1. 光化学氧化法:光催化氧化在处理废水时有哪些优缺点
光催化氧化的优点:
(1)反应条件温和、氧化能力强。
(2)在染料废水、表而活性剂、农药废水、含油废水、氰化物废水、制药废水、有机磷化合物、多环芳烃等废水处理中,都能有效地进行光催化反应,使其转化为无机小分子,达到完全无害化的目的。
(3)光催化氧化反应对许多无机物,如CN-、Au(CN)2-、I-、SCN-、Cr2O72-、Hg(CH3)2、 Hg2+等的去除也有广阔的应用前景。
(4)可以破坏氰化物,以及电镀常用的各种有机螯合剂和添加剂,而达无害化。
(5)可以除去各种水中的微生物、细菌和霉菌。
(6)不仅可以破坏稀溶液(废水)中的有机物,而且可以破坏浓溶液(槽液)中的有机物。
(7)是一种非常清洁的干处理法,不会引入任何其他物质到体系中。
(8)能彻底破坏有机物而使其转化为CO2排出,处理的深度比其他方法高。
光催化氧化的缺点:
(1)紫外光的吸收范围较窄,光能利用率较低,其效率还会受催化剂性质、紫外线波长和反应器的限制,短波紫外线(波长小于1700 A)比长波的效果好,但短波紫外光较难获得。
(2)光催化氧化需要解决透光度的问题,因为某些废水(如印染废水)中的一些悬浮物和较深的色度都不利于光线的透过,会影响光催化效果。
(3)目前使用的催化剂多为纳米颗粒(太大时催化效果不好),回收困难,而且光照产生的电子一空穴对易复合而失活。
2. 除草剂废水处理方法有哪些
除草剂生产过程中排放的废水,因除草剂品种繁多,除草剂废水水质复杂,如果能有效处理会对环境产生很大的影响。
一、除草剂废水的特点
除草剂废水主要特点有:污染物浓度较高,COD可达每升数万毫克;毒性大,废水中除含有农药和中间体外,还含有酚、砷、汞等有害物质以及许多难以生物降解的物质;有恶臭,对人的呼吸道和粘膜有刺激性;水质、水量不稳定。
二、除草剂废水处理方法
(一)生物法
在国内,农药厂家大多建有生化处理装置,但目前几乎没有一家能够获得理想的处理效果。因此,对这类废水的生化处理研究是十分必要的。已有大量研究表明真菌、细菌、藻类等微生物对有农药有很好的降解作用。生物膜法将微生物细胞固定在填料上,微生物附着于填料生长、繁殖,在其上形成膜状生物污泥。与常规的活性污泥法相比,生物膜具有生物体积浓度大、存活世代长、微生物种类繁多等优点,尤其适宜于特种菌在废水体系中的应用。
(二)电解法
铁炭微电解法是絮凝、吸附、架桥、卷扫、共沉、电沉积、电化学还原等多种作用综合效应的结果,能有效地去除污染物提高废水的可生化性。新产生的铁表面及反应中产生的大量初生态的Fe2
+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环;微电池电极周围的电场效应也能使溶液中的带电离子和胶体附集并沉积在电极上而除去;另外反应产生的Fe2+、Fe3+及
其水合物具有强烈的吸附絮凝活性,能进一步提高处理效果。
(三)氧化法
深度氧化技术可通过氧化剂的组合产生具有高度氧化活性的·OH,被认为是处理难降解有机污染物的最佳技术。引入紫外线、双氧水联合作用和调控反应体系pH,可进一步提高臭氧深度氧化法的效率。陈爱因研究表明,紫外光催化臭氧化降解农药2,
