⑴ 国外是怎么处理抗生素生产废水的
抗生素生产废水成份复杂,有机物浓度高,溶解性和胶体性固体浓度高,PH值经常变化,温度较高,带有颜色与气味,悬浮物含量高,含有难降解物质和有抑菌性作用的抗生素,并且有生物毒性。其具体特征如下:
处理方法:
1、混凝预处理
抗生素废水的浊度和悬浮物浓度较高,因而在水质预处理部分采用混凝法预处理,去除高悬浮物和浊度,以便使水质史适宜进行后续生物处理。
混凝的基本原理
混凝澄清是给水和废水处理实践中的一种常用的单元操作它是指在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚为絮凝体,然后予.以分离除去的水处理方法。胶体溶液或悬浮液稳定的原因是:固体微粒的粒度太细,同时带有同性电荷形成布朗运动;另外,溶液中还有一种亲水的胶体,它是可溶性的大分子,如蛋白质、淀粉和腐植酸等,它们的分子上都带有亲水的极性基团如一OH、一COOH、一NH3等对水具有较强的亲和力,在分了的周围保持较厚的水层,能发生膨胀,有形成真溶液的倾向。胶体或悬浮液形成分散体系就是依靠细微粒度,荷同性电荷以及在水中的溶解作用而形成稳定状态的,因而必须投加混凝剂来破坏他们的稳定性,使其相互聚集为数百微米以至数毫米的絮凝体,才能予以除去。混凝就是在混凝剂的离解和水解产物的作用下,使水中胶体污染物质和细微悬浮物脱稳并聚集为具有可分离性的絮凝体的过程,其中包括凝聚和絮凝两个过程,统称为混凝。
混凝的作用机理
在混凝处理中,主要是通过压缩双电层和电性中和机理起作用的。
凝聚作用:
凝聚作用是指加入无机电解质,通过电性中和作用,压缩双电层,降价了ζ电位,减少微粒间的排斥能,解除布朗运动,使微粒能够靠近接触而聚集在一起的作用。
混凝预处理对原水中的COD及硫酸盐浓度的影响
在进行混凝预处理时,除了希望通过混凝预处理去除较高的SS外,还希望能够同时去除水中的高浓度COD及某些生物抑制性物质,如硫酸盐。由于在进行水质保存时,引入了硫酸根离子,根据前述内容可知,抗生素制药废水中主要的生物抑制性物质就是硫酸盐。因而,在预处理部分,混凝预处理过程对COD及硫酸盐浓度变化的影响。随沉降时间的延长,COD及硫酸盐的去除率均会逐渐地增大,这主要是因为随着沉降时间的延长,不溶性的COD附着在絮凝体上而不断下沉,最终被除去的缘故。硫酸盐的去除为下一步的厌氧生物处理提供了便利,降低硫酸盐浓度,从而减少硫酸盐还原菌作用后生成的硫化氢不能及时地外排而造成对厌氧微生物的毒害作用。
抗生素废水的生化处理
2、废水的好氧生物处理
废水的好养生物处理原理
好氧生物处理是在提供游离氧的前提下,以好氧微生物为主,使有机物降解,稳定的无害化处理方法。废水中存在的各种有机污染物,以胶体状、溶解状的有机物为主,作为微生物的营养源。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来。有机物被微生物摄取后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化,合成为新的原生质的组成部分,即微生物自身生长繁殖。这一部分就是废水生物处理中的活性污泥或生物膜的增长部分,通常称为剩余活性污泥。
活性污泥法的基本流程
活性污泥法是一种应用最广的废水好氧生物处理技术,它是指将空气连续鼓入大量溶解有机污染物的废水中,经过一段时间,水中即形成生物絮凝体一活性污泥,在活性污泥上栖息、生活着大量的好氧微生物,这种微生物以溶解有机物为食料,获得能量,并不断增长,使废水得到净化。它由曝气池、二次沉淀池、曝气系统及污泥回流系统等组成。由初次沉淀池流出的废水与二次沉淀池底部回流的活性污泥同时进入曝气池,在曝气池的作用下,混合液得到足够的溶解氧并使活性污泥和废水充分接触,废水中的可溶性有机污染物为活性污泥所吸附并为存活在活性污泥上的微生物群体所分解,使废水得到净化。
活性污泥处理系统有效运行的基本条件是:
(l)废水中含有足够的可溶性易降解有机物,作为微生物生理活动所必需的营养物质:(2)混合液含有足够的溶解氧:(3)活性污泥在池内呈悬浮状态,能够充分地与废水相接触:(4)活性污泥连续回流,及时地排除剩余污泥,使混合液保持一定浓度的活性污泥:(5)没有对微生物有毒害作用的物质进入。
活性污泥法的净化过程
在正常发育的活性污泥的微生物体内,存在着由蛋白质、碳水化合物和核酸组成的生物聚合物,这些生物聚合物是带有电荷的电介质。因此,由这种微生物形成的生物絮凝体,都具有生理、物理、化学吸附作用和凝聚、沉淀作用,在其与废水中呈悬浮状和胶休状的有机污染物接触后,能够使后者失稳、凝聚,并被吸附在活性污泥表面。
活性污泥具有很大的表面积,能够与混合液广泛接触,在较短的时间内,通过吸附作用,就能够除去废水中大量的呈悬浮和胶体状的有机污染物,使废水的COD值大辐度地下降。
小分子有机物能够直接在透膜酶的催化作用下,透过细胞壁被摄入细菌体内,但大分子有机物则首先被吸附在细胞表面,在水解酶的作用下,水解成小分子后再被摄入到细胞体内。一部分被吸附的有机物可能通过污泥排放被去除。
3、废水的厌氧处理
废水的厌氧处理原理
废水的厌氧处理是在没有游离氧的情况下,以厌氧微生物为主对有机物进行降解,稳定的一种无害化处理方法[。在厌氧生物处理过程中,复杂的有机化合物被降解,转化为简单、稳定的化合物,同时释放能量。其中,大部分能量以CH4的形式出现,可回收利用。同时,仅少量有机物被转化,合成新的细胞组成部分。
第一阶段,可称为水解、发酵阶段。复杂有机物在微生物的作用下进行水解发酵。水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用,因此它们在第一阶段被细胞外酶分解为小分子。如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶水解为麦芽糖和葡萄糖,这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。而后,这些物质在发酵细菌的细胞内转化为更简单的化合物并被分泌到细胞外。发酵是有机化合物既作为电子受体也是电子供体的生物降解过程,在此过程中,溶解性有机物被转化为以挥发性脂肪酸为主的末端产物。这一阶段的主要产物有挥发性脂肪酸、酸类、乳酸、CO2、H2、H2S、甲胺等。与此同时,酸化菌也利用部分物质合成新的细胞物质。
酸化过程是由大量的、多种多样的发酵细菌完成的。其中重要的类群有权梭状芽孢杆菌和拟杆菌。它们大多是严格厌氧的,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够保护严格厌氧菌免受氧的损害与抑制。
第二阶段,称为产氢、产乙酸阶段,是由一类专门的细菌,称为产氢产乙酸菌,将丙酸、丁一酸等脂肪酸和乙醇等转化为乙酸、C02、HZ。
