导航:首页 > 污水知识 > 废水中的氯离子怎么检测

废水中的氯离子怎么检测

发布时间:2024-07-05 12:41:52

㈠ 除了硝酸银,还有什么试剂能检测氯离子

其实主要是ag+检测

以下引用论文
摩尔法测定氯离子
摩尔法测定氯离子的范围为=5~100 mg/L。周少玲等[2]从理论上指出以铬酸钾为指示剂,在中性或弱碱性条件下,用硝酸银标准溶液进行滴定实验,由于AgCl的沉淀溶解损失,溶液中仍然余留0.44 mg/L的氯离子不能被滴定。所以对于氯离子含量低的水质用摩尔法测定会造成较大的分析误差,而且测定精密度也较差。在用AgNO 3滴定氯离子的过程中,Ag+易与溶液中的氨形成银氨络离子Ag(NH 3)+,从而增加了AgNO 3的消耗量,造成分析结果偏高。所以,摩尔法测定中水中氯离子含量时,应控制溶液的pH值为中性。周强等[3]以耐盐性较强的大麦品种“鉴4”幼苗为材料,用硝酸银滴定法测定植物体内氯离子含量。结果得出在0~0.5 mol/L范围内的线性关系较好,相关系数r为0.9986,但标准曲线未通过坐标原点。回收率为87.73% ~117.78%,RSD为10.80%。准确度仅为88.43%,变
异系数为10.33%。
摩尔法是一种传统的测量方
法,但仅对氯离子含量高的物质
测定较准确,此方法采用的铬酸
钾和硝酸银试剂是有毒物质,且
排放到环境中会造成环境污染;
硝酸银试剂价格高,增加了测定
成本,影响了方法的实用性。
2.2
分光光度法
分光光度法是通过测定被测
物质在特定波长处或一定波长
范围内光的吸收度,对该物质进
行定性和定量分析的方法。
杨学芬[4]
研究了以过氧化氢
为氧化剂,硝酸-
甘油为介质,
分光光度法测定工业亚磷酸中
氯离子含量。此系统的稳定性
高,测定波长为380 nm,氯离子
含量在1~6 g/mL
范围内呈线性
关系,相关系数为0.9999,回收
率为96%~105%。
关瑞等[5]
通过研究氯化银沉
淀在明胶-
乙醇水溶液中的稳
定性,建立了测定微量氯离子的
分光光度分析方法,并应用到有
机工艺水中微量氯离子的测定。
在实验最佳条件下,氯离子浓度
在0~6 mg/L
范围内呈良好线性,
相关系数为0.9993,方法的标准
偏差为0.108,变异系数为
0.026,回收率为101%~105%。该
方法的检测限为1.35 ×10
- 2
mg/L。
顾立公[6]
利用在酸性条件下,
氯离子与硫氰酸汞反应生成微
电离的氯化汞络合物,释放出等
量的硫氰酸根与铁(III)反应生
成红色的络合物,建立了硫氰酸
汞-
硝酸铁间接分光光度法测
定水中的微量氯离子的方法,得
出氯离子含量在0.2~10 mg/L

围内呈良好线性关系,相关系数为
0.9992,回收率在95.8%~102.1%。
本方法灵敏度高,重现性好,方
法简便、
快速,可用于水中微量
氯离子的测定。
氯化物共沉淀富集分光光度
法是一种国标方法[7]
。该方法用
磷酸铅沉淀做载体,共沉淀富集
痕量氯化物,经离心机分离后,
用硝酸铁/
高氯酸溶液完全溶解
沉淀物,加硫氰酸汞/
甲醇溶液
显色,用分光光度计间接测定痕
量氯离子,测定范围为0.01~0.1
mg/L。
分光光度法可以精确测定微
量氯离子,灵敏度高,重现性好,
方法简便、
快速。但是共沉淀富
集分光光度法采用的磷酸铅、

氰酸汞和甲醇试剂是有毒物质,
影响操作人员的健康,且这些试
剂使用量很大,如果不加处理直
接排放则会造成严重的环境污
染。
2.3
浊度法
此浊度法是在比色法的基础
上发展起来的,是根据测量光线
通过悬浮液后透射光的强度进
行分析的一种分析方法,在临床
分析、
食品分析、
环境分析、
工业
分析、
药物分析等研究工作中应
用广泛。
陈振华等[8]
研究了在表面活
性剂下用硝酸银浊度法测定Cl
-

结果表明,在0.3 mol/L
酸性条件
下,吐温- 60
作为AgCl
浊度的
稳定剂,该方法的线性范围为
0~8 g/mL,相关系数r =0.991,回
收率为87.75%~103.33%,可用
于发电厂炉水中Cl
-
的测定。
王爱荣等[9]
研究了以乙二醇
为增溶剂,硝酸银作沉淀剂,采
用氯化银比浊法,在不分离硫酸
铜的条件下,直接测定酸性镀铜
液中微量氯离子。测定波长为
440 nm,线性范围为0~2 g/mL,其
俞凌云,等:氯离子测定方法及其应用研究行业论坛
33
西部皮革第31

表观摩尔吸光系数ε=113 ×
105,方法检出限为0.035 g/mL,
该法用于测定酸性镀铜液中微
量氯离子在不同水平的加标回
收率为95.4%~104.5%。杜斌等[10]
研究了以非离子型微乳液乳化
剂OP/
正丁醇/
正庚烷/
水为介
质,
AgCl
浊度法测定氯离子的试
验条件。该方法的线性范围为
0.2~3.4 mg/L,
r =0.9997,
RSD <
2.8%,回收率为94%~104%,可
用于水泥原料、
生料及熟料中微
量氯离子的测定。
申海燕[11]
利用氯化银沉淀在
明胶-
乙醇水溶液中的稳定性,
建立了一种测定有机工艺水中
微量氯离子的浊度法。该法的线
性范围为0~6 mg/L,
r =0.9993,回
收率为95.2%~101.3%。王兆喜
等[12]
设置流动注射分析仪器参数
工作波长为450 nm,进样频率为
60
次/h,建立了反相流动注射比
浊法测定水中的氯离子含量的
方法。 氯离子的浓度在1.0 ×
10
- 5
~10.0×10
- 4
mol/L
范围内与
吸光度呈良好线性关系,相关系
数为0.995,回收率为95%
~101%,
RSD<2.49%。
此浊度法操作简便、分析时
间短、
所用试剂少、
运行成本低,
检测手段简单,可与流动注射等
其他先进技术联用,易实现自动
化,程序化,前景十分广阔。由于
此浊度法具有上述特点,故在分
析科学中有广泛的应用。
2.4
离子色谱法
离子色谱法是比较新的离子
分离技术。这一方法现已广泛应
用于环境监测、盐水、土壤、