4-二氯苯氧乙酸(2, 4-
D)废水成效显著,臭氧/紫外(UV)深度氧化法(比较单独臭氧化、臭氧/紫外、臭氧/双氧水、臭氧/双氧水/紫外4种臭氧化过程)是最好的臭氧化处理方法。2,
4- D 200 mg·L-1的水样,反应30min,2, 4-D降解完全, 75
min时矿化率达75%以上。碱性反应氛围有利于臭氧化反应进行。双氧水的引入对2, 4-
D降解无明显促进作用,这是因为双氧水分解消耗OH-,没有缓冲的反应体系pH降低,限制了双氧水的分解和·OH自由基链反应。表明添加H2O2对光解效果有一定改善作用,投加量达到75
mg·L-1时,水样的COD去除率由零投加时的20%提高到40%,但过量投加对处理效果没有进一步促进作用。曝气能促进光解效果,特别对UV
/Fenton工艺作用更为显著,光解水样2 h后,曝气条件下的COD
去除率可从不曝气条件下的30%提高到80%。催化湿式氧化能实现有机污染物的高效降解,同时可以大大降低反应的温度和压力,为高浓度难生物降解的有机废水的处理提供了一种高效的新型技术。催化剂是催化湿式氧化的核心,诸多学者致力于研究开发新型高效的催化剂。
(四)光催化法
锐钛型的TiO2在紫外光的照射下能产生氧化性极强的羟基自由基,能够氧化降解有机物,使其转化为CO2、H2O以及无机物,降解速度快,无二次污染,为降解处理农药废水提供了新思路
。对于光催化降解有机物目前关注的问题,一方面是降解过程中的影响因素和降解过程的转化问题,对纳米TiO2的固载化和反应分离一体化成为光催化领域中具有挑战性的课题之一,另一方面是提高制备催化剂催化效率的问题。
3. 多相臭氧催化氧化处理废水和均相的区别
目前在城市生活污水中应用最多的就是所谓的活性污泥法,它有处理能力强,回处理后水质好等优势。其大答致组成包括由曝气池,沉淀池,污泥排放以及回流等系统。待处理的污水和活性污泥回流共同进入曝气池然后混合,然后在其中与空气接触使得含氧量增加,发生代谢反应。经过充分搅拌的混合液变为悬浮状态,所以其中的有机污染物和氧气能够与微生物接触发生反应。接下来进入的是沉淀池,原来的悬浮固体会在其中沉降而被隔离,所以从沉淀池流出的已经为净化水。沉淀池里的污泥一般都会回流,从而保证曝气池中的悬浮固体和微生物有一定的浓度。在曝气池里的反应会使微生物增殖,所以过多的微生物要排出沉淀池以维持整个系统的稳定性。除需要能够氧化和分解有机物外,活性污泥还必须有一定凝聚和沉降能力,以便可以使其从混合液中分离,进而在出口得到纯净的水。活性污泥法的缺点在于其基础建设的成本过高,不易实施。
4. 污水处理厂催化氧化塔压力大是怎么回事,有解决的办法吗
催化氧复化塔有很多种,不知道贵制单位用的是什么方式。请按以下五点排查:
1、进水泵是否存在空转现象,或管道有进气孔,随水进入催化氧化塔。
2、催化氧化塔是否存在排水不畅问题导致压力增加。
3、该催化氧化方式是否有气体产生,如有增加安全压力阀。
4、废水中是否存在大量氨氮,于罐中溢出。
5、是否催化氧化塔发生厌氧反应。