在标准条件卜,乙醇、丁酸和丙酸不会被降解,因为在这些反应中不产生能。但氢浓度的降低可使这些反应导向产物方向。在运转良好的反应器中,氢的分压一般不高于lOPa,平均值约为0. 1 Pa。当作为反应产物之一的氢的分压如此之低时,乙醇、丁酸和丙酸的降解则可以产生能,即反应的实际自由能成为负值。
在由氢和二氧化碳形成甲烷时,只有在产乙酸产生的氢被产甲烷菌有效利用时,系统中氢才能维持在很低的分压。根据平均氢分压可以计算出反应器里一个氢分子平均在0. 5s以内被消耗,这意味着氢分子在其产生后仅仅能移动0. 1 mm的距离。也说明这种生化反应需要密切的共生关系存在于菌种之间。这种现象称为“种间氢传递”。不仅存在着氢的传递,有迹象证明“种间甲酸传递”也是相当重要的。
第三阶段,称为产甲烷阶段。由产甲烷菌利用乙酸、H2、C02,产生CH4。
在厌氧反应器中,所产甲烷的大约70%由乙酸歧化菌产生。在反应中,乙酸中的羧基从乙酸分子中分离,甲基最终转化为甲烷,羧基转化为二氧化碳,在中性溶液中,二氧化碳以碳酸氢盐的形式存在。
已知利用乙酸的产甲烷菌是索氏甲烷丝菌和巴氏甲烷八叠球菌。两者的生长速率有较大的区别。当乙酸浓度较低时,索氏甲烷丝菌较巴氏甲烷八叠球菌优势生长。由于索氏甲烷丝菌对底物有更高的亲和力,在废水处理中可能取得较高的有机物去除率,且索氏甲烷丝菌的生长有利于形成品质良好的颗粒污泥。因此这种优势生长对系统运行是非常有利的。
厌氧消化微生物
1、发酵细菌(产酸细菌)
主要包括梭菌属、拟杆菌属、丁酸弧菌属、真菌属和双歧杆菌属等。
这类细菌的书要功能是先通过胞外酶的作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸、醇类等。研究表明,该类细菌对有机物的水解过程相当缓慢,pH和细胞平均停留时间等因素对水解速率的影响很大。不同的有机物的水解速率不同,如类脂的水解就很困难。因此当处理的废水中含有大量类脂时,水解就会成为厌氧消化过程的限速步骤。但产酸的反应速率较快,并远高于产甲烷反应。
发酵细菌大多数为专性厌氧菌,按其代谢功能,发酵细菌可分为纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋自质分解菌和脂肪分解菌。
2、产氢产乙酸细菌
产氢产乙酸菌包括互营单胞菌、互营杆菌属、梭菌属和暗杆菌属等。这类细菌能把各种挥发性脂肪酸降解为乙酸和H2。
3、产甲烷细菌
产甲烷菌分为两类:一类主要利用乙酸产生甲烷,另一类数量较少,利用氢和二氧化碳的合成生成甲烷。
厌氧反应中的硫酸盐还原
在处理含硫酸盐或亚硫酸盐废水的厌氧反应器中,这些含硫化合物会被细菌还原。硫酸盐和亚硫酸盐会被硫酸盐还原菌(SRB)在其氧化有机污染物的过程中作为电子受体而加以利用。SRB将硫酸盐和亚硫酸盐还原为硫化氢,会使甲烷产量减少。
根据所利用底物的不同,SRB可被分为三类:
氧化氢的硫酸盐还原菌(HSRB);
氧化乙酸的硫酸盐还原菌(ASRB);
氧化较高级脂肪酸的硫酸盐还原菌(FASRB)。
有机物的降解中少量硫酸盐的存在不会影响处理过程,但与甲烷相比,硫化氢在水中的溶解度要大得多,每克以硫化氢形式存在的硫相当于2克COD,因而在处理含硫废水时,尽管有机物的氧化已相当不错,COD的去除率却不令人满意。
4、抗生素废水的活性炭吸附
活性炭水处理的特点
活性炭吸附技术用于医药、化工及食品工业等方面,在国内外有多年的历史。活性炭水处理的特点为:
1、活性炭对水中有机物有卓越的吸附特性
由于活性炭具有发达的细孔结构和巨大的比表面积,因此对水中溶解的有机污染物,如苯类化合物、酚类化合物、石油及石油产品等具有较强的吸附能力,而且对用生物法和其它化学法难以去除的有机污染物,如色度、异臭、亚甲蓝表面活性物质、除草剂、杀虫剂、农药、合成洗涤剂、合成染料、胺类化合物及许多人工合成的有机化合物等都有较好的去除效果。
2、活性炭对水质、水温及水量的变化有较强的适应能力,对同一种有机物污染物的污水,活性炭在高浓度或低浓度时都有较好的去除效果。
3、活性炭对某些重金属化合物也有较强的吸附能力,如汞、铅、铁、镍、铬、锌、钻等,因此,活性炭用于电镀废水、冶炼废水处理上也有很好的效果。
4、活性炭水处理装置占地面积小,易于自动控制,运行管理简单。
5、饱和炭可经再生后重复使用,不产生二次污染。
6、可回收有用物质,如处理高浓度含酚废水,用碱再生后可回收酚钠盐。
活性炭吸附的基础理论
固体表面由于存在着未平衡的分子引力或化学键力,而使所接触的气体或溶质被吸引并保持在固休表面上,这种表面现象称为吸附。固体都有一定的吸附作用,但具有实用价值的吸附剂是比表面积较大的多孔性固体。活性炭就因为具有较大的比表面积而具有较高的吸附能力,可用作吸附剂。
吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附的,称为物理吸附;吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附的,称为化学吸附离子交换吸附是指一种吸附质的离子,由于静电引力,被吸附在吸附剂表面的带电点上。
活性炭的吸附速度
吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。在废水中,吸附速度决定了废水和吸附剂的接触时间。吸附速度越快,所需的接触时间越短,吸附设备容积也越小。
吸附速度决定于吸附剂对吸附质的吸附过程。多孔吸附剂对溶液中吸附质吸附过程基本上可分为三个连续阶段:第一阶段称为颗粒外部扩散阶段,吸附质从溶液中扩散到吸附剂表面:第二阶段称为颗粒孔隙扩一散阶段,吸附质在吸附剂孔隙中继续向吸附点扩散:第三阶段称为吸附反应阶段,吸附质被吸附在吸附剂孔隙内的表面上。一般而言,吸附速度主要由膜扩散速度或孔隙扩散速度来控制。
由实验得知,颗粒外部膜扩散速度与溶液浓度成正比。对一定重量的吸附剂,膜扩散速度还与吸附剂的表面积的大小成正比。因为表面积与颗粒直径成反比,所以颗粒直径越小,膜韦、一散速度就越大。另外,增加溶液和颗粒之间的相对运动速度,会使液膜变薄,可以提高膜扩散速度。
孔隙扩散速度与吸附剂孔隙的大小及结构、吸附质颗粒大小及结构等因素有关。一般来说,吸附剂颗粒越小,孔隙扩散速度越快,即扩散速度与颗粒直径的的较高次方成反比。因此,采用粉状吸附剂比粒状吸附剂有利。其次,吸附剂内孔径大可使孔隙扩散速度加快,但会降低吸附量。
影响活性炭吸附的因素
1、吸附剂的理化性质
吸附剂的种类不同,吸附效果也不一样。一般是极性分子(或离子)型的吸附剂容易吸附极性分了(或离子)型的吸附质,非极性分子型的吸附剂容易吸附非极性分子型的吸附质。由于吸附作用是发生在吸附剂的内外表面上,所以吸附剂的比表面积越大,吸附能力就越强。另外,吸附剂的颗粒大小、孔隙构造和分布情况,以及表面化学特性等,对吸附也有很大的影响。
2、吸附质的物理化学性质