液、
锅炉水、
乳制品等试样的分
析之中。张新申等[13]
利用自制的
离子色谱仪对制革生产中的浸
酸废液、
铬鞣废液、
污水中的
氯离子含量进行了测定。表明氯
离子浓度在10
- 5
~10
- 3
mol/L
范围
内有很好的线性关系,测量上限
为10
- 2
mol/L,回收率为98.6%
~102.5%。朱子平[14]
采用萃取分
离法消除乳化液中有机组分对
测定组分的影响及对色谱柱所
造成的污染,应用离子色谱法检
测了乳化液中氯离子。其加标平
均回收率为95%~105%,相对标
准偏差优于4.0%(n=20)。
陆克平
等[15]
采用在碱性条件下加热回流
分解双氧水,用离子色谱法测定
其中微量氯离子。得出双氧水中
氯离子检测限为0.06 g/mL,线性
方程为C=1.155 ×10
- 5
A- 0.
02435。
线性范围为0.10~15.0
g/mL,浓度与面积的相关系数r
=0.9992。
王艳丽等[16]
用高纯Cu
粉与
浓HNO 3
进行氧化还原反应,
170
℃加热分解Cu(NO 3
)2
,去除绝大
部分NO 3
-
,研究了一种以离子色
谱电导检测法测定HNO 3
中微、
痕量级Cl
-
的方法。Cl
-
的加标回
收率为87.5% ~93.7%

RSD(n
=5)<10%。刘燕等[17]
采用离子色
谱双柱串联法分离硝酸样品,以
离子色谱电导检测法测定硝酸
滤液中的痕量氯离子。氯离子浓
度在0.01~0.30 mg/L
范围内与色
谱峰面积成线性关系,线性相关
系数r =0.997,对硝酸样品进行
测定,氯离子的加标回收率为
96.5%~99.0%,测定结果的相对
标准偏差为1.84% ~ 2.83%(n
=5)。
宋晓年等[18]
采用预浓缩离子
色谱法(采用浓缩柱预先浓缩样
品然后进来)测定高纯度水中痕
量氯离子,分析结果线性回归后
得出方程为H = 0.429C- 0.596,
式中H
为测得氯离子的峰高;
C
为氯离子含量,线性相关系数r =
0.9985,标准曲线有很好的线性
关系,可监测高纯去离子水中
10
- 9
mg/L
氯离子。
离子色谱法简单方便,灵敏
度高,测量快速而准确,且不需
要其他化学试剂,能快速、
简便、
高效、安全地应用于实际分析,
尤其适用于大批量试剂连续测
定。
2.5
原子吸收法
原子吸收是基于被测物质的
原子蒸气对特定谱线的吸收作
用来进行定量分析的一种方法。
顾永祚等[19]
以Cl
-
与定量Ag
+

成AgCl
沉淀反应为基础,提出了
一个测定水中Cl
-
的间接原子吸
收法。Cl
-
浓度在0~50 g/mL
范围
内呈线性。钱初洪等[20]
用原子吸
收法间接测定了己二酸铵中的
微量氯离子,此法通过加入乙醇
和雾化增效剂,使AgCl
的溶解度
降低并提高了原子化效率,从而
使测定的灵敏度提高,利用
AgNO 3
与己二酸铵中的微量氯离
子反应,测定剩余Ag
+
间接求出
氯离子的含量,测定的相对标准
偏差1.9%~4.8%,灵敏度(1%A)
为0.022 mg/L。
叶晓萍[21]
利用乙醇-
明胶可
以提高氯化银沉淀的稳定性,
行业论坛
34
第15

AEO- 7
表面活性剂对银原子化
效率也有明显提高的特性,研究
了在一定的介质条件及仪器分
析条件下,通过加入乙醇-
明胶
和AEO- 7,应用石墨炉原子吸收
法测定银离子含量,从而间接测
定高价稀土氧化物矿物中氯离
子的含量,其线性范围为20~100
g/L,相关系数r = 0.9997,
RSD
=0.27% ,加标回收率为92.5%
~102.0%。
杨延等[22]
研究了火焰原子吸
收光谱法间接测定电厂高纯水
的痕量氯离子的方法。该法采用
AgCl
沉淀,测定剩余Ag
+
间接求
出氯离子含量。方法的相对标准
偏差2.3%~8.6%,加标回收率为
94% ~103% ,灵敏度(1% A)为
0.029 mg/L。袁志莉等[23]
研究了在
酸性环境中,氯离子与银离子生
成沉淀,经氨水溶解后,用火焰原
子吸收法测定银,从而间接测定
出氯离子的含量。本方法测定氯
的线性范围为1.0~30 g/mL,相关
系数r = 0.999,灵敏度为0.023
g/mL
(1%),检测下限为0.059
g/mL,回收率为95%~105%。
王传化[24]
利用原子吸收分光
光度法间接测定了湿法磷酸中
微量氯(0.001%~0.01%)。此法是
用适当过量的Ag
+
与Cl
-
反应,
将生成的沉淀AgCl
过滤后,用原
子吸收分光光度法测定滤液中
剩余的Ag
+
含量,从而得出湿法
磷酸中氯含量。氯离子的线性范
围为0.6~1.0 g/mL,加标回收率
为99.5%~101.1%。
原子吸收法具有较高的灵敏
度、
很好的重现性、
较高的准确
度和操作简单,容易掌握,干扰
少等特点,对微量氯离子的跟踪
监测是科学准确简单易行的。
2.6
流动注射法
流动注射分析(Flow Injection
Analysis,
FIA)是一种容易实现现
场与邻近实验室联线的自动分
析系统,广泛用于环境、
农业、

