导航:首页 > 蒸馏问题 > 钌的蒸馏工艺

钌的蒸馏工艺

发布时间:2024-10-26 14:38:24

㈠ 铑矿怎么提炼啊

铑的提炼专利技术

1、溶液中铑、铱与金、铂、钯分离富集方法
2、铂催化剂的回收方法
3、从铂铑合金中分离出铂铑的方法
4、催化剂回收方法
5、从汽车尾气废催化剂中回收铂、钯、铑的方法
6、从羰化反应剩余物中回收铑的方法
7、一种氢还原分离铱溶液中铑的新方法
8、从有机混合物分离铑的方法
9、粗铑及含铑量高的合金废料的溶解与提纯方法
10、一种分离提纯贵金属的方法
11、贵金属铑的回收
12、从氧化合成反应产物中回收铑的方法
13、从烯烃羰基化催化剂废液中回收金属铑的方法
14、一种从羰基合成反应废铑催化剂中回收铑的方法
15、从废铑催化剂残液中回收金属铑的方法
16、回收铑催化剂的方法
17、用不混溶液体从羰基化反应残余物中回收贵金属
18、从羰基化反应产物中回收铑
19、一种从羰基合成产物的蒸馏残渣中回收铑的方法
20、羰基化反应残余物中贵金属的回收
21、一种从羰基合成产物中回收铑的工艺
22、使用铑催化剂的加氢甲酰化制醛工艺和铑催化剂的萃取回收工艺
23、通过煅烧含金属的碱性离子交换树脂来回收金属的方法
24、回收铑的方法 3
25、回收铑的方法 2
26、从加氢甲酰基化混合物分离铑的方法
27、回收铑的方法
28、过渡金属的回收
29、从非极性有机溶液中回收催化金属

㈡ 锇钌的精练

建议你去专业网站上问一下
从一般角度来说,我认为没有的
因为不同的设备,使用条件不同,制造材料和制造工艺会有差别

㈢ 纯净金属制备技术的发展历史

主要看第二个~

金属材料发展历史回顾

石器时代(公元五千年前)→青铜器时代(公元一千二百年前)→铁器时代

三星堆博物馆(Sanxingi Museum)位于全国重点文物保护单位三星堆遗址东北角,地处历史文化名城四川省广汉市城西鸭子河畔,南距成都38公里,北距德阳26公里,是我国一座大型现代化的专题性遗址博物馆。博物馆于1992年8月奠基,1997年10月正式开放。

发掘历程
1.初始时期(1929年-1934年)
1929年在三星堆遗址真武村燕家院子发现玉石器坑,出土玉石器三、四百件。
1931年英国神父董宜笃四处奔走,使1929年出土的玉石器大部分归华西大学博物馆。
1932年华西大学博物馆馆长葛维汉提出在广汉进行考古发掘的构想并获四川省政府教育厅的批准。
1934年3月1日葛维汉、林名均抵达广汉。
3月葛维汉、林名均等在真武村燕家院子附近清理玉石器坑, 并在燕家院子东、西两侧开探沟试掘。
2.初步调查与发掘(1951年-1963年)
1951年四川省博物馆王家佑、江甸潮等调查三星堆、月亮湾,首次发现大 片古遗址。
1958年四川大学历史系考古教研组再次调查三星堆遗址。
1963年四川省博物馆和四川大学历史系联合发掘三星堆遗址。由著名考古学家、四川省博物馆馆长、四川大学历史系教授冯汉骥主持。

3.两坑的发掘及古城再现(1980年-2005年)
1980年~1981年四川省文物管理委员会与广汉县联合首次发掘三星堆遗址,揭露出大面积的房屋基址。
1982年 11月~83年1月第二次发掘 三星堆遗址,首次在三星堆遗址发现陶窑。
1984年 3月~12月第三次发掘三星堆遗址,在西泉坎发掘出龙山时代至西周早期的文化堆积,确定了三星堆遗址的年代上、下限。
1984年12月~1985年10月 第四次发掘三星堆遗址,发现三星堆土埂为人工夯筑,首次提出三星堆遗址是蜀国都城的看法。
1986年3月~5月四川省文物管理委员会、四川省文物考古研究所、四川大学历史系与广汉县联合,第五次发掘三星堆遗址,发掘面积1200平方公尺,发现大量灰坑和房屋遗迹‘将三星堆遗址的代上限推至距今 5,000年前。

