3-N、氰化物、挥发酚、矿物油、pH等,应具有自动校正和自动冲洗管路功能。
(5) 环境水质自动监测仪器
用于地表水环境质量指标的在线自动监测仪器。水质自动监测项目分为水质常规五参数和其它项目,水质常规五参数包括温度、pH、溶解氧(DO)、电导率和浊度,其它项目包括高锰酸盐指数、总有机碳(TOC)、总氮(TN)、总磷(TP)及氨氮(NH3-N)。
(6) 总有机碳(TOC)测定仪
总有机碳(TOC)是反应水体有机物含量的指标,可用于污染源或地表水的监测。

3、便携式现场应急监测仪器
便携式现场应急监测仪器,用于突发性环境污染事故监测,其主要特点为小型、便于携带及快速监测。
(1) 便携式分光光度计
用于现场监测的便携式分光光度计,测试组件一般包括氰化物、氨氮、酚类、苯胺类、砷、汞及钡等毒性强的项目。
(2) 小型有毒有害气体监测仪
用于现场有毒有害气体监测的小型便携式仪器,主要监测项目有CO、Cl2、H2S、SO2及可燃气监测等。
(3) 简易快速检测管
用于快速定量或半定量检测水中或空气中有害成分的现场用简易装置,主要监测项目有CO、Cl2、H2S、SO2、可燃气、氨氮、酚、六价铬、氟、硫化物及COD等。

4、电磁辐射和放射性监测仪器
(1) 全向宽带场强仪
用于测量某频率范围内的综合电磁场强。
(2) 频谱仪
用于测量不同频率电磁辐射的场强及谱分布。
(3) 工频场强仪
用于测量50HZ工频电磁场强度。
(4) 大面积屏栅电离室α谱仪
测量环境介质中α放射性核素的浓度。
(5) 全身计数器
用于监测职业工作者或公众的全身污染情况。
(6) 环境辐射剂量率仪
用于监测环境贯穿辐射水平。

阅读全文

与uv1200测量废水总氮相关的资料

热点内容
美的净水机如何清理 浏览:329
圣洛威净水机不上水怎么办 浏览:932
冷却液蒸馏水在哪里买 浏览:509
美的牌饮水机为什么贵 浏览:549
日本葡萄核废水为什么越来越多 浏览:3
香醋除水垢要浸泡多久 浏览:928
中药蒸馏水提取设备 浏览:977
废水检测铜是什么 浏览:192
蒸馏酒与道家 浏览:99
h9空调滤芯怎么换视频 浏览:665
怎么去除废水中的有机物 浏览:530
ro膜反渗透净水器废水怎样回收 浏览:576
摩托车空气滤芯怎么样换 浏览:74
水垢净热水壶 浏览:788
二手房怎么做净水 浏览:202
除垢剂电水壶 浏览:367
19款骑俊空调滤芯在哪里 浏览:712
蒸馏壶的作用 浏览:303
ro膜和mro膜 浏览:294
cass工艺处理工业废水设计计算 浏览:76