导航:首页 > 污水知识 > 废水中无机磷怎么去除

废水中无机磷怎么去除

发布时间:2020-12-15 02:09:10

1. 废水中磷酸盐和COD有关联吗

一般来说COD和P有一定的相关性关系,不管是生活污水还是地表径流,但是前专提是最好水体出于属流动状态,并不然可能出现沉积问题。
废水中的磷很多都是以结合态或者化和态存在(也要看废水所处的不同类型,例如不同类型的废水P的有机物含量和无机磷比例有所不同),无机磷往往以结合态存在,而且能够吸附在颗粒物表面,与Fe,Ca等具有一定的结合能力。而很多有机废水例如:食品行业中,很多废水都有很高的颗粒态化合物含量,其中磷的含量往往也很高。

2. 总磷的稀释倍数怎么算测污水总磷,取5ml水

用水稀释至标线并混匀.4 工作曲线的绘制 取7支具塞刻度管(4.虽灵敏但稳定性差,在700nm波长下,或不加任何试剂于冷处保存.3;2H2SO4)=1mo1/.0.加3mL高氯酸(3:混合两个体积硫酸(3.4.3);L溶液,测定吸光度、库)磷是饲料中的一种营养素:将40g氢氧化钠溶于水并稀释至1000mL,并稀释至100mL.1硫酸(H2SO4),并加入与测定时相同体积的试剂:①用硝酸-高氯酸消解需要在通风橱中进行.6氢氧化钠(NaOH)、焦磷酸盐.移至具塞刻度管中(4; V——测定用试样体积;试样的制备,不要用塑料瓶采样.00mL此标准溶液含50.10)充分混匀.2 .6 分析步骤.8)、颗粒的.注.4 仪器 实验室常用仪器设备和下列仪器,是动物必需的常量矿物元素.11),优级纯.3 L溶液:在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解.我国地面水环境质量标准(G3838-2002)规定总磷容许值如下.6.1 .3: 总磷含量以C(mg/.6.1 .001g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4)、库)0.取时应仔细摇匀.3,因此可根据原料中总磷的含量和动物的营养需要量来设计配方.扣除空白试验的吸光度后;L.0mL的磷标准溶液(3;采取500mL水样后加入1mL硫酸(3、硫酸盐等干扰;L干扰测定.14);发色 ,用钼酸铵分光光度测定总磷的方法.加水至50mL,3.84g/,在冷处可稳定几周.2原理,相应温度为120℃时,用亚硫酸钠去除,30s后加2mL钼酸盐溶液(3,加入大约800mL水,放冷.3.3高氯酸(HClO4).10钼酸盐溶液.磷酸盐会干扰水厂中的混凝过程:如用硫酸保存水样、污水和工业废水,用一小块布和线将玻璃塞扎紧(或用其他方法固定).在酸性条件下.4硫酸(H2SO4),用硫代硫酸钠去除,从工作曲线(6;11893-891主题内容与适用范围,放在约4摄氏度处可保存二个月.68g/:如显色时室温低于13℃,然后再加入硝-酸高氯酸进行消解,密度为1.4)中、有机的和无机磷.1,砷.注.然后从试料的吸光度中扣除空白试料的吸光度、缩合硫酸盐,和对应的磷的含量绘制工作曲线,以水做参比.1)于具塞刻度管中(4. .③如消解后有残渣时.6、硫干扰测定.注,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水.硫化物大于2mg/.2)的规定进行空白试验.如样品中含磷浓度较高.待压力表读数降至零后.然后用水稀释至标线.根据GB/,饲料总可以被动物利用的部分称为有效磷.3.取25mL试料.1,加酒石酸锑钾溶液并且混合均匀;mL.3、加5mL硫酸(3,测定上限为0:取25mL样品(5,但干扰物质较少.5 采样和样品5,加1滴酚酞指示剂(3:分别向各份消解液中加入1mL抗坏血酸溶液(3,立即被抗坏血酸还原,15. .6mg/.5 硫酸.2,μg,用水溶解后转移至1000mL容量瓶中,充分混匀.30.2(湖.6或3.020.1、库)0;H2O]于100mL水中,mL.1 空白试样按(6,需先将试样调至中性.2,约c(1/L.050(湖.然后按测定步骤(6.14).4g/.5g酚酞溶于50mL95%乙醇中,5;cm2.②砷大于2mg/.01(湖.此溶液贮存于棕色试剂瓶中.使用当天配制,需将试样先用硝酸消解.0μg磷.编辑本段总磷的测定钼酸铵分光光度法GB .5)使微红刚好退去,直至剩下3~4mL.5,将所含磷全部氧化为正磷酸盐;phosphorus.高氯酸和有机物的混合物经加热易发生危险.注,再滴加硫酸溶液(3.9).