1986年7月18日当地砖厂在第二发掘区取土时发现祭祀坑,挖出玉石器。第六次发掘三星堆遗址。
1986年7月18日四川省文物管理委员会、四川省文物考古研究所与广汉县联合发掘祭祀坑,编号为一号祭祀坑。出土铜、金、玉、琥珀、石、 陶等器物共420件,象牙13根。
8月14日距一号祭祀坑东南约30公尺处发现二号祭祀坑。
8月20日发掘清理二号祭祀坑,出土铜、金、玉、石等珍贵文物1302件(包括残件和残片中可识别出的个体),象牙67根,海贝约4600枚。

1988年10月第七次发掘三星堆遗址,对三星堆土埂进行试掘,确定土 埂为内城墙的南墙。~1989年1月
1990年1月~5月 第八次联合发掘三星堆遗址,在东城墙发现土坯,首次了解三星堆古城城墙的结构、夯筑方法和年代。
3月举行三星堆遗址祭祀坑出土铜树修复方案论证会,并对铜树进行预合。

1991年12月四川省文物管理委员会、四川省文物考古研究所第九次联合发
~1992年5月发掘三星堆遗址,将西城墙进行试掘并得到确认。

1994年11月四川省文物管理委员会、四川省文物考古研究所第十次发掘三星堆遗址,调查发现了三星堆遗址南城墙,并进行了试掘。

1996年10月中日合作对三星堆遗址进行环境考古工作,主要项目有磁场
~11月 雷达探测、红外遥感探测与摄影、卫星图像解析、微地形调查、炭素年代测定、花粉分析、硅质体分析、硅藻分析等。

1997年11月四川省文物管理委员会、四川省文物考古研究所第十一次发掘三星堆遗址,对三星堆遗址仁胜砖厂墓地进行发掘。共发现墓葬28座,发现了大量玉石器,其中具有良渚文化风格的"玉锥形器"的发现,引起研究者对三星堆玉石器的文化渊源关系进行重新思考。

1999年1月~四川省文物管理委员会、四川省文物考古研究所第十二次发掘三星堆遗址,对三星堆遗址月亮湾城墙进行发掘,在城墙下发现大量龙山至商代早期的文化堆积,同时城墙又被殷墟时期的堆积叠压叠压,从而可以确定月亮湾内城墙的年代为殷墟早期。

2000年12月~2001年7月四川省文物管理委员会、四川省文物考古研究所 第十三次发掘三星堆遗址。在燕家院子发现大量三星堆第四期的文化堆积,使人们对三星堆遗址第四期的文化面貌和年代下限有较为清楚的认识。

2005年3月四川省文物管理委员会、四川省文物考古研究院第十四次发掘三星遗址。在青关山发现大型夯土建筑台基。

后续整理工作(2005年至今)
目前,三星堆遗址考古工作站正在全力以赴地整理三星堆遗址综合报告,
此项工作预计2008年初结束。

问题:能把"贱金属"变成"贵金属"吗?

金与银出现,色泽美丽和稀少而称为"贵金属",其它金属则相应地被称为"贱金属"

炼金术,希望用某种工艺把贱金属转变为贵金属,客观上起到了促进材料科学发展的作用,在随后一千多年的时间里,使人类积累了一定的材料制备方面的经验,这对十九世纪以后材料科学的形成与发展奠定了基础。

几个著名的"炼金术士"摩耳、玻意耳、牛顿。

1711年英国出现了高六米,边长二点五米见方的高炉,日产铁六吨。1856年英国人亨利•贝赛尔首先用铁炼成了钢 。

炼金术偏重于实际操作,在这方面的技术也的确造福于后代子孙,现代化学中使用的很多设备和技术是由此发展的,制药技术中的一些精炼技术、净水技术、合成橡胶和一些现代材料的制造都与其密切相关。