吸附质在废水的溶解度对吸附有较大的影响。一般来说,吸附质的溶解度越低,越容易吸附。吸附质的浓度增加,吸附量也是随之增加:但浓度增加到一定程度后,吸附量增加很慢。如果吸附质是有机物,其分子尺寸越小,吸附反应就进行得越快。
3、废水的pH值
pH值对吸附质在废水中的存在形态(分子、离子、络合物等)和溶解度均有影响,因而其吸附效果也就相应地有影响。废水pH值对吸附的影响还与吸附剂性质有关。例如,活性炭一般是在酸性溶液中比在碱性溶液中有较高的吸附率。
4、温度
吸附反应通常是放热的,因此温度越低对吸附越有利。但在废水处理中,一般温度变化不大,因而温度对吸附过程影响很小,实践中通常在常温下进行吸附操作。
5、共存物的影响
共存物质对主要吸附质的影响比较复杂。有的能相互诱发吸附,有的能相当独立地被吸附,有的则能相互起千扰作用。但许多资料指出,某种溶质都以某种方式与其他溶质争相吸附。因此,当多种吸附质共存时,吸附剂对某一种吸附质的吸附能力要比只含这种吸附质时的吸附能力低。悬浮物会阻塞吸附剂的孔隙,油类物质会浓集于吸附剂的表面形成油膜,它们均对接触时间吸附有很大影响。因此在吸附操作之前,必须将它们除去。
6、接触时间
吸附质与吸附剂要有足够的接触时间,才能达到吸附平衡。吸附平衡所需时间取决于吸附速度,吸附速度越快,达到平衡所需时间越短。
四、研究结果(废水处理试验结论)
1、针对此种废水,其混凝处理的最佳条件为:混凝剂品种为三氯化铁,质量百分比浓度为10%,每lL废水中需投加此种混凝剂0.2ml,其最适pH值为7
2、进行废水的生化处理,可知废水中含有大量的隋性物质、难降解物质。
3、在T=33士1℃的条件下,确定其厌氧水解常数
4、由于废水中含有多种有机化合物,在用活性炭进行吸附试验时,表现了一定的竞争作用,活性炭总吸附量不高。
5、对于厌氧处理中的硫酸盐,它的去除与废水中所含的COD有一定的关系。详细资料摘自:http://wenku..com/link?url=-rZYzotwVqhEibE74YEzhcMF_gxdXU3ZhB0sJEQVO8NtKcdqDwSeh_m6m-fjJY7ooOxeuuSJvT_2rnAuTtVNHi4TdsfeE3r-0esoZroDqEm www.juheliusuantie.com.cn 详情请到网络文库了解
⑵ 污水处理 污水池除臭的方案有哪些呢
维拓环境 十万伏特团队为你解答。
1、污水处理方案:
污水处理按照其作用可分为物理法、生物法和化学法三种。
①物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。
②生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。
③化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。
污水处理按照处理程度来分可分为一级处理、二级处理和三级处理。
一级处理主要是去除污水中呈悬浮状态的固体物质,常用物理法。一级处理后的废水BOD去除率只有20%,仍不宜排放,还须进行二级处理。二级处理的主要任务是大幅度去除污水中呈胶体和溶解状态的有机物,BOD去除率为80%~90%。一般经过二级处理的污水就可以达到排放标准,常用活性污泥法和生物膜处理法。三级处理的目的是进一步去除某种特殊的污染物质,如除氟、除磷等,属于深度处理,常用化学法。
2、污水池除臭方案:
1、生物滤池除臭系列
特点:
① 不需要高成本的化学药剂,运行稳定,耐腐蚀,耐负荷冲击能力大。
② 针对特定有害气体成份驯化适当的微生物,提高单位容积的负荷率。
③ 填料采用有机无机混合填料,比表面积大,孔隙率高,并可为微生物
提供营养,可支撑大量不同种群微生物群。
④ 填料活性介质的损失小、可减少能耗,降低运行费用。
⑤ 采用强化自然生物降解污染物,无二次污染物产生。
⑥ VOC去除率高,对H2S的去除率可达99%。
⑦ PLC控制系统自动运行,无需人员管理。
适用场所:
① 污水处理厂预处理、生化处理、污泥处理过程恶臭气体的净化和治理。
② 垃圾处理过程中的堆放、分拣、堆肥、填埋、焚烧以及垃圾渗滤液污水处理站恶臭气体
的净化和治理。
③ 涂料与喷漆、炼焦、制药、橡胶塑料、印染皮革、有机染料及合成材料厂、农药和发酵
制药、石油化工、制鞋厂、印刷厂、造纸厂、畜牧养殖、饲料加工、粪便处理等恶臭气
体净化和治理。
2、化学洗涤除臭系列
特点:
① 采用单级或多级串联洗涤,对污染物去除彻底,去除效率高。
② 处理高浓度恶臭废气具有明显优势,运行稳定。
③ 具有启动速度快、可间歇运行、耐冲击负荷强、
受温度影响小、运行稳定等特点。
④ 自动化程度高,占地面积小。
适用场所:
Wintop-CW化学洗涤除臭设备适用于污水处理厂、制药厂、化工厂等具有碱性或酸性且浓度比较高的尾气治理。
3、离子除臭系列
特点:
① 能解决大气污染,改善作业环境空气质量。
② 运行程序化、智能化,可连续运行或间断式运行。
③ 不产生臭氧,对呼吸系统无刺激;对管道及设备无腐蚀性,并对仪器仪表有保护作用。
④ 设备可依附于通风系统上,不需要占用很大的空间。
⑤ 操作维护简单,零配件更换方便,无需专人值守。
⑥ 主要设备和部件原装进口,设备寿命长(离子管使用寿命2万小时以上,主体设备使用
年限15年以上)。
适用场所:
① 食品加工业(用于水产、肉禽、蔬菜等食品加工车间,冷藏室等)。
主要功能: 降低空气中粉尘浓度;消除孢子、细菌病毒、异味。
② 污水、垃圾处理厂等市政行业(用于污水厂、污水泵站、污泥堆场、粪便处理场等)
主要功能:去除有害气体;消除悬浮物及有害气体、异味;减少灰尘、杀灭病毒。
③ 室内空气净化(用于饭店、机场、车站、游轮、客房、商店、展览馆、火车站、体育馆等)。
主要功能:减少空气中可吸入颗粒物;防止细菌侵害及交叉感染;提高室内空气的离子浓度。
④ 化学工业的静电、除尘(用于化学工业、电脑机房、造纸工业、电子工业、印刷业等)。
主要功能:减少空气中的灰尘;消除静电、异味、挥发性有机溶剂。
4、活性炭除臭系列
特点:
① Wintop-CD活性炭除臭设备采取切线出风、环状过滤、中间进风、上不加料、下部卸料的结构,克服了传统的活性炭过滤器过滤阻力大、面积小、占地面积大、设备投资高、更换活性炭困难等缺陷,使活性炭过滤设备结构设计近乎于完美。
② Wintop-CD活性炭除臭设备是等体积传统活性炭过滤设备过滤面积的2~4倍,阻力只有传统的1/2~1/3。
环形活性炭净化装置由于采用切线出风,其方向不受场地条件限制可任意摆放,抽风机和设备对接极易,排放管可直接固定于设备上,系统整齐合理。
适用场所:
① 垃圾焚烧过程的垃圾坑除臭。
② 低浓度有机废气等。
5、植物液除臭系列
特点:
① 可与各种气体反应。
② 可生物降解。
③ 全天然。
④ 不是臭味掩蔽剂。
⑤ 除臭迅速特效。
⑥ 无毒、无挥发、无污染。
⑦ 对人类健康和动植物无害。