此溶液贮于棕色的试剂瓶中.2,按下式计算、化肥.6.2 .4)和一个体积抗坏血酸溶液(3.00mL此标准溶液含2;T10647 饲料工业术语 总磷 (total .1)加入到973mL水中.3,因易磷酸盐吸附在塑料瓶壁上,1mo1/,将未经过滤的水样消解.0.9 6,加热至高氯酸冒白烟.00.1)中加热,在锑盐存在下生成磷钼杂多酸后.当用过硫酸钾消解时,可用此法消解,此时可在锥形瓶上加小漏斗或调节电热板温度.1kg/.注;L干扰测定.35g酒石酸锑钾KSbC4H4O7· 1/.50;消6.13 .0μg磷.I类II类III类IV类V类总磷(以P)计(mg/V 式中,过量磷是造成水体污秽异臭:6.总磷是反映饲料中磷含量水平的指标.8过硫酸钾,颜色稳定.2,加2mL硝酸(3.3,由于消化道中存在分解植酸磷的植酸酶.编辑本段测定方法正磷酸盐的常用测定方法有3种,加数粒玻璃珠,0、库)0:将27mL硫酸(3.2 测定 、正磷酸盐.2硝酸-高氯酸消取25mL试样(5.2),可在20~30℃水浴中显色15min即可.14酚酞.使用当天配制.冷后加5mL硝酸(3.00.1)调节样品的pH值,用水稀释至标线,1+1,生成蓝色的络合物.3 分光光度计.滴加氢氧化钠溶液(3,但不加抗坏血酸溶液和钼酸盐溶液.②绝不可把消解的试作蒸干;磷标准使用溶液,50g/:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中.2)试样中加4mL过硫酸钾(3.00.20.4kg/2 .本溶液在玻璃瓶中可贮存至少六个月:本标准规定了用过硫酸钾(或硝酸-高氯酸)为氧化剂;mL;TP)饲料中以无机态和有机态存在的磷的总和.铬大于50mg/L溶液.4,1.40、偏磷酸盐和有机团结合的磷酸盐等形式存在,用水代替试样,测定吸光度.如不变色可长时间使用,以得到溶解部分和悬浮部分均具有代表性的试样,10、铬.1定义总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果;L干扰测定,通氮气去除.12)转移至250mL容量瓶中;抗坏血酸.4)上查得磷的含量:将10.扣除空白试验的吸光度后.10,将具塞刻度管的盖塞紧后.对单胃动物来说,密度为1.以水做参比;mL;将240g氢氧化钠溶于水并稀释至1000mL.3,100g/.1 医用手提式蒸气消毒器或一般压力锅(1、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等:本标准所用试剂除另有说明外.3试剂;cm2);④水作中的有机物用过硫酸钾氧化不能完全破坏时.2,放在大烧杯中置于高压蒸气消毒器(4;T6437 .4,6mo1/:6.注;饲料中总磷的测定分光光度法采用钒钼磷酸比色法的原理.②钼-锑-钪比色法.12 .其主要来源为生活污水.1(湖;L溶液.2)分别加入0.2 50mL具塞(磨口)刻度管;7 结果的表示,一并移到具塞刻度管中;分光光度测量,是饲料的构成成分.在酸性介质中,需配制一个空白试样(消解后用水稀释至标线)然后向试料中加入3mL浊度——色度补偿液(3:①如试样中含有浊度或色度时.11浊度一色度补偿液.本标准适用于地面水,放冷,重复性好,受氯离子.根据 GB/.2,密度为1.2197±0.在不断搅拌下把钼酸铵溶液徐徐加到300mL硫酸(3.9)混匀.1~1:溶解10g抗坏血酸(C6H8O6)于水中:室温下放置15min后,本标准的最低检出浓度为0,10g/.3.2)在电热板上加热浓缩至10mL,使用光程为10mm或30mm比色皿,畜禽对磷的摄入量不足或过量都将严重影响畜禽健康.3:将5g过硫酸钾(K2S2O8)溶解干水.0mL磷酸盐标准溶液(3.加水10mL,用滤纸过滤于具塞刻度管中.01mg/:含磷量较少的水样.1过硫酸钾消向(5,正磷酸盐与钼酸铵反应.水体中的磷是藻类生长需要的一种关键元素.对反刍动物来说,总磷中含有的植酸磷是其所不能利用的:m——试样测得含磷量.3,使消解液在锥形瓶内壁保持回流状态.2)进行处理,取出放冷:0、保持30min后停止加热;磷标准贮备溶液.③氯化亚锡法;L)≤0.2;L)表示,因此饲料必须经常检测.1)于锥形瓶中.灵敏度高,并稀释至100mL.025(湖.2):所有玻璃器皿均应用稀盐酸或稀硝酸浸泡.3.3;L:称取0.2).7)至刚呈微红色.编辑本段应用水中磷可以元素磷:①钒钼磷酸比色法.7氢氧化钠(NaOH). .溶解0:C=m/,试样体积可以减少,使湖泊发生富营养化和海湾出现赤潮的主要原因,使之低于或等于1.2硝酸(HNO3).总磷包括溶解的,并用水充分清洗锥形瓶及滤纸,以每升水样含磷毫克数计量、库)0.此法灵敏度较低,再加热浓缩至10mL.磷是畜禽饲料中的重要指标,待压力达1.4)用水稀释至标线并混匀;L溶液

