Ⅰ 印染废水的我国现状
纺织工业发展主要阻碍之一是环保节能(低碳)问题,环保的主要问题是废水,而约80%纺织废水来自于印染行业。统计数据显示,2008年纺织工业废水排放量23亿吨,居各工业行业第3位,占全国工业废水排放量的10.60%。纺织工业排放废水中化学需氧量(CODCr)排放量31.4万吨,居各工业行业第4位,占全国工业废水CODCr的7.76%。该数据是对规模以上企业的统计数据,实际数据可能要大很多。实际上印染行业是以中小企业为主的竞争性行业,中小企业比重占99.6%,非公有制企业占95%,大量小企业数据并未统计在内。若以纤维加工量的70%需进行印染加工计,则年排放废水约在30亿吨左右。
印染厂废水处理的问题分析
印染厂废水处理成功的实例较多,但是成效不佳的也不少,其原因大致有以下几种情况:(1)印染厂未分析自身废水特质(水质、水量),照搬他厂经验,结果往往不理想。(2)将城市污水处理的设计规范,用于印染废水处理,仅仅改变一些参数,造成很大的损失。特别是在早期,大型印染厂废水集中处理,都由大型设计院负责,而其对印染废水性质不够深入了解,造成很大损失。(3)新技术、新工艺、新药剂未经中试,直接用于工程,造成很多失败。新技术多应经过小试、中试,才能用于工程,一般试规模是工程水量的3%~5%,即最多放大20倍左右。实验室研究成果直接用于工程,难有成功案例。工程应该采用最成熟、最稳妥的技术。(4)生产工艺相近的废水,可采用相似的处理工艺,但也要根据水质、水量适当调整技术参数,保证处理水平。(5)实际运行技术和管理技术不当,未根据废水变化作适当调整,也是运行不稳定的原因。
仿真丝的兴起和印染后整理技术的进步,使PVA浆料、人造丝碱解物(主要是邻苯二甲酸类物质)、新型助剂等难生化降解有机物大量进入印染废水,其COD浓度也由原来的数百mg/L上升到2000~3000mg/L,从而使原有的生物处理系统COD去除率从70%下降到50%左右,甚至更低。传统的生物处理工艺已受到严重挑战;传统的化学沉淀和气浮法对这类印染废水的COD去除率也仅为30%左右。因此开发经济有效的印染废水处理技术日益成为当今环保行业关注的课题。
Ⅱ 乙烯直接氧化法制乙醛有什么优点
乙醛生产废水是典型的高浓度有毒有机废水,含有部分难降解有机物,且在碱解脱毒预处理过程版中权会生成难降解物质,处理过程中会生成难降解物质,本文以乙醛废水中难降解有机物去除为重点,优化了碱解预处理工艺参数,在此基础上开展了臭氧氧化和Fenton法强化去除废水中难降解有机物的研究,针对乙醛生产废水的水质特征,开发了好氧生物处理-臭氧氧化深度处理组合工艺,得到如下主要结论:(1)乙烯一步氧化法乙醛生产废水碱解预处理的优化条件为调节废水pH约为7,向废水中投加2.4g/L的NaOH,然后将废水加热至70℃,保温6h。降低碱投加量、降低碱解温度、缩短加热时间,都会导致废水脱毒不充分,影响生物处理稳定运行。(2)臭氧氧化可有效去除乙醛生产废水中的难生物降解有机物,降低废水COD,并提高废水的可生化性;采用臭氧催化氧化处理乙醛废水的厌氧处理出水,工艺出水COD进一步降至160 mg/L。(3)Fenton法可有效去除乙醛
Ⅲ 如何处理含废硫酸的污水
1 浓缩法
该法是在加热浓缩废稀硫酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀硫酸的双重目的.这类方法应用较广泛,技术较成熟.在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法,下面分别加以介绍.
1.1 高温浓缩法
淄博化工厂三氯乙醛生产过程中有废硫酸产生,其中H2SO4质量分数为65%~75%、三氯乙醛质量分数为1%~3%、其它有机杂质的质量分数为1%.该厂将其沉淀过滤后,用煤直接加热蒸馏,回收的浓硫酸无色透明,H2SO4质量分数大于95%,无三氯乙醛检出,而沉淀物经碱解、蒸馏和过滤后可回收氯仿.该厂废硫酸处理量为4000t/a,回收硫酸创利润55万元/a.
日本木村-大同化工机械公司的废硫酸浓缩法是用搪玻璃管升膜蒸发和分段真空蒸发相结合,将废硫酸中H2SO4的质量分数从10%~40%浓缩到95%,其工艺可分为3段,前两段采用不透性石墨管加热器蒸发浓缩,后一段采用搪玻璃管升膜蒸发器浓缩,在每一段中H2SO4质量分数渐次升高,分别达到60%、80%和95%.加热过程采用高温热载体,温度为150~220℃,可将有机物转变为不溶性物质,然后过滤除去,该工艺以2t/h的规模进行中试,5a运转良好.该工艺适应能力很强,可用于含多种有机杂质的废硫酸的处理.
1.2 低温浓缩法
高温浓缩法的缺点在于:硫酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦.因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法).