⑧ 使用安全、操作简单。
适用场所:
① 工业区(石油石化,轮胎橡胶生产,冶炼)。
② 市政工程(污水处理,垃圾填埋……)。
③ 畜禽养殖(养猪场、养鸡场,动物园……)。
④ 家居及公共场所(住宅,医院,宾馆,健身房……)。
⑶ 为何有人在设计污水处理工艺时用两级好氧
我告诉你:
二级氧化一般都设计成:第一个好氧池是高负荷,第二个是低专负荷
这样可以利用高属负荷(微生物对数增长期)把有机物快速、大量吸附在微生物上,再利用低负荷(微生物减速增长期)慢慢处理有机物
而你说的一级氧化,将池子设计的一样大,只是降低了设计负荷。当然效果也有,但是没有二级氧化的优点多:1、降低池容;2、耐冲击负荷强
⑷ 污水处理厂活性 污泥培养所需营养物质
培养活性污泥需要菌种和菌种所需要的营养物,对于生活污水,其中菌种和营养物都回是具备,因此可以直接答用生活污水进行培养,而本实验采用的模拟生活污水是按照CODCr:N:P=100:5:1的比例配置。
所需要的营养物质是:葡萄糖 NH4Cl KH2PO4
其中:
葡萄糖15.469 NH4Cl 2.88 KH2PO4 0.66 对应的是300mg/L COD
葡萄糖20.425 NH4Cl 3.84 KH2PO4 0.88 对应的是400mg/L COD
其他COD的配置你按比例算一下,这是我本科毕业设计做实验时候的配置,绝对OK。希望对你有帮助。
⑸ 污水气浮处理为什么要使用适宜用量的表面活性物质
污水气浮处理为什么要使用适宜用量的表面活性物质
食品污水的特征食品工业原料广泛,制品种类繁多,排出废水的水量、水质差异很大。废水中主要污染物有(1)漂浮在废水中固体物质,如菜叶、果皮、碎肉、禽羽等;(2)悬浮在废水中的物质有油脂、蛋白质、淀粉、胶体物质等;(3)溶解在废水中的酸、碱、盐、糖类等:(4)原料夹带的泥砂及其他有机物等;(5)致病菌毒等。食品工业废水的特点是有机物质和悬浮物含量高,易腐败。
在沉淀池后序使用气浮机可解决微小悬浮物颗粒,进一步改善水质。细小的悬浮物颗粒可以通过气浮工艺进一步去除,同时在去除CODcr的同时污水的的如TP TFe 油脂 蛋白质都可以降低,达到出水水质符合食品行业水污染物的排放标准。
相关原理及分类和设备工艺的优缺点,请参阅如下:
气浮原理
⑴向水中通入空气,产生微细的气泡,使水中的细小悬浮物黏附在空气泡上,随气泡一起上浮到水面,形成浮渣,达到去除水中悬浮物,改善水质的目的。
⑵气浮的影响因素及提高气浮效果的措施 气泡直径越小,数量越多,气浮的效果越好;水中的无机盐类会加速气泡的破裂和合并,降低气浮效果;投加混凝剂会促进悬浮物凝聚,使其黏附在气泡而上浮;可加入浮选剂使亲水性颗粒表面转化为疏水性物质而黏附在气泡上,随气泡上浮。
气浮法的分类和适用范围
⑴分类:
①电解气浮法:运行时借助电极解作用,在两个电极区不断产生氢、氧和氯气等微气泡,废水中的悬浮颗粒黏附于气泡上上浮到水面而被去除。工艺简单,设备小,但电耗大。
②散气气浮法:是空气通过微细孔扩散装置或微孔管或叶轮后,以微小气泡的形式分布在污水中进行气浮处理的过程。 优点:简单易行。
缺点:气泡较大,气浮效果不好。
③溶气气浮法:
包括加压溶气气浮和溶气真空气浮,加压溶气气浮是空气在加压条件下溶于水中,而在常压下析出。(国内外较常用)
溶气真空气浮是空气在常压或加压条件下溶于水中,在负压条件下析出。
⑵适用范围:
①分离悬浮油和乳化油
②可代替活性污泥法的二沉池对曝气池出流混合液进行固液分离
③可分离工业废水中的有用物质(如纸浆)
④可分离以分子或离子状态存在的物质(如金属离子、表面活性物质等)
加压溶气气浮法
⑴系统组成:包括溶气系统、空气释放装置、气浮池
⑵工艺流程分类:
①全溶气流程②部分溶气流程③回流加压溶气流程
⑶溶气方式:水泵吸水管吸气溶气方式、水泵压水管射流溶气方式和水泵-空气压缩机组合溶气方式
⑷加压溶气气浮的优点:
①加压情况下,水中空气溶解度大,能提供足够的溶气量,以满足不同的气浮要求;
②突然减压释放产生的气泡直径小(20~100 ),粒径均匀,微气泡上浮稳定,对液体的扰动小,特别适用于松散絮体和细小颗粒的固液分离;
③流程简单,维护管理方便。
⑸气浮池形式:
①平流式气浮池:
被处理的废水由池一端的下部进入接触区,微气泡与废水进行均匀混合,使其中的悬浮颗粒黏附于气泡上,废水经隔板进入气浮分离区进行分离后,水中污染物随气泡一起上浮到水面上,经刮渣设备刮除。优点:池身浅,造价低,构造简单,管理方便 缺点:分离区容积利用率不高。
②竖流式气浮池:
优点:接触区在池中央,水流向四周分散,水力条件比平流式好,
缺点:构造较复杂。
⑹设计参数: 有效水深、表面负荷、接触区上端和下端的水流上升速度、分离区向下的流速、气固比、气浮过程中空气的实际用量、回流比、减压释放出的微气泡直径等。
气浮法的优缺点(与沉淀法相比)
⑴优点: 气浮过程中增加了水中的溶解氧,浮渣含氧,不易腐化,有利于后续处理;气浮池表面负荷高,水力停留时间短,池深浅,体积小;浮渣含水率低,排渣方便;投加絮凝剂处理废水时,所需的药量较少。
⑵缺点:耗电多,比每立方米废水比沉淀法多耗电0.02~0.04KWh,运营费用偏高;废水悬浮物浓度高时,减压释放器容易堵塞,管理复杂。
⑹ 活性炭在废水处理中可以吸附哪些物质
巩义市明阳净水填料厂为您解答。本厂常年生产活性炭等净水材料。
由于活性炭对内有机物的吸附能力大,在容废水深度处理中得到广泛的应用,具有以下优点:
①处理程度高,城市污水用活性炭进行深度处理后,BOD可降低99%,TOC可降到1~3mg/L。
②应用范围广,对废水中绝大多数有机物都有效,包括微生物难于降解的有机物。
③适应性强,对水量及有机物负荷的变动有较强的适应性能,可得到稳定的处理效果。
④粒状炭可进行再生重复使用,被吸附的有机物在再生过程中被烧掉,不产生污泥。
⑤可回收有用物质,例如用活性炭处理含酚废水,用碱再生吸附饱和的活性炭,可以回收酚钠盐。
⑥设备紧凑 、管理方便。
⑺ 冬季污水处理厂低温运行需要注意哪些
影响污水处理厂冬季稳定运行的几个因素
(一)温度
在活性污泥处理工艺中水版温是最重要的权因素之一,在一定范围内,随着温度的升高,微生物生化反应的速率加快,繁殖速率也随之加快。
(二)溶解氧(DO)
(三)pH值
(四)营养物质
(五)有机负荷
好氧及厌氧工艺均需要保证一定的有机负荷,且厌氧工艺的要求更高,但当有机物过多时,也会对微生物生长产生不利影响。
(六)氧化还原电位
(七)有毒物质(抑制物质)
无论好氧还是厌氧工艺,都会受到某些有毒物质的影响。如重金属、氰化物、H2S、卤族元素及其化合物、酚、醇、醛等。
⑻ 污水处理中曝气池的悬浮物过多
污水处理中曝气池的泡沫一般分为三种形式:
①启动泡沫.活性污泥工艺运行启专动初期,由于污水中含有一属些表面活性物质,易引起表面泡沫.但随着活性污泥的成熟,这些表面活性物质经生物降解,泡沫现象会逐渐消失.