药、
临床、
食品、
冶金、
生物化学
等方面的金属、
非金属和有机物
等的分析。
廖霞等[25]
探讨了用流动注射
-
双波长分光光度法测定水样中
游离氯的最佳化学条件和最佳
仪器参数,选择参比波长为650
nm,测定波长为553 nm
之处进
行比色测定。
此方法的精度
(RSD)和检出限分别为1.2%
(10.88 g/mL,
n =11)和0.24
g/mL,用本系统测定水样中的游
离氯,回收率在100.0%~110.0%
之间,检测限低,线性范围宽,重
视性好,可对自来水及漂白粉游
离氯进行实际应用测试。吕淑清
等[26]
根据氯离子与硫氰酸汞和硝
酸铁在酸性介质中反应生成红
色络合物的吸光度与水中氯离
子的含量成正比这一反应原理,
建立了用流动注射-
分光光度
法测定微量氯离子的自动分析
方法。本方法的检测极限为20
g/L,相对标准偏差为0.89%,回
收率为100%~105%,分析速度为
60~120
样/h,适用于火电厂炉水
中微量氯离子的测定。
王建伟等[27]
以可编程逻辑控
制器来控制系统以实现自动操
作,测定频率达80
次/h,建立了
一种应用流动注射连续快速监
测饮用水中余氯的方法。此方法
的检测下限为0.1 mg/L,线性范
围0.1~1.6 mg/L,相关系数为
0.9980。
FIA
技术具有装置小型简
单,操作可靠,自动化程度高,分
析速度快,分析结果重现性良
好,所需试剂量少,灵敏度高,检
测下限低等优点,可与比浊法、
速差动力学分析等多种分析方
法联用且效果更佳,具有良好的
应用前景。
2.7
容量法
容量法[28]
测定生活饮用水中
的氯离子,有硝酸银容量法(A)
和硝酸汞容量法(B)。A
法为沉
淀滴定法,终点变色不敏锐,易
受氯化银沉淀颜色的干扰,需以
对比法判定终点,带有很大的经
验性。B
法的终点变色很敏锐,易
于判断,但要严格控制试液的pH
值在3.0±0.2
的范围内。若水样
氯离子含量超过100 mg/L
时,须
稀释样品。
张艳[29]
确定了二苯卡巴腙
(DPCO)和二苯碳酰二肼(DPCI)
两种指示剂、
不同酸度对测定结
果的影响,并不经稀释直接测定
了高浓度的样品,测量结果得A
法的回收率为102.2%~101.0%,
RSD<0.016;
B
法的回收率为
100.2%~100.5%,
RSD<0.009。硝
酸汞容量法测定饮用水中的氯
离子,方法简便,终点变色敏锐,
其准确度和精密度均优于硝酸
银容量法,由于水样具有一定的
缓冲能力,对于含量高的样品,
只需将试液滴定前的pH
值控制
在3.2,样品不需稀释可以直接
俞凌云,等:氯离子测定方法及其应用研究行业论坛
35
西部皮革第31

测定。B
法的适应浓度范围广,准
确度、
精密度均优于A
法。其原
因主要是A
法的终点颜色由黄
色变为砖红色,变色不明显,需
以对比法进行终点判定。而B

的终点颜色是由微黄色变为淡
紫色,变色敏锐,易于判定。
陆克平[30]
发现现行硝酸汞容
量法测定安庆分公司炼油污水
中氯离子含量大大偏高和终点
变色迟缓返色等现象。于是改进
了炼油装置污水的预处理方式,
将样品经过滤直接加热挥发、

性条件下双氧水消解和碱性条
件下煮沸等过程后,能完全消解
和去除干扰离子,消除该现象,
而且氯离子几乎无损;汞氯配合
物的平均配位数与试液中氯离
子浓度有关,通过控制取样量,
使氯离子浓度在平均配位数近
似为2
的可准确测定范围。改进
后的硝酸汞容量法单次试验分
析周期为40 min,可准确测定至
0.35 mg/L
的氯离子,氯离子回收
率为98.0%~102.4%。
3
其他分析方法
陈建欣[31]
用电化学分析法测
定工业亚磷酸中氯离子含量,应
选择测定环境无氯气存在,参比
电极采用217
型双盐桥饱和甘
汞电极,若用新银电极要先用乙
醇擦洗,用蒸馏水泡24 h,然后
用0.001 mol/L
的AgNO 3
溶液浸
泡20~30 min
将电极活化,用
0.1000 mol/L
的AgNO 3
标准溶
液,试样质量10 g
左右为宜,本
方法适用于可溶性氯化物的测
定,测定最低值可低至0.0001%。
魏红兵等[32]
研究了用自动电
位滴定法测定化肥中氯离子含
量的方法。本方法是先将样品溶
解后加3
倍溶液体积量的乙醇,
然后用硝酸银标准溶液通过自
动电位滴定仪进行等当点滴定。
氯离子的检出下限为0.006,回
收率为98.6%~102.0%。
邵海青[34]
研究了以银电极作指示电极,
217
型甘汞电极作参比电极,在
经冷藏后的铜电解液中加入过
量的硝酸银标准溶液,以氯化钾
标准溶液电位返滴定测定氯离
子含量。
测得回收率在95%
~100%范围内,
RSD=2.8%。电位
滴定法简捷方便,测量准确,工
作效率高。
4
展望
在各种氯离子分析方法中,
以离子色谱法最为简便快速与
通用,而硝酸银容量法和硝酸汞
容量法因不需要特殊的仪器及
器皿简单,在废水的氯离子含量
测定中最为普及。虽然汞量法需
用到有毒试剂,但较银量法溶液
稳定性好、
可消除残硫酸根及低
pH
条件下滴定可减少干扰。但
两种容量法都存在灵敏度低、

现性差、
误差大等缺点。分光光
度法以其灵敏度高,选择性好,
操作简单等优点广泛用于各种
微量以及痕量组分的分析。浊度
法快捷简便且运行成本低,易实
现自动化,在分析科学中有广泛
的应用。离子色谱法虽然检测下
限很低,但操作复杂,仪器昂贵,
不适宜于实际生产的应用。原子
吸收法是一种十分成熟的痕量
分析技术,操作简便、
仪器普及、
重现性好、
有较高的灵敏度和选
择性,因此在稀土工业生产及分
析研究工作中得到广泛的应用。
流动注射有检测限低,线性范围
宽,重视性好,可与多种分析方
法联用,以此建立起来的痕量氯
离子浓度自动测定方法,更适合
于发电厂、
化工厂等生产运行中
各种水或中间反应过程中的氯
离子浓度的实时、在线自动监
测。
参考文献:
[1]但卫华.制革化学及工艺学[M].北京:
中国轻工业出版社,
2006.
[2]周少玲,张永.各种氯离子含量测定方
法的适用性探讨及新方法的提出[J].
热力发电,
2007,
37
(7):
75-76.
[3]周强,李萍,曹金花,等.测定植物体内
氯离子含量的滴定法和分光光度法
比较[J].
植物生理学通讯,
2007,
43
(6):
1163-1166.
[4]杨学芬.分光光度法测定工业亚磷酸
中的氯离子[J].
云南化工,
2000,
27
(4):
15-16.
[5]关瑞,李昌,宋维.分光光度法测定微
量氯离子的研究与应用[J].化工标准
化与质量监督,
2000,(3):
7-9.
[6]顾立公.硫氰酸汞-硝酸铁间接法测
定水中微量氯离子[J].江苏卫生保健,
2005,
7
(1):
18.
[7]GB/T 6905.4—1993,锅炉用水和冷却
水分析方法—— —氯化物的测定:共沉
淀富集分光光度法[S].
[8]陈振华,泉香芹.浊度法测定发电厂炉
水中微量氯离子的研究[J].华北电力
技术,
2003,(2):
7-8.
[9]
王爱荣,杨波,胡小保.比浊法测定酸
性镀铜液中微量氯离子[J].广东微量
元素科学,
2007,
14
(3):
45-47.
(下转第42
页)
西部皮革行业论坛
36
西部皮革第31