3. 废水中无机磷和有机磷的检测方法

总磷=无磷+有机磷
知道了这点就可以测定了,先测出该水样的无磷,再测出总磷,两者版之差就是有机磷权,但是需要注意必须使用相同的测定原理进行总磷和无磷测量,关于测定方法建议使用钼酸铵钼酸铵分光光度法.即:
无机磷:
取50ml水样,加入30mg亚硫酸钠,混匀,在已煮沸的水浴中煮10min,取出,加蒸馏水稀释至50mL,加入5mL酸性钼酸铵溶液(配置方法同DL/T502),混合摇匀,于420nm波长处比色;
总磷:
消解:取50ml水样,加入5mL1mol/L的硫酸和150mg过硫酸铵-硫酸钠(制备方法同GB 6913.3)分解剂,在电炉上煮沸至恰好干涸,用水稀释,定容至50mL,
做样:加入5mL酸性钼酸铵溶液(配置方法同DL/T502),混合摇匀,于420nm波长处比色;
标准曲线的方法我就不多说了,就是一个磷酸根标准曲线就行了.
需要注意的是:
1.消解过程显色,分别向各份消解液中加入1mL抗坏血酸溶液;
2.砷大于2mg/L干扰测定,用硫代硫酸钠去除干扰。硫化物大于2mg/L干扰测定,通氮气去除。铬大于50mg/L干扰测定,用亚硫酸钠去.

4. 废水中磷酸根浓度如何测定要详细步骤

总磷抄=无磷+有机磷 知道了这袭点就可以测定了,先测出该水样的无磷,再测出总磷,两者之差就是有机磷,但是需要注意必须使用相同的测定原理进行总磷和无磷测量,关于测定方法建议使用钼酸铵钼酸铵分光光度法.即: 无机磷: 取50ml水样,加入30mg亚硫酸钠,混匀,在已煮沸的水浴中煮10min,取出,加蒸馏水稀释至50mL,加入5mL酸性钼酸铵溶液(配置方法同DL/T502),混合摇匀,于420nm波长处比色; 总磷: 消解:取50ml水样,加入5mL1mol/L的硫酸和150mg过硫酸铵-硫酸钠(制备方法同GB 6913.3)分解剂,在电炉上煮沸至恰好干涸,用水稀释,定容至50mL, 做样:加入5mL酸性钼酸铵溶液(配置方法同DL/T502),混合摇匀,于420nm波长处比色; 标准曲线的方法我就不多说了,就是一个磷酸根标准曲线就行了. 需要注意的是: 1.消解过程显色,分别向各份消解液中加入1mL抗坏血酸溶液; 2.砷大于2mg/L干扰测定,用硫代硫酸钠去除干扰。硫化物大于2mg/L干扰测定,通氮气去除。铬大于50mg/L干扰测定,用亚硫酸钠去.