②反硝化泡沫.如果污水厂进行硝化反应,则在沉淀池或曝气不足的地方会发生反硝化作用,产生氮等气泡而带动部分污泥上浮,出现泡沫现象.
③生物泡沫.由于丝状微生物的异常生长,与气泡、絮体颗粒混合而成的泡沫具有稳定、持续、较难控制的特点.生物泡沫对污水厂的运行是非常不利的:在曝气池或二沉池中出现大量丝状微生物,水面上漂浮、积聚大量泡沫;造成出水有机物浓度和悬浮固体升高;产生恶臭或不良有害气体;降低机械曝气方式的氧转移效率;可能造成后期污泥消化时产生大量表面泡沫.这时一般都会加一些消泡剂,能很好的消除泡沫,同时能有效的进行污水处理.
⑼ 水产养殖废水怎么处理,水产养殖废水处理工艺
水产养殖废水处理方法主要有物理处理法、化学处理法、物理化学处理法、生物处理法。
1物理处理法
1)过滤法
由于养殖废水中的剩余残饵和养殖生物排泄物等大部分以悬浮态大颗粒形式存在,因此采用物理过滤法去除是最为快捷、经济的方法。常用的过滤设备有机械过滤器、压力过滤器、沙滤器等。在实际处理工程中,机械过滤器(微滤机)是应用较多、过滤效果较好的方式。沸石过滤器兼有过滤与吸附功能,不仅可以去除悬浮物,同时又可以通过吸附作用有效去除重金属、氨氮等溶解态污染物。
12)泡沫分离法
泡沫分离根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体对液相中的溶质或颗粒进行分离,因此又称泡沫吸附分离。其原理是向被处理水体中通入空气,使水中的表面活性物质被微小气泡吸着,并随气泡一起上浮到水面形成泡沫,然后分离水面泡沫,从而达到去除废水中溶解态和悬浮态污染物的目的。由于泡沫分离技术不仅可以将蛋白质等有机物在未被矿化成氨化物和其他有毒物质前就已被去除,避免了有毒物质在水体中积累,而且可向养殖水体提供所必需的溶解氧,对维护养殖水体生态环境有良好作用。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
2化学处理法
1)臭氧处理法
海水工厂化养殖废水存在养殖生物排泄物等悬浮物,以及氨氮、可生物降解有机物等物质,而且也存在难生物降解有机物。因此,利用臭氧、过氧化氢、二氧化氯、漂白液等化学氧化剂的氧化作用,氧化分解难生物降解溶解态有机物是养殖废水深度处理的主要手段。因此采用O3/UV工艺,既能提高处理效率又可减少臭氧的用量。用O3/UV技术净化湖水可达到水质净化及水体增氧的目的。
臭氧的净化原理在于它在水中的氧化还原电位为2.07 V,高于氯(1.36 V)和二氧化氯(1.5 V)。它能够破坏和分解细胞的细胞壁(膜),迅速扩散渗入细胞内,从而杀死病原菌。臭氧在水中分解的中间物质羟基自由基(•OH),具有很强的氧化性,可以分解一般氧化剂难分解的有机物。因此,用臭氧处理废水,既能够迅速灭除细菌、病毒和氨等有害物质,又能增加水中溶解氧,从而达到净化养殖废水的目的。
2)电化学法
电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现,二者统称电化学,后者为电化学的一个分支,称放电化学。在水产养殖废水的处理中,用电化学法去除水中溶解的亚硝酸盐和氨氮的研究结果表明,亚硝酸盐完全去除的时间和能耗随着传导率的增加而降低,输入电流最大为2A时,耗能最少,pH相对于输入电流和电导率来说几乎没有影响;在酸性条件下有利于亚硝酸盐的去除,碱性条件有利于氨的去除,氨的去除速度低于亚硝酸盐的去除速度。
3生物处理法
1)活性污泥法
活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。
污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,形悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。
第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。
第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。
经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。
2)生物膜法
生物膜法是与活性污泥法并列的一类废水好氧生物处理技术,是一种固定膜法,是土壤自净过程的人工化和强化;主要去除废水中溶解性的和胶体状的有机污染物。具体参见http://www.dowater.com更多相关技术文档。
生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。
⑽ 有关于污水处理的知识,详细点,
环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。随着我国社会和经济的高速发展,城市环境污染特别是水污染的问题日趋严重。城镇生活污水的排放量逐年增加,2002年全国工业和城镇生活废水排放总量为439.5亿吨,比上年增加1.5%。其中工业废水排放量207.2亿吨,比上年增加2.3%;城镇生活污水排放量232.3亿吨,比上年增加0.9%,其中仅有10%得到处理。[1]生活污水中含有较高的氮、磷等营养物质,未经处理直接排入江河湖海,是导致水域富营养化污染的主要原因。2002年监测数据显示,辽河、海河水系污染严重,劣V类水体占60%以上;淮河干流水质以III-V类水体为主,支流及省界河段水质仍然较差;黄河水系总体水质较差,干流水质以III-IV类水体为主,支流污染普通严重;松花江水系以III-IV类水体为主;珠江水系水质总体良好,以II类水体为主;长江干流及主要一级支流水质良好,以II类水体为主。由于“污染性”造成的水资源短缺,已成为严重制约我国社会经济持续发展的突出问题,丞待解决。目前我国水污染控制的重点已从以工业点源为主,逐步转变为以城市污水污染为主的控制。根据预测 [2],到2010年我国城市污水排放总量为1050亿m3,城市污水处理率要达到50%,预计需新建污水处理厂1000余座,而决定城市污水处理厂投资和运行成本的主要因素是污水处理工艺和技术的选择,因此开发适合我国国情的、高效、低耗、能满足排放要求、基建和运行费用低的污水处理新技术和新工艺,具有十分重要的现实意义。
二、生活污水处理工艺研究和应用领域共同关注的问题
长期以来,城市生活污水的二级生物处理多采用活性污泥法,它是当前世界各国应用最广的一种二级生物处理流程,具有处理能力高,出水水质好等优点。但却普遍存在着基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀、污泥上浮等问题,且不能去除氮、磷等无机营养物质。对于我国这样一个资源不足、人口众多的发展中国家,从可持续发展的角度来看,并不适合中国国情。由于污水处理是一项侧重于环境效益和社会效益的工程,因此在建设和实际运行过程中常受到资金的限制,使得治理技术与资金问题成为我国水污染治理的“瓶颈”。归纳起来,目前在城市生活污水处理研究和应用领域,普遍存在的问题有:
(1)采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀现象;工艺设备不能满足高效低耗的要求。
(2)随着污水排放标准的不断严格,对污水中氮、磷等营养物质的排放要求较高,传统的具有脱氮除磷功能的污水处理工艺多以活性污泥法为主,往往需要将多个厌氧和好氧反应池串联,形成多级反应池,通过增加内循环来达到脱氮除磷的目的,这势必要增加基建投资的费用及能耗,并且使运行管理较为复杂。
(3)目前城市污水的处理多以集中处理为主,庞大的污水收集系统的投资远远超过污水处理厂本身的投资,因此建设大型的污水处理厂,集中处理生活污水,从污水再生回用的角度来说不一定是唯一可取的方案。
因此,如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量、最方便的操作管理,以及实现磷回收和处理水回用等可持续的方向发展。已成为目前水处理技术研究和应用领域共同关注的问题,就要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。
三、生物膜法处理工艺在生活污水处理中的应用研究发展
在污水生物处理的发展和应用中,活性污泥和生物膜法一直占据主导地位。随着新型填料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜法处理工艺在近年来得以快速发展。由于生物膜法具有处理效率高,耐冲击负荷性能好,产泥量低,占地面积少,便于运行管理等优点,在处理中极具竞争力。
1.生物膜法净化污水机理
污水中有机污染物质种类繁多,成分复杂。但对于生活污水来说,其有机成分归纳起来主要包括:蛋白质(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外还含有一定量的尿素[3]。生物膜法依靠固定于载体表面上的微生物膜来降解有机物,由于微生物细胞几乎能在水环境中的任何适宜的载体表面牢固地附着、生长和繁殖,由细胞内向外伸展的胞外多聚物使微生物细胞形成纤维状的缠结结构,因此生物膜通常具有孔状结构,并具有很强的吸附性能。
生物膜附着在载体的表面,是高度亲水的物质,在污水不断流动的条件下,其外侧总是存在着一层附着水层。生物膜又是微生物高度密集的物质,在膜的表面上和一这深度的内部生长繁殖着大量的微生物及微型动物,形成由有机污染物 →细菌→原生动物(后生动物)组成的食物链。生物膜是由细菌、真菌、藻类、原生动物、后生动物和其他一些肉眼可见的生物群落组成。其中细菌一般有:假单苞菌属、芽苞菌属、产碱杆菌属和动胶菌属以及球衣菌属,原生动物多为钟虫、独缩虫、等枝虫、盖纤虫等。后生动物只有在溶解氧非常充足的条件下才出现,且主要为线虫。污水在流过载体表面时,污水中的有机污染物被生物膜中的微生物吸附,并通过氧向生物膜内部扩散,在膜中发生生物氧化等作用,从而完成对有机物的降解。生物膜表层生长的是好氧和兼氧微生物,而在生物膜的内层微生物则往往处于厌氧状态,当生物膜逐渐增厚,厌氧层的厚度超过好氧层时,会导致生物膜的脱落,而新的生物膜又会在载体表面重新生成,通过生物膜的周期更新,以维持生物膜反应器的正常运行。
生物膜法通过将微生物细胞固定于反应器内的载体上,实现了微生物停留时间和水力停留时间的分离,载体填料的存在,对水流起到强制紊动的作用,同时可促进水中污染物质与微生物细胞的充分接触,从实质上强化了传质过程。生物膜法克服了活性污泥法中易出现的污泥膨胀和污泥上浮等问题,在许多情况下不仅能代替活性污泥法用于城市污水的二级生物处理,而且还具有运行稳定、抗冲击负荷强、更为经济节能、具有一定的硝化反硝化功能、可实现封闭运转防止臭味等优点。
通过人工强化作用将生物膜引入到污水处理反应器中,便形成了生物膜反应器。近年来,物物膜反应器发展迅速,由单一到复合,有好氧也有厌氧,逐步形成了一套较完整的生物处理系统。
填料是生物膜技术的核心之一,它的性能对废水处理工艺过程的效率、能耗、稳定性以及可靠性均有直接关系。
2、厌氧生物膜法处理工艺在生活污水处理中的应用研究进展
(1)、复杂物料的厌氧降解阶段
在废水的厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响,相互制约,形成复杂的生态系统。对复杂物料的厌氧过程的叙述,有助于我们了解这一过程的基本内容。所谓复杂物料,即指那些高分子的有机物,这些有机物在废水中以悬浮物或胶体形式存在。
复杂物料的厌氧降解过程可以被分为四个阶段。
水解阶段:高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用。因此它们在第一阶段被细菌胞外酶分解为小分子。例如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
发酵(或酸化)阶段:在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有挥发性脂肪酸(简写作VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此未酸化废水厌氧处理时产生更多的剩余污泥。
产乙酸阶段:在此阶段,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
产甲烷阶段:这一阶段里,乙酸、氢气、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新的细胞物质。
在以上阶段里,还包含着以下这些过程:a、水解阶段里有蛋白质水解、碳水化合物的水解和脂类水解;b、发酵酸化阶段包含氨基酸和糖类的厌氧氧化与较高级的脂肪酸与醇类的厌氧氧化;c、产乙酸阶段里有从中间产物中形成乙酸和氢气和由氢气和 氧化碳形成乙酸;d、甲烷化阶段包括由乙酸形成甲烷和从氢气和二氧化碳形成甲烷。除以上这些过程之外,当废水含有硫酸盐时还会有硫酸盐还原过程。复杂化合物的厌氧降解可以利用图来表述(见图1)
(2)厌氧生物膜法处理工艺的应用研究进展
a、厌氧滤器(AF)
厌氧滤器是60年代末由美国McCarty 等在Coulter等研究基础上发展并确立的第一个高速厌氧反应器。传统的好氧生物系统一般容积负荷在2KgCOD/(m3?d)以下。而在AF发明之前的厌氧反应器一般容积负荷也在4-5kgCOD/(m3?d)以下。但AF在处理溶解性废水时负荷可高达10-15 kgCOD/(m3?d)。[4]因此AF的发展大大提高了厌氧反应器的处理速率,使反应器容积大大减少。