(上接第36
页)
[10]杜斌,王淑仁,魏琴.非离子型微乳液
介质-氯化银浊度法测定氯离子[J].
分析化学,
1995,
23
(5):
612.
[11]申海燕.水中微量氯离子的微型测定
[J].长沙铁道学院学报,
2003,
21(4):
87-88.
[12]王兆喜,汪敬武.反相流动注射比浊
法测定水中氯离子[J].
南昌大学学
报,
2003,
27
(3):
248-251.
[13]张新申,郑筱梅,陈子阳.离子色谱法
测定氯离子含量[J].
皮革科技,
1993,
18
(9):
14-16.
[14]朱子平.离子色谱法测定乳化液中的
氯离子[J].分析仪器,
2003,(4):
32-
34.
[15]陆克平,刘心烈.离子色谱法测定双
氧水中微量氯离子[J].
化肥工业,
2002,
29
(6):
39-40.
[16]王艳丽,伯英,刘燕,等.离子色谱法
测量硝酸中痕量的氯离子(I)[J].化
学工程师,
2006,(2):
42-43.
[17]刘燕,侯倩慧,余季金,等.离子色谱
双柱法测定硝酸中痕量氯离子[J].化
学分析计量,
2006,
15
(2):
40-41.
[18]宋晓年,王瑾.离子色谱法测定高纯
度水中痕量氯离子[J].
宇航材料工
艺,
1996,(5):
55-56.
[19]顾永祚,杨洪高,潘杨,等.间接原子
吸收法测定水中氯化物研究[J].四川
环境,
1994,
13
(1):
23-25.
[20]钱初洪,梁巧荣,黄志明.用原子吸收
法间接测定已二酸铵中的微量氯离
子[J].应用化工,
2003,
32
(3):
39-41.
[21]叶晓萍.原子吸收法间接测定高价稀
土氧化物[J].稀土,
2006,
27(2):
53-
56.
[22]杨延,薛来,刘来昌.用原子吸收法间
接测定电厂水中的痕量氯离子[J].上
海电力学院学报,
2000,
16
(1):
8-12.
[23]袁志莉,孙建民,高峥,等.火焰原子
吸收法间接测定二氧化硅中的氯[J].
分析科学学报,
2006,
22
(1):
115-
116.
[23]王传化.原子吸收分光光度法间接测
定湿法磷酸中的微量氯[J].磷肥与复
肥,
2006,
21
(4):
73-74.
[25]廖霞,肖仁贵,赵中一.流动注射-双
波长分光光度法测定水样中的游
离氯[J].
贵州化工,
1998,(3):
32-
34.
[26]李永生,董宜玲,吕淑清.炉水中微量
氯离子的流动注射分光光度测定法
[J].华东电力,
2003
(7):
70-74.
[27]王建伟,洪陵成.饮用水中余氯的反
相流动注射分析[J].仪器仪表与分析
监测,
2006
(1):
33-34.
[28]GB 5749—2006,生活饮用水卫生标
准[S].
[29]张艳.硝酸汞容量法测定氯化物[J].
中国公共卫生,
2004,
20
(3):
349.
[30]陆克平.汞量法测定炼厂含硫污水中
氯离子的改进[J].
检验检测,
2008
(9):
24-27.
[31]陈建欣.电化学分析法测定工业亚磷
酸中氯离子的含量[J].井冈山医专学
报,
2007.14
(4):
43-44.
[32]魏红兵,李权斌,王向东.自动电位滴
定法测定化肥中氯离子含量[J].磷肥
与复肥,
2005,
20
(2):
67-68.
[33]邵海青.电位滴定法测定铜电解液中
氯离子[J]. 治金分析,
2001,
21(4):
65.
部分:需从纤维中萃取的偶氮染料测
定[S].
[8]鹏搏.禁用偶氮染料检测技术进展[J].
上海化工,
1997,
6
(22):
36-39.
[9]崔燕娟,赖劲虎,王志畅.浅析生态纺
织品中禁用偶氮染料的检测技术[J].
化工时刊,
2008,
22
(4):
76-77.
[10]GB 20400-2006.皮革和毛皮有害物
质限量[S].
[11]GB 19601-2004.
染料产品中23

有害芳香胺的限量及测定[S].
[12]GB/T 19442-2005.
皮革和毛皮化学
试验禁用偶氮染料的测定[S].
[13]SN/T 1045.1.
染色纺织品和皮革制
品中禁用偶氮染料的检测方法液相
色谱法[S].
[14]SN/T 1045.2.染色纺织品和皮革制品
中禁用偶氮染料的检测方法气相色
谱/质谱法[S].
[15]SN/T 1045.3.染色纺织品和皮革制品
中禁用偶氮染料的检测方法气相色
谱法[S].
[16]DIN 53316:
1997.皮革检验皮革某些
偶氮染料的测定[S].
[17]§35 LMBG 82.02-2.日用品分析纺织
日用品上使用某些偶氮染料的检测
[S].
[18]§35 LMBG 82.02-3.日用品测试皮革
上禁用偶氮染料的检测[S].
[19]§35 LMBG 82.02-4.日用品分析聚酯
纤维上使用某些偶氮染料的检测[S].
[20]§64 LFBG 82.02-9.日用品研究可排
放4-氨基偶氮苯的偶氮染料之使用
验证[S].
[21]ISO/TS 17234:
2003.
皮革化学测试
皮革中某些偶氮染料的测定[S].
[22]姜逊,张玉莲,汪福坤.禁用偶氮染料
检测现状与发展建议[J].上海纺织科
技,
2008,
36
(1):
52-53.
[23]朱少萍,顾丽娟.禁用偶氮染料检测
中假阳性结果的鉴别方法[J].科技信
息,
2007,(11):
85,
87.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
西部皮革行业论坛
42

㈡ 废水氯离子的检测方法

“氯离子的数量在25-50之间”是指百分含量?
量取或称取(如果是求物质的量浓度用量取,专求质量属分数用称取)一定量的废水,先往废水中滴加硝酸,若有沉淀或气体生成,则继续滴加到无沉淀和气体生成,若有沉淀生成,则过滤。再往溶液里滴入过量的硝酸银直到无沉淀生成。过滤。烘干所得沉淀,测得沉淀质量即AgCl的质量,进而可以求出所取废水中所含的氯元素的质量和物质的量,也即氯离子的质量和物质的量。