WCG法的原理和工艺如下:将废稀硫酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放.分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,达到浓度要求后,用泵打入浓硫酸储罐.浓硫酸可作为生产原料再利用.其工艺流程见图1.
WCG法浓缩装置主要由换热器、循环浓缩塔和引风机组成.换热器材质为石墨,浓缩塔材质为复合聚丙烯,泵及引风机均为耐酸设备.
该法与高温浓缩法相比,蒸发温度低(50~60℃),蒸汽消耗量少,费用低(浓缩每吨稀硫酸耗电和蒸汽的费用约为30~60元).上海染化五厂生产分散深蓝H-GL产生的稀硫酸(H2SO4质量分数为20%),上海染化八厂、武汉染料厂、济宁染料厂生产染料中间体产生的稀硫酸,采用WCG法浓缩,都取得了明显的效果.
用WCG法浓缩稀硫酸应注意以下几点:
(1)在浓缩过程中若有固体物析出,会影响传热效果和废酸的分离;
(2)该装置非密闭,废酸中若有挥发性物质,会影响工作环境;
(3)装置的主体材料为复合聚丙烯,工作温度受主体材料的限制,不能超过80℃;
(4)该法仅适用于H2SO4质量分数小于60%的稀硫酸.
2 氧化法
该法应用已久,原理是用氧化剂在适当的条件下将废硫酸中的有机杂质氧化分解,使其转变为二氧化碳、水、氮的氧化物等从硫酸中分离出去,从而使废硫酸净化回收.常用的氧化剂有过氧化氢、硝酸、高氯酸、次氯酸、硝酸盐、臭氧等.每种氧化剂都有其优点和局限性.
天津染料八厂采用硝酸为氧化剂对蒽醌硝化废酸进行氧化处理,其操作过程为:将废酸稀释至H2SO4质量分数为30%,使所含的二硝基蒽醌最大限度地析出,经过滤槽真空抽滤后废酸进入升膜列管式蒸发器,在112℃、88.1kPa条件下浓缩,在旋液分离器中分离水蒸气和酸(此时H2SO4质量分数约为70%),废酸再流入铸铁浓缩釜(280~310℃,真空度为6.67~13.34kPa),用喷射泵带出水蒸气,使H2SO4质量分数达到93%,然后流入搪瓷氧化缸,加入浓硝酸(HNO3质量分数为65%)进行氧化处理,至硫酸呈浅黄色.反应中产生的一氧化氮气体用碱液吸收.
硫酸在高浓度(H2SO4质量分数为97%~98%)和高温条件下也具有较强的氧化性,它可以将有机物较为彻底地氧化掉.例如处理苯绕蒽酮废酸、分散蓝废酸及分散黄废酸时,将废酸加热至320~330℃,把有机物氧化掉,部分硫酸被还原成二氧化硫.这种方法由于硫酸浓度和温度太高,有大量的酸雾产生,会造成环境污染,同时还要消耗一定量的硫酸,使硫酸收率降低,因此其应用受到很大限制.
3 萃取法
萃取法是用有机溶剂与废硫酸充分接触,使废酸中的杂质转移到溶剂中来.对于萃取剂的要求是:
(1)对于硫酸是惰性的,不与硫酸起化学反应也不溶于硫酸;
(2)废酸中的杂质在萃取剂和硫酸中有很高的分配系数;
(3)价格便宜,容易得到;
(4)容易和杂质分离,反萃时损失小.
常见的萃取剂有苯类(甲苯、硝基苯、氯苯)、酚类(杂酚油、粗二苯酚)、卤化烃类(三氯乙烷、二氯乙烷)、异丙醚和N-503等.
大连染料八厂用氯苯对含二硝基氯苯和对硝基氯苯的废硫酸进行一级萃取,使废水中的有机物含量由30000~50000 mg/L下降到200~250mg/L.济南钢铁厂焦化分厂用廉价的C-I萃取剂和P-I吸附剂处理该厂的再生硫酸也得到了良好的效果.该工艺是将再生硫酸经C-I萃取剂萃取分离后再依次用P-I吸附剂和活性炭吸附处理得到纯净的再生硫酸.为防止腐蚀,萃取罐和吸附罐用铅作内衬.该厂废硫酸处理量为500t/a,回收硫酸250t,价值7.5万元.
与其它方法相比,萃取法的技术要求较高,萃取剂要同时满足上述4项要求并不容易,而且运行费用也较高.
4 结晶法
当废硫酸中含有大量的有机或无机杂质时,根据其特性可考虑选择结晶沉淀的方法除去杂质.
如南京轧钢厂酰洗工序排放的废硫酸中含有大量的硫酸亚铁,可采用浓缩-结晶-过滤的工艺来处理.经过滤除去硫酸亚铁后的酸液可返回钢材酸洗工序继续使用.
重庆某化工厂将H2SO4质量分数为17%的钛白废酸在常压下浓缩、析出的结晶熟化后过滤,滤渣经打浆及洗涤后即为回收的硫酸亚铁.滤液再在93.4kPa真空度下浓缩结晶过滤,可得到H2SO4质量分数为80%~85%的浓硫酸,第二次过滤的滤渣也转至打浆工序回收硫酸亚铁