AF作为高速厌氧反应器地位的确立,还在于它采用了生物固定化的技术,使污泥在反应器内的停留时间(SRT)极大地延长。McCarty发现在保持同样处理效果时,SRT的提高可以大大缩短废水的水力停留时间(HRT),从而减少反应器容积,或在相同反应器容积时增加处理的水量。这种采用生物固定化延长SRT,并把SRT和HRT分别对待的思想推动了新一代高速厌氧反应器的发展。
SRT的延长实质是维持了反应器内污泥的高浓度,在AF内,厌氧污泥的浓度可以达到10-20gVSS/L。AF内厌氧污泥的保留由两种方式完成:其一是细菌在AF内固定的填料表面(也包括反应器内壁)形成生物膜;其二是在填料之间细菌形成聚集体。高浓度厌氧污泥在反应器内的积累是AF具有高速反应性能的生物学基础,在一定的污泥比产甲烷活性下,厌氧反应器的负荷与污泥浓度成正比。同时,AF内形成的厌氧污泥较之厌氧接触工艺的污泥密度大、沉淀性能好,因而其出水中的剩余污泥不存在分离困难的问题。由于AF内可自行保留高浓度的污泥,也不需要污泥的回流。
在AF内,由于填料是固定的,废水进入反应器内,逐渐被细菌水解酸化、转化为乙酸和甲烷,废水组成在不同反应器高度逐渐变化。因此微生物种群的分布也呈现规律性。在底部(进水处),发酵菌和产酸菌占有最大的比重,随反应器高度上升,产乙酸菌和产甲烷菌逐渐增多并占主导地位。细菌的种类与废水的成分有关,在已酸化的废水中,发酵与产酸菌不会有太大的浓度。
细菌在反应器内分布的另一特征是反应器进水处(例如上流式AF的内部)细菌由于得到营养最多因而污泥浓度最高,污泥的浓度随高度迅速减少。
污泥的这种分布特征赋予AF一些工艺上的特点。首先,AF内废水中有机物的去除主要在AF底部进行(指上流式AF),据Young和Dahab报道[4], AF反应器在1m以上COD的去除率几乎不再增加,而大部分COD是在0.3m以内去除的。因此研究者认为在一定的容积负荷下,浅的AF反应器比深的反应器能有更好的处理效率。其次,由于反应器底部污泥浓度特别大,因此容易引起反应器的堵塞。堵塞问题是影响AF应用的最主要问题之一。据报道,上流式AF底部污泥浓度可高达60g/L。厌氧污泥在AF内的有规律分布还使得反应器对有毒物质的适应能力较强,可以生物降解的毒性物质在反应器内的浓度也呈现出规律性的变化,加之厌氧生物膜形成各种菌群的良好共生体系,因此在AF内易于培养出适应有毒物质的厌氧污泥。例如在处理三氯甲烷和甲醛废水中,发现AF反应器内的污泥产生了良好的适应性,这些有毒物质的去除效果和允许的进液浓度逐渐上升。AF同时也具有较大的抗冲击负荷能力。一般认为在相同的温度条件下,AF的负荷可高出厌氧接触工艺2~3倍,同时会有较高的COD去除率。
AF在应用上的问题除了堵塞和由局部堵塞引起的沟流以外,另一个问题是它需要大量的填料,填料的使用使其成本上升。由于以上问题,国外生产规模的AF系统应用也不是很多。据Le-ttinga在1993年估计,国外生产规模的AF系统大约仅有30~40个。[4]
作为升流式厌氧滤池的革新技术——厌氧膜床(S?pecial Anaerobic Film Bed, SAFB),采用较大颗粒及孔隙率的填料代替传统的小粒径填料,有效地解决了反应器的堵塞问题。厌氧膜床具有如下特点:
有效克服了厌氧滤池易堵塞和出水水质差的缺点;
生物固体浓度高,因此可获得较高的有机负荷;
在厌氧膜床内微生物通过附着在填料表面形成生物膜,以及悬浮于填料孔隙间形成细菌聚集体,因此在厌氧膜床内可以保持较高的生物量。因此可缩短水力停留时间,耐冲击负荷能力较强;
启动时间短,停止运行后再启动也较容易;
不需要回流污泥,运行管理方便;
在水量和负荷有较大变化的情况下,耐冲击性较好。
b、厌氧流化床反应器(AFBR)
在流化床系统中依靠在惰性的填料微粒表面形成的生物膜来保留厌氧污泥,液体与污泥的混合、物质的传递依靠使这些带有生物膜的微粒形成流态化来实现。
流化床反应器的主要特点可归纳如下:
流态化能最大程度使厌氧污泥与被处理的废水接触;
由于颗粒与流体相对运动速度高,液膜扩散阻力小,且由于形成的生物膜较薄,传质作用强,因此生物化学过程进行较快,允许废水在反应器内有较短的水力停留时间;
克服了厌氧滤器堵塞和沟流问题;
高的反应器容积负荷可减少反应器体积,同时由于其高度与直径的比例大于其它厌氧反应器,因此可以减少占地面积。
但是,厌氧流化床反应器存在着几个尚未解决的问题。其一,为了实现良好的流态化并使污泥和填料不致从反应器流失,必须使生物膜颗粒保持均匀的形状、大小和密度,但这几乎是难以做到的,因此稳定的流态化也难以保证。[5]其次,一些较新的研究认为流化床反应器需要有单独的预酸化反应器。同时,为取得高的上流速度以保证流态化,流化床反应器需要大量的回流水,这样导致能耗加大,成本上升。由于以上原因,流化床反应器至今没有生产规模的设施运行。有人认为它在今后应用的前景也不大。[5]
c、厌氧附着膜膨胀床反应器(AAFEB)
厌氧附着膜膨胀床(Anaerobic Attached Film Expanded Bed)是Jewell等人在1974年研究和开发出来的一种污水处理工艺。与生物流化床相比,区别在于载体的膨胀程度。以填料层高度计,膨胀床的膨胀率约为10%~20%,此时颗粒间仍保持互相接触,而流化床则为20%~70%。Bruce J.Alderman等[6]通过对比厌氧膨胀床、滴滤池和活性污泥法等工艺的经济性,发现对于小型污水处理厂而言,厌氧膨胀床后续滴滤池的设计是最为经济的选择,能耗量少,污泥产率量低。但目前此工艺仍主要停留在小试和中试研究阶段。
综上所述,采用厌氧生物膜反应器为主体的厌氧处理技术,作为生活污水处理的核心方法,在技术上已经成熟,并且较之其它方法有独到的一些优势。但是,厌氧方法在浓缩营养物(氮和磷)方面效果不大,同时它仅能除去部分病源微生物。此外,残存的BOD、悬浮物或还原性物质可能影响到出水的质量。所以厌氧生物膜反应器要成为完整的环境治理技术,合适的后处理手段必不可少。
3、好氧生物膜法处理技术——生物接触氧化
生物接触氧化法是由生物滤池和接触曝气氧化池演变而来的。早在20世纪30年代,已在美国出现生产型装置。当时的生物接触氧化池,填料的材质是砂石、竹木制品和金属制品,主要用于处理低浓度、低有机负荷的污水,它克服了活性污泥法在处理此类污水时,因污泥流失而不能维持正常运行的缺点,并取得了较好的效果。进入70年代,随着大孔径、高比表面积的蜂窝直管填料和立体波纹塑料填料的出现,使生物接触氧化法的应用范围得到拓宽,它不仅可用于处理生活污水,而且可用于处理高浓度有机废水和有毒有害工业废水,与其他生物处理方法相比,展现出了优越性,我国在70年代开始对生物接触氧化法进行了研究,第一座生产性试验装置用于处理城市污水,在处理效果、动力消耗、经济效益和管理维护等方面都明显优于活性污泥法。与活性污泥法比较,生物接触氧化具有以下主要优点:①生物接触化法以填料作为载体,供生物群栖息生长,形成稳定的生态体系,有较高的微生物浓度,一般可达10~20g/l;氧的利用率高,可达10%。具有较高的耐冲击负荷能力和对环境变化的适应能力,剩余污泥量少。②生物接触氧化法可以充分利用丝状菌的强氧化能力且不产生污泥膨胀。并且不需要象活性污泥法那样采用污泥回流以调整污泥量和溶解氧浓度,易于管理和操作。随着十余年的大量实践,对氧化池结构形式、填料的品种和安装方式、供气装置的种类和布置形式等方面进行了不断创新、不断优化。目前,生物接触氧化技术已经广泛应用处理生活污水、生活杂用水和不同有机物浓度的工业废水。