㈢ 求教下染整企业排的废水,用什么方法检测COD最好

根据《水和废水监测分析方法》(第四版),重酪酸钾法是标准的COD测定方法之一,其准确性受人为影响较大,滴定不准确、标准液配置的不标准等等,都会影响检测的结果。
水中COD 的检测方法
1 主题内容与适用范围
本标准规定了水中化学需氧量的测定方法。
本标准适用于各种类型的含COD值大于30mg/L的水样,对未经稀释的水样的测定上限为700mg/L。
本标准适用于含氯化物浓度大于1000mg/L(稀释后)的含盐水。
2 定义
在一定条件下,经重铬酸钾氧化处理时,水样中的溶解性物质和悬浮物所消耗的重铬酸盐相对应的氧的质量浓度。
3 原理
在水样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾由消耗的硫酸亚铁铵的量换算成消耗氧的质量浓度。
在酸性重铬酸钾条件下,芳烃及啉啶难以被氧化,其氧化率较低。在硫酸银催化作用下,直链脂肪族化合物可有效地被氧化。
4 试剂
除另有说明,实验时所用试剂均为符合国家标准的分析纯试剂,实验用水均为蒸馏水或具有同等纯度的水。
4.1 硫酸银,化学纯;
4.2 硫酸汞,化学纯;
4.3 硫酸,ρ=1.84g/mL;
4.4 硫酸银—硫酸试剂:向1L硫酸(4.3)中加入10g硫酸银(4.1),放置1~2天使之溶解,并混匀,使用前小心摇动。
4.5 重铬酸钾标准溶液
QJ/XH 05031—2002
4.5.1 浓度为C(1/6K2Cr2O7)= 0.250mol/L的重铬酸钾标准溶液:将12.258g在105℃干燥2h后的重铬酸钾溶于水中,稀释至1 000mL。
4.5.2 浓度为C(1/6K2Cr2O7)= 0.0250mol/L的重铬酸钾标准溶液:将4.5.1条的溶液稀释10倍而成。
4.6 硫酸亚铁铵标准滴定溶液
4.6.1 浓度为C[(NH4)2Fe(SO4)2•6H2O] ≈ 0.10mol/L的硫酸亚铁铵标准滴定溶液:溶解39g硫酸亚铁铵[(NH4)2Fe(SO4)2•6H2O]于水中,加入20mL硫酸(4.3),待其溶解冷却后,稀释至1000mL。
4.6.2 每次临用前,必须用重铬酸钾标准溶液(4.5.1)准确标定此溶液(4.6.1)的浓度。
取10.00mL重铬酸钾标准溶液(4.5.1)置于锥形瓶中,用水稀释至约100mL,加入30mL硫酸(4.3),混匀,冷却后,加3滴(约0.15mL)试亚铁灵指示剂(4.8),用硫酸亚铁铵(4.6.1)滴定溶液的颜色由黄色经蓝绿色变为红褐色,即为终点。记录下硫酸亚铁铵的消耗量(mL)。
4.6.3 硫酸亚铁铵标准滴定溶液浓度的计算:
10.00×0.250 2.50
C = ——————— = ————
V V
式中:V — 滴定时消耗硫酸亚铁铵溶液的mL数。
4.6.4 浓度为C[(NH4)2Fe(SO4)2•6H2O]≈ 0.010mol/L的硫酸亚铁铵标准滴定溶液:将4.6.1条的溶液稀释10倍,用重铬酸钾标准溶液(4.5.2)标定,其滴定步骤及浓度计算分别与4.6.2及4.6.3类同。
4.7 邻苯二甲酸氢钾标准溶液,C[KC6H5O4]=2.0824 m mol/L:称取105℃时干燥2h的邻苯二甲酸氢钾0.4251g溶于水,并稀释至1000mL,混匀。以重铬酸钾为氧化剂,将邻苯二甲酸氢钾完全氧化的COD值为1.176g氧/克(指1g邻苯二甲酸氢钾耗氧1.176g)故该标准溶液的理论COD值为500mg/L。
4.8 1,10—菲绕啉(1,10—phenanathroline monohy drate)指示剂溶液:溶解0.7g七水合硫酸亚铁于50mL的水中,加入1.5g1,10—菲绕啉,搅动至溶解,加水稀释至100mL。
4.9 防爆沸玻璃珠。
5 仪器