5. 污水处理中有机磷和无机磷分别指什么

有机鳞:指含有来碳-磷键自的有机化合物,污水含有的有机磷中一般多为有机磷农药(杀虫剂)。
无机磷:国家规定污水处理中,仅处理磷酸离子、对硫磷、元素磷、甲基对硫磷、马拉硫磷。
这是由于无机磷是指土壤、植物和肥料中未与碳结合的含磷物质的总称。但无机磷的用途甚广,在制造火柴、焰火、爆竹信号弹、某些合成染料、人造磷肥、杀虫剂、灭鼠药及医疗用药中,均应用无机磷。所以种类太多。因此仅处理主要合成物,也就是上述国家规定的处理物。
注:以上数据来源于污水综合排放标准(GB 8978-1996)

6. 人工湿地景观优化设计图纸有哪些

天然湿地是处于水陆交接相的复杂生态系统,而人工湿地()则是处理污水而人为设计建造的,工程化的湿地系统,是近些年出现的一种新型的水处理技术,其去除污染物的范围较为广泛,包括有机物、氮(N)、磷(P)、悬浮物(SS)、微量元素、病原体等,其净化机理十分复杂,综合了物理、化学和生物的三种作用,供给湿地床除污需要的氧气;同时由于发达的植物根系及填料表面生长的生物膜的净化作用、填料床体的截留及植物对营养物质的吸收作用,而实现对水体的净化。人工湿地对有机物的去除:人工湿地对有机物有较强的处理能力。不容性有机物通过湿地的沉淀、过滤可以很快从废水中截流下来,被微生物加以利用;可溶性有机物则可通过微生物的吸附及微生物的代谢过程被去除。废水中大部分有机物的最终归宿是被异养微生物转化为微生物细胞及CO2和H2O。人工湿地对氮的去除:废水中氮主要通过植物吸收和微生物的硝化反硝化作用被去除,其中植物吸收只去除了污水中小部分的氮,而污水中氮的去除主要是通过微生物的硝化、反硝化作用来完成的。人工湿地比传统活性污泥处理系统(一般无法完成反硝化作用)具有更强的氮的处理能力,比A/A/O系统则节省许多基建和运行费用。人工湿地对磷的去除:人工湿地对磷的去除是植物吸收、微生物去除及物理化学作用三方面共同作用的结果。废水中无机磷在植物吸收及同化作用下可变成植物的ATP,DNA及RNA等有机成分,通过植物的收割而去除。物理化学作用包括填料对磷的吸附及填料与磷酸根离子的化学反应。微生物对磷的去除包括它们对磷的正常同化(将磷纳入其分子组成)和对磷的过量积累。其中,填料的物理化学作用对于磷的去除贡献最大。人工湿地主要优点:投资省、能耗低、维护简便人工湿地不采用大量人工构筑物和机电设备,无需曝气、投加药剂和回流污泥,也没有剩余污泥产生,因而可大大节省投资和运行费用。至于维护技术,人工湿地基本上不需要机电设备,故维护上只是清理渠道及管理作物,一般人员完全可以承担,只需个别专业人员定期检查。脱氮除磷效果好、病源微生物去除率高人工湿地是低投入、高效率的脱氮除磷工艺,无需专门消毒便可对病源微生物大副去除,处理后的水可直接排入湖泊、水库或河流中,亦可用作冲厕、洗车、灌溉、绿化及工业回用等。可与水景观建设有机结合人工湿地可作为滨水景观的一部分,沿着河流和湖泊的堤岸建设,可大可小,就地利用,部分湿生植物(如美人蕉、鸢尾等)本身即具有良好的景观效果。

7. 污水中的活性污泥为什么不沉降

发生了污泥膨胀,可以采取以下措施:
措施A,投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。

措施B,改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。

措施C,改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。

措施D,加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,在多数情况下,能够解脱高粘性膨胀。有条件的地方还可在回流污泥前进行内源呼吸期,提高了絮凝体形成细菌群摄取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化污泥活性。

措施E,使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。

措施F,加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。

措施G,在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,而丝状菌性膨胀则多发生在20摄氏度以上。

措施H,降低污泥在二沉池内停留时间,防止形成厌氧状态。措施I,调整污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。

措施J,调整混合液中的营养物质平衡,即保证BOD:N:P=10:5:1的要求,当混和液失去营养平衡时,往往会发生高粘性污泥膨胀。

措施K,控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,用浓度为50mg/l的硫酸铜,保持5mg/l的残留浓度,能够抑制球衣菌属的增殖。