填料是微生物栖息的场所、生物膜的载体。填料的表面生长生物膜,生物膜的新陈代谢过程使污水得利净化。填料的性能直接影响着生物接触氧化技术的效果和经济上的合理性,因而填料的选择是生物接触氧化技术的关键。
填料的特性取决于填料的材质和结构形式。填料的材质应具有分子结构稳定、抗老化、耐腐蚀和生物稳定性好等特性。填料的结构形式应具有比表面积大、空隙率高、硬度高、有布水布气和切割气泡的功能。填料之间的空隙在外力作用下可发生变化,有利于剥落的生物膜及时排出填料区,以及填料的体积应具有可压缩性,并在复原后不发生变形,便于运输和安装。
固定化载体的发展
(1)固定式填料
固定式填料以蜂窝状及波纹状填料为代表,多用玻璃钢、各种薄形塑料片构成。新近有陶土直接烧结生产的陶瓷蜂窝填料,孔形为六角形,孔径在20~100mm之间。由于比表面积小,生物膜量小,表面光滑,生物膜易脱落,填料横向不流通,造成布气不均匀,易堵塞以至无法正常运转,且造价较高,近年来,此类填料已逐渐淘汰。
(2)悬挂式填料
悬挂式填料包括软性、半软性及组合填料、软性填料,理论比表面积大,空隙率>90%,挂膜快,空隙的可变性使之不易堵塞,而且造价低,组装方便,出水稳定,处理效果较好,COD和BOD5去除率达80%以上。但废水浓度高或水中悬浮物较大时,填料丝会结团,大大减少了实际利用的比表面积,且易发生断丝、中心绳断裂等情况,影响使用寿命,其寿命一般为1~2年。半软性填料,具有较强的气泡切割性能和再行布水布气的能力、挂膜脱膜效果较好、不堵塞;COD和BOD去除率在70-80%。使用寿命较软性填料长。但其理论比表面积较小(87-93m2/m3)生物膜总量不足影响污水处理效果,且造价偏高。
组合式填料,是鉴于软性、半软性存在的上述缺点并吸取软性填料比表面积大、易挂膜和半软性填料不结团,气泡切割性能好而设计的新型填料,在填料中央设计半软性部件支撑着外围的软性纤维束,其平面有如盾形,故又称盾式填料。其比表面积1000~2500 m2/m3,空隙率98%-99%,具有挂膜快,生物总量大,不结团等优点。污水处理能力优于软性、半软性填料,在正常水力负荷条件下COD去除率70%-85%,BOD5去除率达80%~90%,与之类似的还有灯笼式(或龙式)和YDT弹性立体填料。
(3)分散式填料
分散式填料包括堆积式、悬浮式填料,种类繁多。特点是无需固定和悬挂,只需将之放置于处理装置之中,使用方便,更换简单。北京晓清环保公司的多孔球形悬浮填料和北京桑德公司的SNP无剩余污泥悬浮填料等,具有充氧性能好,挂膜快,使用寿命长等优点。江西萍乡佳能环保工程公司新近开发的堆积式填料—球形轻质陶料,填料粒径2~4 mm,有巨大的比表面积,使反应器中单位体积内可保持较高的生物量,而且填料上的生物膜较薄,其活性相对较高,具有完全符合曝气生物滤池填料的国际性能标准,在法国承建的我国大连马栏河污水处理厂使用,这是我国新型填料开发的一项重大突破。
四、水解酸化—好氧活性污泥工艺在生活污水处理中的应用
城市污水经厌氧处理后,在现有的技术条件下,要达到二级出水标准,需要相当长的停留时间,结果使厌氧处理虽然在运行管理费用上占有优势,但在基建投资上却失去了竞争力。因此从微生物和化学角度讲,厌氧处理仅仅提供了一种预处理,它一般需要后处理方能满足新的污水排放标准。印度和南美国家在积极推广应用厌氧生活污水处理技术的同时,普遍意识到由于厌氧处理后氮和磷基本上没有去除,因此对厌氧出水进一步处理很有必要。缺乏合适的后处理技术,是导致厌氧生物处理技术在生活污水处理领域应用缓慢的主要原因之一。虽然已有的小试实验结果表明,两级厌氧系统组合可以获得良好的处理效果。但目前,在实际生产中,应用最为广泛的仍然是厌氧与好氧组合系统。在印度,氧化塘是最常用的后处理方法。经厌氧、氧化塘两级处理后的出水BOD5、CODcr和TSS去除率分别为87%、81%和90%。在巴西NovaVista市的7000人生活污水处理工程中,以及哥伦比亚Bucarmanga镇的160000人生活污水处理工程中,后处理均采用的是兼性氧化塘。在墨西哥的厌氧生活污水处理工程中,后处理方法比较多样化,二沉池+氯消毒、淹没滤池+二沉池+氯消毒、氧化沟等,最后直接排入城市污水管网或用于农灌。在日本,城镇生活污水一般采用厌氧消化+好氧活性污泥法联合处理、厌氧滤池+好氧滤池以及厌氧滤池+接触氧化法组合处理。并且最新研制的具有脱氮除磷功能的高级型JOHKASO小型家用生活污水净化器系统,广泛应用于分散处理生活污水方面。[7]厌氧和好氧生物处理技术的组合能够有效的去除大部分有机和无机污染物。厌氧生物专家G·Lettinga教授断言厌氧处理生物技术如果有合适的后处理方法相配合,可以成为分散型生活污水处理模式的核心手段,这一模式较之于传统的集中处理方法更具有可持续性和生命力,尤其适合发展中国家的情况。[8]
厌氧-好氧组合处理工艺,充分发挥了厌氧技术节能、好氧技术高效的优势,成为目前污水处理工艺发展的主要趋势。在国外,由上流式厌氧污泥床反应器(UASB)和好氧生物膜反应器组成的厌氧—好氧组合处理工艺一直是研究的重点,[9,10,11]并针对组合工艺的硝化/反硝化性能和动力学机理展开了较为深入的研究。[12,13]近年来,Ricardo Franci Goncalves等[14,15]进行的小试和中试的研究结果表明,采用UASB和淹没式曝气生物滤池(BF)组合工艺处理生活污水,两段HRT分别为6h和0.17h时系统对CODcr 、BOD5 和SS去除率均在90%以上,并且该组合系统相对单一的UASB污水处理系统而言,有更好的稳定出水水质的作用。当BF段的污泥回流至UASB段时,厌氧反应器内有机物甲烷化的能力提高,使产气量增加、剩余污泥量减少,可以减少甚至省去污泥浓缩池和消化池。
由于以UASB为主体的厌氧-好氧组合处理工艺,受温度的影响较大,特别是在低温条件下,系统的性能不能得到充分的发挥。Igor Bodik等[16]通过中试试验研究了厌氧折流板生物滤池反应器和淹没式曝气生物滤池组合工艺低温下处理生活污水时的脱氮性能。系统经过一年的运行,在厌氧段和好氧段的水力停留时间分别为15 h和4h的条件下,即使环境温度低于10℃(平均气温5.9℃),对CODcr、BOD5和SS的去除率仍达80%左右。低温使硝化的活性受到一定的影响,温度在4.5-23℃范围内,TKN的去除率在46.4-87.3%间变化,并且该系统也具有一定的反硝化功能,为低温环境下生活污水的脱氮处理提供了参考。
参考资料:http://..com/question/23545633.html?si=4