常用实验室仪器和下列仪器。
5.1 回流装置:带有24号标准磨口的250mL锥形瓶的全玻璃回流装置。回流冷凝管长度为300~500mm。若取样量在30mL以上,可采用带500mL锥形瓶的全玻璃回流装置。
5.2 加热装置。
5.3 25mL或50mL酸性滴定管。
6 采样和样品
QJ/XH 05031—2002
6.1 采样
水样要采集于玻璃瓶中,应尽快分析。如不能立即分析时,应加入硫酸(4.3)至pH<2,置4℃下保存。但保存时间不多于5天。采集水样的体积不得少于100mL。
6.2 试料的准备
将试样充分摇匀,取出20.0mL作为试料。
7 步骤
7.1 对于COD小于50mg/L的水样,应采用低浓度的重铬酸钾标准溶液(4.5.2)氧化,加热回流以后,采用低浓度的硫酸亚铁铵标准溶液(4.6.4)回滴。
7.2 该方法对未经稀释的水样其测定上限为700mg/L,超过此限时必须经稀释后测定。
7.3 对于污染严重的水样,可选取所需体积1/10的试料和1/10的试剂,放入10×150mm的硬质玻璃管中,摇匀后,用酒精灯加热至沸数分钟,观察溶液是否变成蓝绿色。如呈现蓝绿色,应再适当少取试料,重复以上试验,直至溶液不变蓝绿色为止。从而确定待测水样适当的稀释倍数。
7.4 取试料(7.2)于锥形瓶中,或取适量试料加水至20.0mL。
7.5 空白试验:按相同步骤以20.0mL水代替试料进行空白试验,其余试剂和试料测定(7.8)相同,记录下空白滴定时消耗硫酸亚铁铵标准溶液的毫升数V1。
7.6 校核试验:按测定试料(7.8)提供的方法分析20.0mL邻苯二甲酸氢钾标准溶液(4.7)的COD值,用以检验操作技术及试剂纯度。
该溶液的理论COD值为500mg/L,如果校核试验的结果大于该值的96%,即可认为实验步骤基本上是适宜的,否则,必须寻找失败的原因,重复实验,使之达到要求。
7.7 去干扰试验:无机还原性物质如亚硝酸盐、硫化物及二价铁盐将使结果增加,将其需氧量作为水样COD值的一部分是可以接受的。
该实验的主要干扰物为氯化物,可加入硫酸汞(4.2)部分地除去,经回流后,氯离子可与硫酸钡结合成可溶性的氯汞络合物。
当氯离子的含量超过1000mg/L时,COD的最低允许值为250 mg/L,低于此值结果的准确度就不可先靠。
7.8 水样的测定:于试料(7.4)中加入10.0mL重铬酸钾标准溶液(4.5.1)和几滴防爆沸玻璃珠(4.9),摇匀。
将锥形瓶接到回流装置(6.1)冷凝管下端,接通冷凝水。从冷凝管上端缓慢加入30mL硫酸银—硫酸试剂(4.4),以防止低沸点有机物的逸出,不断旋动锥形瓶使之混合均匀。自
溶液开始沸腾起回流两小时。
冷却后,用20~30mL水自冷凝管上端冲洗冷凝管后,取下锥形瓶,再用水稀释至140 mL左右。
溶液冷却至室温后,加入3滴1,10—菲绕啉指示剂溶液(4.8),用硫酸亚铁铵标准滴定溶液(4.6)滴定,溶液的颜色由黄色经蓝绿色变为红褐色即为终点。记下硫酸亚铁铵标准滴定溶液的消耗毫升数V2。
QJ/XH 05031—2002
7.9 在特殊情况下,需要测定的试料在10.0mL到50.0mL之间,试剂的体积或重量要按表1作相应的调整。
表1 不同取样量采用的试剂用量
样品量mL 0.250mol/LK2Cr2O7mL Ag2SO4—H2SO4mL HgSO4G (NH4)2Fe(SO4)2•6H2Omol/L 滴定前体积mL
10.0 5.0 15 0.2 0.05 70
20.0 10.0 30 0.4 0.10 140
30.0 15.0 45 0.6 0.15 210
40.0 20.0 60 0.8 0.20 200
50.0 25.0 75 1.0 0.25 350
8 结果的表示
8.1 计算方法
以mg/L计的水样化学需氧量,计算公式如下:
(V1 – V2)C×8000
COD(mg/L)= ———————————
V0
式中:C — 硫酸亚铁铵标准滴定溶液(4.6)的浓度,mol/L;
V1 — 空白试验 (7.4) 所消耗的硫酸亚铁铵标准滴定溶液的体积,mL;
V2 — 试料测定(7.8)所消耗的硫酸亚铁铵标准滴定溶液的体积,mL;
V0 — 试料的体积,mL;
8000 — 1/4 O2的摩尔质量以mg/L为单位的换算值。
确定结果一般保留三位有效数字,对COD值小的水样(7.1),当计算出COD值小于10mg/L时,应表示为“COD<10mg/L”。
8.2 精密度
8.2.1 标准溶液测定的精密度
40个不同的实验室测定COD值为500 mg/L的邻苯二甲酸氢钾(4.7)标准溶液,其标准偏差为20 mg/L,相对标准偏差为4.0%。

㈣ 酸性废水中氯离子,钠离子的检测方法急需!

氯离子的复检验可以制这样来:由于溶液呈酸性,先加入硝酸银溶液(如果溶液本来不是酸性,需要加入稀硝酸酸化),有白色沉淀生成,该白色沉淀溶于氨水(形成银氨的络合物,而当向络合物中加入硝酸时,又有白色沉淀生成)
至于钠离子,常用的方法是焰色反应,观察时要透过蓝色的钴玻璃

㈤ 请问一下测定废水氯离子的最佳方法

1 范围
本方法规定了水中氯化物浓度的硝酸银滴定法。
本方法适用于天然水中氯化物的测定也适用于经过适当稀释的高矿化度水如咸水海水等以及经过预处理除去干扰物的生活污水或工业废水。
本方法适用的浓度范围为10-500mg/L的氯化物高于此范围的水样经稀释后可以扩大其测定范围。
溴化物碘化物和氰化物能与氯化物一起被滴定正磷酸盐及聚磷酸盐分别超过250mg/L及25mg/L时有干扰铁含量超过10mg/L时使终点不明显。
2 原理
在中性至弱碱性范围内(pH6.5-10.5)。以铬酸钾为指示剂用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下:
Ag+ + Cl- →AgCl
2Ag+ + CrO42- →Ag2CrO4 (砖红色)
3 试剂
分析中仅使用分析纯试剂及蒸馏水或去离子水
3.1 高锰酸钾c (1/5KMnO4) 0.01mol/L
3.2 过氧化氢(H2O2) 30%
3.3 乙醇(C2H5OH) 95%
3.4 硫酸溶液c 1/2 H2SO4 =0.05mol/L
3.5 氢氧化钠溶液c NaOH =0.05mol/L
3.6 氢氧化铝悬浮液溶解125g 硫酸铝钾[KAl(SO4)2 12H2O]于1L 蒸馏水中加热至60℃,然后边搅拌边缓缓加入55mL浓氨水放置约1h后, 移至大瓶中用倾泻法反复洗涤沉淀物,直到洗出液不含氯离子为止用水稀至约为300mL。
3.7 氯化钠标准溶液0.0141mol/L 相当于500mL/L 氯化物含量将氯化钠(NaCl)置于瓷坩埚内在500~600 下灼烧40~50min 在干燥器中冷却后称取8.2400g 溶于蒸馏水中在容量瓶中稀释至1000mL用吸管吸取10.0mL, 在容量瓶中准确稀释至100mL。
1.00mL 此标准溶液含0.50mg 氯化物(Cl-)。
3.8 硝酸银标准溶液0.0141mol/L 称取2.3950g 于105 烘半小时的硝酸银(AgNO3) 溶于蒸馏水中在容量瓶中稀释至1000mL贮于棕色瓶中用氯化钠标准溶液(3.7)标定其浓度。
用吸管准确吸取25.00mL氯化钠标准溶液(3.7)于250mL锥形瓶中加蒸馏水25mL另取一锥形瓶量取蒸馏水50mL作空白,各加入1mL铬酸钾溶液(3.9)在不断的摇动下用硝酸银标准溶液滴定至砖红色沉淀刚刚出现为终点。计算每毫升硝酸银溶液所相当的氯化物量,然后校正其浓度再作最后标定。
1.00mL此标准溶液相当于0.50mg氯化物(Cl-)
3.9 铬酸钾溶液50g/L:称取5g铬酸钾(K2CrO4)溶于少量蒸馏水中滴加硝酸银溶液(3.8)至有红色沉淀生成,摇匀静置12h然后过滤并用蒸馏水将滤液稀释至100mL。
3.10 酚酞指示剂溶液称取0.5g 酚酞溶于50mL95 乙醇(3.3)中加入50mL 蒸馏水再滴
加0.05mol/L 氢氧化钠溶液(3.5)使呈微红色。
4 仪器
4.1 锥形瓶250mL
4.2 滴定管25mL 棕色
4.3 吸管50mL 25mL
5 试样制备
采集代表性水样放在干净且化学性质稳定的玻璃瓶或聚乙烯瓶内保存时不必加入特别的防腐剂。
6 操作步骤
6.1 干扰的排除
若无以下各种干扰此节可省去
6.1.1 如水样浑浊及带有颜色则取150mL或取适量水样稀释至150mL置于250mL锥形瓶中,加入2mL氢氧化铝悬浮液(3.6)振荡过滤弃去最初滤下的20mL,用干的清洁锥形瓶接取滤液备用。
6.1.2 如果有机物含量高或色度高可用茂福炉灰化法预先处理水样取适量废水样于瓷蒸发皿中调节pH值至8~9置水浴上蒸干然后放入茂福炉中在600下灼烧1h取出冷却后加10mL蒸馏水移入250mL 锥形瓶中并用蒸馏水清洗三次一并转入锥形瓶中调节pH值到7左右稀释至50mL。
6.1.3 由有机质而产生的较轻色度可以加入0.01mol/L 高锰酸钾(3.1)2mL煮沸再滴加乙醇(3.3) 以除去多余的高锰酸钾至水样退色过滤滤液贮于锥形瓶中备用。
6.1.4 如果水样中含有硫化物亚硫酸盐或硫代硫酸盐则加氢氧化钠溶液(3.5)将水样调至中性或弱碱性加入1mL30 过氧化氢(3.2) 摇匀一分钟后加热至70~80 以除去过量的过氧化氢。
6.2 测定
6.2.1 用吸管吸取50mL 水样或经过预处理的水样(若氯化物含量高可取适量水样用蒸馏水稀释至50mL) 置于锥形瓶中另取一锥形瓶加入50mL蒸馏水作空白试验。
6.2.2 如水样pH 值在6.5~10.5范围时可直接滴定超出此范围的水样应以酚酞作指示剂。
用稀硫酸(3.4)或氢氧化钠的溶液(3.5)调节至红色刚刚退去。
6.2.3 加入1mL铬酸钾(3.9)溶液1 用硝酸银标准溶液(3.8)滴定至砖红色沉淀刚刚出现即为滴定终点。
同法作空白滴定。