在实际运行中,以上几类方法是相辅相成的,污泥膨胀发生以后,首先应通过观察现象,借助理化分析手段,判明膨胀的种类及发生原因,对症下药,采取有效的控制措施。

8. 污水形成原因

所谓污水,是指受一定污染的来自生活和产所排出的水,由于污染源的不同,所产生的污水性质也不完全同,按照不同污染性质,污水一般扫为以下类型:
1、生活污水
生活污水是人类在日常生活中使用过的,并被生活废料所污染的水。其水质、水量随季节而变化,一般夏季用水相对较多,浓度低;冬季相应量少,浓度高。生活污水一般不含有毒物质,但是它有适合微生物繁殖的条件,含有大量的病原体,从卫生角度来看有一定的危害性。
2、工业废水
工业废水是在工矿生产活动中产生的废水。工业废水可分为生产污水与生产废水。生产污水是指在生产过程中形成、并被生产原料、半成品或成品等原料所污染,也包括热污染(指生产过程中产生的、水温超过60℃的水);生产废水是指在生产过程中形成,但未直接参与生产工艺、未被生产原料、半成品或成品等原料所污染或只是温度少有上升的水。生产污水需要进行净化处理;生产废水不需要净化处理或仅需做简单的处理,如冷却处理。生活污水与生产污水的混合污水称为城市污水。
3、初期雨水
被污染的雨水主要是指初期雨水。由于初期雨水冲刷了地表的各种污染物,污染程度很高,故宜作净化处理。
4、水体受污染的原因:
人类生产活动造成的水体污染中,工业引起的水体污染最严重。如工业废水,它含污染物多,成分复杂,不仅在水中不易净化,而且处理也比较困难。
工业废水,是工业污染引起水体污染的最重要的原因。它占工业排出的污染物的大部分。工业废水所含的污染物因工厂种类不同而千差万别,即使是同类工厂,生产过程不同,其所含污染物的质和量也不一样。工业除了排出的废水直接注入水体引起污染外,固体废物和废气也会污染水体。
农业污染首先是由于耕作或开荒使土地表面疏松,在土壤和地形还未稳定时降雨,大量泥沙流入水中,增加水中的悬浮物。
还有一个重要原因是近年来农药、化肥的使用量日益增多,而使用的农药和化肥只有少量附着或被吸收,其余绝大部分残留在土壤和漂浮在大气中,通过降雨,经过地表径流的冲刷进入地表水和渗入地表水形成污染。
城市污染源是因城市人口集中,城市生活污水、垃圾和废气引起水体污染造成的。城市污染源对水体的污染主要是生活污水,它是人们日常生活中产生的各种污水的混合液,其中包括厨房、洗涤房、浴室和厕所排出的污水。
世界上仅城市地区一年排出的工业和生活废水就多达500立方公里,而每一滴污水将污染数倍乃至数十倍的水体。
5、主要污染物
1)、病原体污染物
生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。历史上流行的瘟疫,有的就是水媒型传染病。如1848年和1854年英国两次霍乱流行,死亡万余人;1892年德国汉堡霍乱流行,死亡750余人,均是水污染引起的。
受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。病原体污染的特点是:(1)数量大;(2)分布广;(3)存活时间较长;(4)繁殖速度快;(5)易产生抗药性,很难绝灭;(6)传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。常见的混凝、沉淀、过滤、消毒处理能够去除水中99%以上病毒,如出水浊度大于0.5度时,仍会伴随病毒的穿透。病原体污染物可通过多种途径进入水体,一旦条件适合,就会引起人体疾病。
2)、耗氧污染物
在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示。一般用20℃时,五天生化需氧量(BOD5)表示。
3)、植物营养物
植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。
富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。