由于具体情况不明,以上仅属推测。实际情况仍需根据现场情况排查。
5. cod中没有可生化性的部分在废水处理中是怎么被除去的
1催化氧化法 在催化剂作用下,废水中的有机物可以被强氧化剂氧化分解,有机物结构中的双键断裂,由大分子氧化成小分子,小分子进一步氧化成二氧化碳和水,使COD大幅度下降,BOD/COD值提高,增加了废水的可生化性,经深度处理后可达标排放。用催化氧化法处理医药工业废水,可以克服传统生化处理医药废水效果不明显的不足,有效地破坏有机物分子的共轭体系,达到去除COD、提高可生化性的目的。催化氧化法中,选择催化剂和氧化剂是关键。选择合适的催化剂和氧化剂,在适宜的工艺条件下处理的废水再经过二次处理后可达标排放。如在活性炭载带过渡金属氧化物催化剂的催化作用下,采用Cl02作氧化剂处理医药废水,不但处理成本低,氧化性远高于次氯酸钠,而且不会生成三卤甲烷等致癌物质[3]。 2.内电解法内电解法的原理是利用铁屑中铁与石墨组分构成微电解的负极和正极,以充入的污水为电解质溶液,在偏酸性介质中,正极产生具有强还原性的新生态氢,能还原重金属离子和有机污染物。负极生成具有还原性的亚铁离子。生成的铁离子、亚铁离子经水解、聚合形成的氢氧化物聚合体以胶体形式存在,它具有沉淀、絮凝吸附作用,能与污染物一起形成絮体、产生沉淀。应用内电解法可去除废水中部分色度、部分有机物,并且提高废水的生化处理性能,增加生物处理对有机物的去除效果。其反应机理为:阳极(Fe): Fe=Fe2++2eE=-0.44V阴极(C): 2H++2e=H2 E=0.00V当有氧时: O2+4H++4e=2H2O E=1.23VO2+2H2O+4e=4OH- E=0.40V 实验证明,在内电解后,废水的可生化性能明显提高,这主要是由于在内电解的过程中产生的新生态氢和亚铁离子具有较强的还原性,能与废水中的难降解的有机物发生氧化还原反应,破坏其化学结构,从而提高了生物降解性能。此外。在电极氧化和还原的同时,废水中某些有色物质也由于参加氧化还原反应而被降解,从而使废水的色度降低。 3.吸附法吸附法处理废水是通过活性炭、磺化煤等吸附剂和吸附质(溶质)间的物理吸附、化学吸附以及交换吸附的综合作用来达到除去污染物的目的。其具有以下特点[4]:(1)活性炭对水中有机物吸附性强;(2)活性炭对水质、水温及水量的变化有较强的适应能力。对同一种有机污染物的污水,活
6. 湿式催化氧化法处理高浓度有机废水 国内有成功案例吗
高浓度有机废水选择湿发催化氧化是预处理的有效方法,在国内成功的案例信手拈来。只是在定方案以前,要有专业的工程师花时间做实验。
7. 废水处理中催化氧化处理起到什么作用
纯水一号水处理为您解答:
利用催化剂加强氧化剂的分解以加快废水中污染物与氧化剂之间的化学反应,去除水中的污染物。
8. 废水中的苯环如何破除
如何破解高浓废水?用高效催化氧化处理工艺
:一、高浓度废水背景概述
高浓度难降解废水越来越多,与此同时随着生活水平的提高,环保意识增强,人们对难降解的有机物在环境中的迁移、变化越来越关注,然而高浓度难降解有机污染物的处理,是废水处理的一个难点,难以用常规工艺(如混凝、生化法)处理,这是因为?