㈥ 印染废水中氯离子怎么测定

1、滴定法:碘量法——HZ-HJ-SZ-0149
如果需要我将PDF版本发给你
2、用余氯测试试纸;
3、用余氯测试仪。

㈦ 怎样较准确地测定高盐废水的COD值

硫酸汞的确可以掩蔽一定浓度的氯离子(<1000mg/L),但是当原水中的氯离子含量过高,提高硫酸汞测专定属的COD也是不准确的。
根据相关文献了解,压裂返排液的COD波动较大(2000~10,000mg/L)。参考《水和废水监测分析方法(第四版)》,可先稀释原水,将氯离子含量控制在1000mg/L以内。预估稀释后的COD,如果大于50mg/L,选用0.25mol/L的重铬酸钾溶液,在5~50之间,可以选用0.025mol/L的重铬酸钾溶液。当然硫酸汞作为掩蔽剂在操作流程中仍然是需要加入的。

注:由于不清楚盐含量30g/L中NaCl的占比,假定全部是NaCl,理论上稀释20倍可以将氯离子含量控制在1000mg/L以内。题主可以先试试稀释法。

㈧ 滴定法怎么测污水COD呀

COD标准测定法

(1) 取20.00mL混合均匀的水样(或适量水样稀释至20.00mL)置250mL磨口的回流锥形瓶,准确加入10.00ml 0.25mol/L重铬酸钾标准溶液及数粒洗净的玻璃珠或沸石,连接磨口回流冷凝管,从冷凝管上口慢慢地加入30 ml硫酸--硫酸银溶液,轻轻摇动锥形瓶使溶液混匀,加热回流2小时(自开始沸腾时计时)。

(2) 冷却后,用90mL水从上部慢慢冲洗冷凝管壁,取下锥形瓶。溶液总体积不得少于140mL,否则因酸度太大,滴定终点不明显。

(3) 溶液再度冷却或,加三滴试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。

(4) 测定水样的同时,以20.00mL蒸馏水,按同样操作步骤作空白试验。记录滴定空白时硫酸亚铁铵标准溶液的用量。

注:测定范围为50mg/L——700mg/L。

缺点:

1、 耗时太多,每测定一个样需回流2个小时;
2、 回流设备占用的空间大,使批量测定出现困难;
3、 分析费用较高,特别是硫酸银(500.00元/百克);
4、 回流水的浪费;
5、 毒性的汞盐易造成二次污染。

二对重铬酸钾法测COD的改进

在一定比例的硫磷混合酸组成的强酸性溶液中,用重铬酸钾将水样中的还原性物质(主要是有机物)氧化,过量的重铬酸钾溶液以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据所消耗的重铬酸钾量算出水样中的化学需氧量,以每升水样中氧的毫克数表示。
说法1:
步骤同标准方法:
取20 .00ml废水(或适量废水稀释至20 .00ml)摇匀置于250ml磨口的回流锥形瓶中,加入10.00ml重铬酸钾标准溶液及2-3粒小玻璃珠或者沸石,连接磨口回流冷凝管,从冷凝管上口慢慢加入30ml硫磷混合酸,轻轻摇动锥形瓶使溶液混匀,加热回流12分钟(自开始沸腾时计时)。但对于有氯离子的废水,则应先把0. 4克硫酸汞加入回流锥形瓶中后(以下操作同上)。本方法采用硫磷混合酸代替硫酸—硫酸银溶液,极大地缩短了回流时间。
本快速法与标准法相比,极大地缩短了回流时间,提高了分析速度,节省了水电及试剂,大大降低了分析成本。且检验结果准确可靠,能很好地满足应急监测的需要。
说法2:CuSO4-(KAl(SO)4-Na2MoO4代替Ag2SO4作催化剂,AgNO3-CrK(SO4)2代替Hg2SO4消除CI-干扰,在H2SO4-H3PO4(3:1)(V%下同)体系中加热回流0.5h。
按实验方法改变混酸中硫酸与磷酸的体积比表明:当H2SO4∶H3PO4=3∶1时(体积比,下同)回收率最高.当混酸配比小于3∶1时,由于硫酸用量减少,K2Cr2O7的氧化能力降低,回收率低,混酸配比大于3∶1时回收率趋于稳定,但磷酸用量减少对污染物的凝聚作用减弱,使回收率稍微降低。
本方法与标准法测定结果接近,相对偏差在-4.38%~1.94%之间,能较好地满足分析测试要求。
在H2SO4-H3PO4混酸介质中,CuSO4-KAl(SO4)2-Na2MoO4,对重铬酸钾氧化废水中还原性物质有较强的催化作用,与标准法相比准确度和精密度较好。
本方法的最大优点是加热回流时间由标准法的2h缩短到0.5h,并扩大水样CODcr测定范围。
其次,用AgNO3-CrK(SO4)2代替Hg2SO4作为CI-干扰的消除剂,避免了汞污染,具有较好的环境效应。