植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。每人每天带进污水中的氮约50g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。天然水体中磷和氮(特别是磷)的含量在一定程度上是浮游生物生长的控制因素。当大量氮、磷植物营养物质排入水体后,促使某些生物(如藻类)急剧繁殖生长,生长周期变短。藻类及其他浮游生物死亡后被需氧生物分解,不断消耗水中的溶解氧,或被厌氧微生物所分解,不断产生硫化氢等气体,使水质恶化,造成鱼类和其他水生生物的大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把生物所需的氮、磷等营养物质释放到水中,供新的一代藻类等生物利用。因此,水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成"死海",或出现"赤潮"现象。
常用氮、磷含量,生产率(O2)及叶绿素-α作为水体富营养化程度的指标。防治富营养化,必须控制进入水体的氮、磷含量。
4)、有毒污染物
有毒污染物指的是进入生物体后累积到一定数量能使体液和组织发生生化和生理功能的变化,引起暂时或持久的病理状态,甚至危及生命的物质。如重金属和难分解的有机污染物等。污染物的毒性与摄入机体内的数量有密切关系。同一污染物的毒性也与它的存在形态有密切关系。价态或形态不同,其毒性可以有很大的差异。如Cr(Ⅵ)的毒性比Cr(Ⅲ)大;As(Ⅲ)的毒性比As(Ⅴ)大;甲基汞的毒性比无机汞大得多。另外污染物的毒性还与若干综合效应有密切关系。从传统毒理学来看,有毒污染物对生物的综合效应有三种:(1)相加作用,即两种以上毒物共存时,其总效果大致是各成分效果之和。(2)协同作用,即两种以上毒物共存时,一种成分能促进另一种成分毒性急剧增加。如铜、锌共存时,其毒性为它们单独存在时的8倍。(3)拮抗作用,两种以上的毒物共存时,其毒性可以抵消一部分或大部分。如锌可以抑制镉的毒性;又如在一定条件下硒对汞能产生拮抗作用。总之,除考虑有毒污染物的含量外,还须考虑它的存在形态和综合效应,这样才能全面深入地了解污染物对水质及人体健康的影响。
有毒污染物主要有以下几类:(1)重金属。如汞、镉、铬、铅、钒、钴、钡等,其中汞、镉、铅危害较大;砷、硒和铍的毒性也较大。重金属在自然界中一般不易消失,它们能通过食物链而被富集;这类物质除直接作用于人体引起疾病外,某些金属还可能促进慢性病的发展。(2)无机阴离子,主要是NO2-、F-、CN-离子。NO2-是致癌物质。剧毒物质氰化物主要来自工业废水排放。(3)有机农药、多氯联苯。目前世界上有机农药大约6000种,常用的大约有200多种。农药喷在农田中,经淋溶等作用进入水体,产生污染作用。有机农药可分为有机磷农药和有机氯农药。有机磷农药的毒性虽大,但一般容易降解,积累性不强,因而对生态系统的影响不明显;而绝大多数的有机氯农药,毒性大,几乎不降解,积累性甚高,对生态系统有显著影响。多氯联苯(PCB)是联苯分子中一部分氢或全部氢被氯取代后所形成的各种异构体混合物的总称。
多氯联苯剧毒,脂溶性大,易被生物吸收,化学性质十分稳定,难以和酸、碱、氧化剂等作用,有高度耐热性,在1000~1400℃高温下才能完全分解,因而在水体和生物中很难降解。(4)致癌物质。致癌物质大体分三类:稠环芳香烃(PAHs),如3,4-苯并芘等;杂环化合物,如黄曲霉素等;芳香胺类,如甲、乙苯胺,联苯胺等。(5)一般有机物质。如酚类化合物就有2000多种,最简单的是苯酚,均为高毒性物质;腈类化合物也有毒性,其中丙烯腈的环境影响最为注目。
5)、石油类污染物
石油污染是水体污染的重要类型之一,特别在河口、近海水域更为突出。排入海洋的石油估计每年高达数百万吨至上千万吨,约占世界石油总产量的千分之五。石油污染物主要来自工业排放,清洗石油运输船只的船舱、机件及发生意外事故、海上采油等均可造成石油污染。而油船事故属于爆炸性的集中污染源,危害是毁灭性的。
石油是烷烃、烯烃和芳香烃的混合物,进入水体后的危害是多方面的。如在水上形成油膜,能阻碍水体复氧作用,油类粘附在鱼鳃上,可使鱼窒息;粘附在藻类、浮游生物上,可使它们死亡。油类会抑制水鸟产卵和孵化,严重时使鸟类大量死亡。石油污染还能使水产品质量降低。
6)、放射性污染物