一、是此类废水浓度高,CODcr一般为数万mg/L,高的甚至达到十多万mg/L以上;
二、是其中所含是污染物主要是芳烃化合物,BOD/COD很低,一般在0.1以下,难以生物降解;
三、是污染物毒性大,许多物质被列入环境污染物黑名单,如苯胺、硝基苯类等;
四、是无机盐含量高,达数万甚至十多万以上。因此开发高浓度难降解有机废水的有效处理技术迫在眉睫。常温常压下的新型高效催化氧化技术就是在这种背景下应运而生的。
二、高效催化氧化原理
新型高效催化氧化的原理就是在表面催化剂存在的条件下,利用强氧化剂——二氧化氯在常温常压下催化氧化废水中的有机污染物,或直接氧化有机污染物,或将大分子有机污染物氧化成小分子有机污染物,提高废水的可生化性,较好地去除有机污染物。在降解COD的过程中,打断有机物分子中的双键发色团,如偶氮基、硝基、硫化羟基、碳亚氨基等,达到脱色的目的,同时有效地提高BOD/COD值,使之易于生化降解。这样,二氧化氯催化氧化反应在高浓度、高毒性、高含盐量废水中充当常规物化预处理和生化处理之间的桥梁。高效表面催化剂(多种稀有金属类)以活性炭为载体,多重浸渍并经高温处理。
ClO2在常温下是黄绿色的类氯性气体,溶于水中后随浓度的提高颜色由黄绿色变为橙红色。其分子中具有19个价电子,有一个未成对的价电子。这个价电子可以在氯与两个氧原子之间跳来跳去,因此它本身就像一个游离基,这种特殊的分子结构决定了ClO2具有强氧化性。ClO2在水中发生了下列反应:
ClO2 +H2O→HClO3+HCl
ClO2→ClO2 +O2
ClO2+ .HO→HCl+HClO
HClO→O2 +H2O
HClO2+ Cl2 +H2O→HClO3+HCl
氯酸和亚氯酸在酸性较强的溶液里是不稳定的,有很强的氧化性,将进一步分解出氧,最终产物是氯化物。在酸性较强的条件下,二氧化氯回分解并生成氯酸,放出氧,从而氧化、降解废水中的带色基团与其他的有机污染物;而在弱酸性条件下,二氧化氯不易分解污染物而是直接和废水中污染物发生作用并破坏有机物的结构。因此,pH值能影响处理效果。
从上式可以看出,二氧化氯遇水迅速分解,生成多种强氧化剂——HClO3、HClO2、Cl2、H2O2等,并能产生多种氧化能力极强的活性基团(即自由基),这些自由基能激发有机物分子中活泼氢,通过脱氢反应生成R*自由基,成为进一步氧化的诱发剂;还能通过羟基取代反应将芳烃上的——SO3H、——NO2等基团取代下来,生成不稳定的羟基取代中间体,此羟基取代中间体易于发生开环裂解,直至完全分解为无机物;此外ClO2还能将还原性物质如S2—等氧化。二氧化氯的分解产物对色素中的某些基团有取代作用,对色素分子结构中的双键有加成作用。因此,二氧化氯可以很好的氧化分解水中的酚、氯酚、硫醇、仲胺、叔胺等难降解有机物和硫化物、铁、锰等无机物。
二氧化氯作催化剂的催化氧化过程对含有苯环的废水有相当好的降解作用,COD的去除率也相当高。但在有机物质的降解过程中,有一些中间产物产生,主要有:草酸、顺丁烯二酸、对苯酚和对苯醌等,这就造成了COD的去除率相对较低,但其B/C比即可生化性大大提高。
三、氧化剂制备
二氧化氯采用现场制备的方法,在塔式喷淋反应器内,用氯酸钠与盐酸在催化剂存在的条件下反应,生成二氧化氯,反应方程式如下:
NaClO3+HCl → NaCl +ClO2+Cl2
反应过程是在射流作用下使反应器形成负压,使原料经转子流量计自动吸入反应器,反应生成二氧化氯,最终被射流带入水体中。负压条件可使操作过程比较安全,而且二氧化氯不会外泄,操作环境无异味。在本反应中,可利用催化剂作用,减少氯气的产生,提高二氧化氯的产率。
四、设计与应用
(一)催化氧化的处理工艺
一般催化氧化的处理工艺为:废水→物化前处理→催化氧化→配水→生化
工艺说明如下:
⑴前处理采用混凝、沉淀、气浮、微电解、中和、预曝气等物化处理方法。经过这些物化处理,去除悬浮物,降低了废水的COD,调节了pH值,使废水能更适合进行催化氧化;
⑵催化氧化过程中降低了一部分COD,提高了B/C,使之能更好地进行生化处理,在物化与生化处理之间充当桥梁作用;