三、自热法快速测定COD
用加大硫酸用量,依靠水与浓硫酸混合放出的热量而升高温度,无需外加热量,因此能同时快速测定多个水样
说法1:
实验原理:硫酸溶解于水为剧烈的放热反应。如在10ml水中加入14.9ml浓H2SO4,此时溶液的溶解热[4]为:
H°sn=41.91kJ/kmolH2SO4;
稀释热总计为:Q=41.91×14.9×1.84/98=11.65kj
若忽略热损失,溶液温升△t为:△t=Q/mcp=11.65/[(14.79×1.84+10.0×1.0)×10-3×2.09]=149.7℃
若室温20℃,则溶液最终温度可达169.7℃,在此温度及强酸性条件下,硫酸溶解于水的稀释热足够提供氧化消解反应所需的热量,故无需外加热量。
测定主要因素有:原始水样COD及取样量、K2Cr2O7用量、H2SO4加入量及HgSO4用量。为确定最佳试验条件,采用正交法,因素水平如表:
试验因素
水平 水样量(ml) K2Cr2O7(ml) H2SO4(ml) HgSO4(g)
1 1 2.5 7.5 0.1
2 2 5 15 0.2
3 5 10 20 0.3

说法2:从混合液温度和氧化剂条件电极电势两方面计算得到最佳的硫酸与水样的体积比为1.34。
在无外加热COD快速测定中,体系酸度是关键因素,它既决定了反应温度,又决定了氧化剂的氧化能力。因此,为了使废水有机物氧化快速、完全,必须确定最佳的加酸量,在此硫酸浓度下,水样可以达到的温度最高,氧化剂的条件电极电势最高。
当浓硫酸与水样体积之比Cv为1.34时,混合后溶液的终温最高,理论最高温度为165.2℃;此后再提高酸度,溶液终温将下降。当此比值为1.0时,即投加的浓硫酸体积与水样体积相等(同标准法酸度)时,溶液终温为161.9℃;在Cv为1~2的范围内,溶液终温都在160℃以上。

四、微波密封消解快速测定仪
采用硫酸和重铬酸钾消解体系,水样经微波炉加热消解后,过量的重铬酸钾以试亚铁灵为指示剂,用硫酸亚铁铵进行滴定,计算出COD值。
1) 主要仪器与试剂
① 微波消解炉、聚四氟乙稀消解罐;
②含Hg2+消解液:称取经120℃烘干2h的基准或纯重铬酸钾9.806g,溶于600mL水中,再加入硫酸汞25.0g,边搅拌边加入浓硫酸250mL,冷却后,移入1000mL容量瓶中,并稀释至刻度摇匀,该溶液重铬酸钾浓度为0.2000mol/L。适用于氯离子浓度大于100mg/L水样,最高可络合2000mg/L氯离子浓度,水样中氯离子浓度过高可适当稀释。
③无Hg2+消解液:除了不用加入硫酸汞外,其他同②配制方法.适用于测定氯离子浓度小于100mg/L的水样.④试亚铁灵指示剂、硫酸亚铁铵标准溶液、硫酸—硫酸银催化剂、硫酸汞.
2)实验方法
①用直吹式移液管取水样5.00mL于消解罐中,准确加入5.00mL消解液和5.0mL催化剂,摇匀.在分析含Cl-水样时,罐内加入水样和含Hg2+消解液后,及时摇匀(约1min)使Cl-与Hg2+充分反应后,再加催化剂。
②旋紧密封盖,将罐均匀置放入消解炉玻璃盘上,离转盘边沿约2cm圆周上单圈排好。
② 样品消解时间取决于转盘上放置的消解罐数目。
3)该方法的优缺点比较
①该方法仅需水样、消解液、催化剂各5.00mL,试剂用量减少,消解时间由2h缩短到几min,不仅节省分析费用,且大大提高了工作效率,操作亦简便安全。
②精密度:样品1、2测定结果,相对标准偏差分别为和0.58%~1.50%,远小于标准法规定的≤4.3%。
③准确度:某对标样进行测定,五个平行标样相对误差为1.14%,测试合格。

五、HH—1型化学耗氧量快速测定仪等等
HH—1型化学耗氧量测定仪(江苏电分析仪器厂)回流装置,34#标准磨口150ml锥形瓶,120mm球形冷凝管0.05/6mol/L重铬酸钾溶液硫酸———硫酸银溶液(6g/500ml)20%硫酸铁溶液。
库仓法原理:水样以重铬酸钾为氧化剂,在10.2mol/L硫酸介质中回流氧化后,过量的重铬酸钾用电解产生的亚铁离子作为库仓滴定剂进行库仓滴定,根据电解产生亚铁离子所消耗的电量,按照法拉第定律直接计算COD值。

阅读全文

与废水中的氯离子怎么检测相关的资料

热点内容
提升自己为公司服务器 浏览:603
不锈钢被除垢剂腐蚀 浏览:253
则纯水的电导率为多少 浏览:171
松阳县田园农村生活污水 浏览:64
超滤膜要出废水么 浏览:860
鱼池除氧有什么滤芯 浏览:262
没有储水罐净水器水压小怎么处理 浏览:422
环氧树脂砂浆裂缝修补方案 浏览:181
怡渴净水器滤芯怎么换 浏览:266
污水提升器买什么用 浏览:727
进口净味醇酸树脂 浏览:982
污水井管道清洗多少钱 浏览:689
除垢除尘自动清洗机 浏览:641
ro膜反渗透净水膜用什么牌子 浏览:723
污水处理无机絮凝剂 浏览:197
污水是怎么排放的作文 浏览:495
java过滤标点符号代码 浏览:489
怎么溶解丙烯酸树脂 浏览:828
新飞净水机的质量怎么样 浏览:174
翼神空调滤芯怎么买 浏览:930