放射性污染是放射性物质进入水体后造成的。放射性污染物主要来源于核动力工厂排出的冷却水,向海洋投弃的放射性废物,核爆炸降落到水体的散落物,核动力船舶事故泄漏的核燃料;开采、提炼和使用放射性物质时,如果处理不当,也会造成放射性污染。水体中的放射性污染物可以附着在生物体表面,也可以进入生物体蓄积起来,还可通过食物链对人产生内照射。
水中主要的天然放射性元素有40K、238U、286Ra、210Po、14C、氚等。目前,在世界任何海区几乎都能测出90Sr、137Cs。
7)、酸、碱、盐无机污染物
各种酸、碱、盐等无机物进入水体(酸、碱中和生成盐,它们与水体中某些矿物相互作用产生某些盐类),使淡水资源的矿化度提高,影响各种用水水质。盐污染主要来自生活污水和工矿废水以及某些工业废渣。另外,由于酸雨规模日益扩大,造成土壤酸化、地下水矿化度增高。
水体中无机盐增加能提高水的渗透压,对淡水生物、植物生长产生不良影响。在盐碱化地区,地面水、地下水中的盐将对土壤质量产生更大影响。
8)、热污染
热污染是一种能量污染,它是工矿企业向水体排放高温废水造成的。一些热电厂及各种工业过程中的冷却水,若不采取措施,直接排放到水体中,均可使水温升高,水中化学反应、生化反应的速度随之加快,使某些有毒物质(如氰化物、重金属离子等)的毒性提高,溶解氧减少,影响鱼类的生存和繁殖,加速某些细菌的繁殖,助长水草丛生,厌气发酵,恶臭。
鱼类生长都有一个最佳的水温区间。水温过高或过低都不适合鱼类生长,甚至会导致死亡。不同鱼类对水温的适应性也是不同的。如热带鱼适于15~32℃,温带鱼适于10~22℃,寒带鱼适于2~10℃的范围。又如鳟鱼虽在24℃的水中生活,但其繁殖温度则要低于14℃。一般水生生物能够生活的水温上限是33~35℃。
除了上述八类污染物以外,洗涤剂等表面活性剂对水环境的主要危害在于使水产生泡沫,阻止了空气与水接触而降低溶解氧,同时由于有机物的生化降解耗用水中溶解氧而导致水体缺氧。高浓度表面活性剂对微生物有明显毒性。
水体污染的例子很多,如京杭大运河(杭州段)两岸有许多工厂,每天均有大量废水排入运河,使水体中固体悬浮物、有机物、重金属(Zn,Cd,Pb,Cu等)及酚、氰化物等含量大大超过地面水标准,有的超过几十倍,使水体处于厌氧的还原状态,乌黑发臭,鱼虾绝迹,不能用于生活、农业等用水;水体自净能力差,若不治理,并控制污染源,水体污染还会进一步扩大。
水环境中的污染物,总体上可划分为无机污染物和有机污染物两大类。在水环境化学中较为重要的,研究得较多的污染物是重金属和有机物。我国水污染化学研究始于70年代,从重金属、耗氧有机物、DDT、六六六等农药污染开始,目前研究的重点已转向有机污染物,特别是难降解有机物,因其在环境中的存留期长,容易沿食物链(网)传递积累(富集),威胁生物生长和人体健康,因而日益受到人们重视。本章着重介绍重金属和有机污染物在水体中迁移转化的环境化学行为。
6、污染物进入水体后的运动过程
污染物进入水体后立即发生各种运动。下面以海洋为例作一简介,其他水体的情况,可以类推。
海洋中生活着各种各样的水生动物和植物。生物与水、生物与生物之间进行着复杂的物质和能量的交换,从数量上保持着一种动态的平衡关系。但在人类活动的影响下,这种平衡遭到了破坏。当人类向水中排放污染物时,一些有益的水生生物会中毒死亡,而一些耐污的水生生物会加剧繁殖,大量消耗溶解在水中的氧气,使有益的水生生物因缺氧被迫迁栖他处,或者死亡。特别是有些有毒元素,既难溶于水又易在生物体内累积,对人类造成极大的伤害。如汞在水中的含量是很低的,但在水生生物体内的含量却很高,在鱼体内的含量又高得出奇。假定水体中汞的浓度为,水生生物中的底栖生物(指生活在水体底泥中的小生物)体内汞的浓度为700,而鱼体内汞的浓度高达860。由此可见,当水体被污染后,一方面导致生物与水、生物与生物之间的平衡受到破坏,另一方面一些有毒物质不断转移和富集,最后危及人类自身的健康和生命。
7、水体污染对人体健康的影响
1)、水体污染的危害是多方面的,这里简单介绍一下水体污染对人体健康的影响
(1)、引起急性和慢性中毒。水体受有毒有害化学物质污染后,通过饮水或食物链便可能造成中毒。著名的水俣病、痛痛病是由水体污染引起的。
(2)、致癌作用。某些有致癌作用的化学物质如砷、铬、镍、铍、苯胺、苯并(a)芘和其他多环芳烃、卤代烃污染水体后,可被悬浮物、底泥吸附,也可在水生生物体内积累,长期饮用含有这类物质的水,或食用体内蓄积有这类物质的生物(如鱼类)就可能诱发癌症。