(3)催化氧化塔出水进行配水是为了降低含盐量,使之能更好地进行生化处理;
(4)生化处理的主要目的是进一步降低COD,最大限度地去除有机污染。
(二)催化氧化的处理效果
COD去除率≥70% ;色度去除率≥95 ;挥发酚去除率≥99% ;苯氨类去除率≥95%;硝基苯类去除率≥95% ;氰化物去除率≥99%。
五、铁碳微电解工艺介绍:
微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法。它是在不通电的情况下,利用填充在废水中的微电解材料自身产生1.2V电位差对废水进行电解处理,以达到降解有机污染物的目的。当系统通水后,设备内会形成无数的微电池系统,在其作用空间构成一个电场。在处理过程中产生的新生态[H] 、Fe2+ 等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3+ ,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的吸附能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量吸附水中分散的微小颗粒,金属粒子及有机大分子。
工作原理:基于电化学、氧化- 还原、物理吸附以及絮凝沉淀的共同作用对废水进行处理。该法具有适用范围广、处理效果好、成本低廉、操作维护方便,不需消耗电力资源等优点。铁碳微电解填料用于难降解高浓度废水的处理可大幅度地降低COD和色度,提高废水的可生化性,同时可对氨氮的脱除具有很好的效果
铁碳-芬顿反应器可通过催化氧化方式提高污水的可生化性。
1894年,法国人H,J,HFenton发现采用Fe2++H2O2体系能氧化多种有机物。后人为纪念他将亚铁盐和过氧化氢的组合称为Fenton试剂,它能有效氧化去除传统废水处理技术无法去除的难降解有机物,其实质是H2O2在Fe2+的催化作用下生成具有高反应活性的羟基自由(•OH) •OH可与大多数有机物作用使其降解。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(•OH)处理有机物的技术。近年来,越来越多的研究者把Fenton试剂同别的处理方法结合起来,如生物处理法、超声波法、混凝法、沉淀法,活性炭法等。
工作原理及主要特点
芬顿试剂为常用的催化试剂,它是由亚铁盐和过氧化物组成,当PH值足够低时,在亚铁离子的催化作用下,过氧化氢会分解产生OH˙,从而引发一系列的链反应。芬顿试剂在水处理中的作用主要包括对有机物的氧化和混凝两种作用。
氧化作用:芬顿试剂之所以具有非常高的氧化能力,是因为在Fe2+离子的催化作用下H2O2的分解活化能低(34.9kJ/mol),能够分解产生羟基自基OH•。同其它一些氧化剂相比,羟基自由基具有更高的氧化电极电位,因而具有很强的氧化性能。芬顿试剂处理难降解有机废水的影响因素根据上述芬顿试剂反应的机理可知,OH•是氧化有机物的有效因子,而[Fe2+]、[H2O2]、[OH]决定了OH•的产量,因而决定了与有机物反应的程度。
电化学作用:铁碳和电解质溶液接触时,形成以铁碳为两极的原电池。其中碳极的电位高,为阴极,而铁极的电位低,为阳极。在废水中,电化学腐蚀作用可以自动进行。由于Fe2+的不断生成能有效克服阳极的极化作用,从而促进整个体系的电化学反应,使大量的Fe进入溶液,具有较高化学还原活性。电极反应所产生的新生态,能与溶液中许多组分发生氧化还原反应。同时铁是活泼金属,它的还原能力可使某些组分还原为还原态。
过滤吸附及共沉淀作用:由铁屑和碳粒共同构成的内电解反应柱具有良好的过滤作用,反应生成的胶体不但可以强化过滤吸附作用,而且产生新的胶粒。其中心胶核是许多Fe(OH)聚合而成的有巨大比表面积的不溶性粒子。易于裹挟大量的有害物质,并可和多种金属发生共沉淀作用,达到去除的目的。
电泳作用:在微原电池周围电场的作用下,废水中以胶体状态存在的污染物可在很短的时问内完成电泳沉积作用。即带电的胶粒在静电引力和表面能的作用下,向带有相反电荷的电极移动,附集并沉积在电极上而得以去除。