(3)、发生以水为媒介的传染病。人畜粪便等生物污染物污染水体,可能引起细菌性肠道传染病如伤寒、痢疾、肠炎、霍乱等;肠道内常见病毒如脊髓灰质类病毒、柯萨奇病毒、传染性肝炎病毒等,皆可通过水体污染引起相应的传染病。1989年上海的"甲肝事件",就是由水体污染引起的。在发展中国家,每年约有6000万人死于腹泻,其中大部分是儿童。
(4)、间接影响。水体污染后,常可引起水的感官性状恶化,如某些污染物在一定浓度下,对人的健康虽无直接危害,但可使水发生异臭、异色,呈现泡沫和油膜等,妨碍水体的正常利用。铜、锌、镍等物质在一定浓度下能抑制微生物的生长和繁殖,从而影响水中有机物的分解和生物氧化,使水体自净能力下降,影响水体的卫生状况。
(5)、水体污染既可严重危害生态系统,还可造成严重的经济损失。
2)、主要污染物的影响
(1)、铅: 对肾脏、神经系统造成危害,对儿童具高毒性,致癌性已被证实
(2)、镉: 对肾脏有急性之伤害
(3)、砷: 对皮肤、神经系统等造成危害,致癌性已被证实
(4)、汞: 对人体的伤害极大,伤害主要器官为肾脏、中枢神经系统
(5)、硒: 高浓度会危害肌肉及神经系统
(6)、亚硝酸盐: 造成心血管方面疾病,婴儿的影响最为明显(蓝婴症),具致癌性
(7)、总三卤甲烷: 以氯仿对健康的影响最大,致癌性方面最常发生的是膀光癌
(8)、三氯乙烯(有机物): 吸入过多会降低中枢神经、心脏功能,长期暴露对肝脏有害
(9)四氯化碳(有机物): 对人体健康有广泛影响,具致癌性,对肝脏、肾脏功能影响极大
8、污水水质指标
污水水质指标一般分为物理、化学、生物三大类。
1)、物理性指标
温度、色度、嗅和味、固体物质
固体物质的三种存在形态:悬浮的、胶体的、溶解的。固体物质用。总固体量(TS)作为指标,污水处理中常用悬浮固体(SS)表示固体物质的含量。
2)、化学性指标
(1)、化学需氧量(CODcr):指用强化学氧化剂(我国法定用重铬酸钾)在酸性条件下,将有机物氧化成CO2与H2O所消耗的氧量(mg/L),用CODcr表示。化学需氧量越高,表示水中有机污染物越多,污染越严重。
(2)、生化需氧量(BOD5):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)。
如果污水成分相对稳定,则一般来说,CODcr> BOD5。
一般BOD5/ CODcr大于0.3,认为适宜采用生化处理。
(3)、总需氧量(TOD):有机物主要元素是C、H、O、N、S等,当有机物被全部氧化时,将分别产生CO2、H2O、NO、SO2等,此时需氧量称为总需氧量(TOD)。
(4)、总有机碳(TOC):包括水样中所有有机污染物质的含碳量,也是评价水样中有机物质质的一个综合参数。
(5)、总氮(TN):污水中含氮化合物分为有机氮、氨氮、亚硝酸盐氮、硝酸盐氮,四种含氮化合物总量称为总氮(TN)。凯氏氮(TKN)是有机氮与氨氮之和。
(6)、总磷(TP):包括有机磷与无机磷两类。
(7)、pH值
(8)、重金属
3、生物性指标
(1)、大肠菌群数:每升水样中所含有的大肠菌群的数目,以个/L计。
(2)、细菌总数:是大肠菌群数、病原菌、病毒及其他细菌数的总和,以每毫升水样中的细菌菌落总数表示。

阅读全文

与废水中无机磷怎么去除相关的资料

热点内容
好自然净水器反渗透膜滤芯 浏览:165
上海奉贤污水管接口证明到哪里办 浏览:418
过滤器url中文乱码 浏览:917
航天ro膜 浏览:636
洗液压油滤芯用什么最干净 浏览:113
污水提升泵持续工作时间 浏览:581
超滤膜进水口 浏览:755
小米3净化器滤芯剩多少怎么看 浏览:754
土壤的离子交换量 浏览:503
长安农村污水处理哪里有做 浏览:387
污水处理菌怎么使用 浏览:351
热水器免拆除垢剂 浏览:871
室外油烟净化器怎么安装 浏览:92
排污水在哪里 浏览:320
树脂和大分子筛的区别 浏览:805
离子交换膜的膜现象理论 浏览:896
洗脸池陶瓷的和树脂的哪个好 浏览:471
海尔净水机ro膜如何更换 浏览:373
水分子通过的半透膜 浏览:948
四万吨污水处理厂占地面积多少 浏览:309