十九世纪末到二十世纪中叶

低合金高强度钢→超高强度钢→合金工具钢→高速钢

不锈钢→耐热钢→耐磨钢→电工用钢

铝合金→铜合金→钛合金→钨合金→钼合金

金属材料依然在材料家族中占有统治地位

主要优势:

1、金属材料的力学性能全面,可靠性高,使用安全;

2、具有良好的温度使用范围;良好的工艺性能;

3、储量丰富,适合大规模应用

钢铁材料

自工业革命以来,钢铁一直是人类使用的最重要的材料,是国家工业化的基础,钢铁的生产能力是一个国家综合实力的重要标志。目前世界钢铁产量仍然在逐年增长。

中国钢铁工业协会秘书长戚向东说:在2005年钢铁行业还是要把严格控制固定资产的投资作为一项首要的任务,同时进一步提高钢铁行业运行的质量和效益。

钢铁工业发展的趋势

产品结构在变化:板材、管材、带材等高附加值产品的比重大幅增长

产业集中度进一步提高:产钢500万吨以上的企业由13家增加到15家,占全国钢产量的45%

主要应用领域:作为工业中最重要的材料,在未来很长的一段时期内,钢铁材料的主导地位仍将难以动摇。

电力系统:工业锅炉、热交换管道、大型转子和叶轮等

汽车工业:主要结构件、车床与机械工业

铁路与桥梁、船舶与海上钻井平台、兵器工业:坦克、大炮、枪械

石油开采机械及输油管道、化工压力容器、建筑钢筋和构架、

有色金属材料

有色金属材料是金属材料中的重要一员,虽然其产量只是钢铁材料的6%,然而它却以其独有的性能有时占有不可替代的作用。

铝合金:最重要的轻金属合金,具有低密度(2.7g/cm3)、抗大气腐蚀、良好的导电性、高比强度和良好的加工性。是航空工业及多种工业领域中的重要结构材料。

钛合金:密度小(4.5g/cm3)、强度高、耐高温和腐蚀,在航空航天及其它工业领域有重要用途。

镁合金:密度仅有1.7g/cm3,比强度高,减振能力强,在航空航天领域有重要作用。

铍合金:密度1.8g/cm3,比刚度很高,尺寸稳定,惯性低,用于惯性导航和航天低重量刚性件,比热大,可用于散热片和飞行器头部;中子反射截面高,用于原子能反应堆反射层等。

铜合金:用于机械、仪表、电机、轴承、汽车等工业。

锌合金:用于电池锌板,照相和胶印制版,模具和仪表零件。

镍合金:工作温度可达1050℃,用于航空、火箭发动机和反应堆中的高温部件。

锰合金:减振性好,用于潜艇螺旋浆、钻杆等。

铅合金、锡合金:用于保险丝、熔断器、焊料等

钨合金:熔点高3407℃、密度大(19.3g/cm3),可用于大威力穿甲弹等。

钼合金:熔点2610℃、在1100-1650℃下有较高的比强度。

铌合金:熔点2477℃,用于飞机和宇宙飞船推进系统中的高温材料。

金、银、铂、钯、铑、铱等:具有良好的化学惰性、艳丽的色泽、长期不褪色,可做装饰品、电子线路引线、精密电阻、热电偶等。

金属学的发展历史

金属材料在人类社会中的使用历史虽然很长,然而,在相当长的一段时间内关于金属材料方面的相关技术都只是停留在手工艺阶段,而对掌握相关技术的人也只能称为工匠,其原因在于其所掌握的只是经验而没有对金属材料本质的理解。

1861年,英国人肖比首先使用光学显微镜研究了金属的显微结构,对金属的组织结构有了初步的了解,从而开创了一门新的学科--金相学。

1905年X射线用于金属研究,发现了金属原子排列的规律性。

金属学诞生

人类对金属内部微观结构的认识又深入了一步,发现了许多科学规律,解释了大量过去不理解的现象。

电子显微镜的出现使人们能够更加细致地了解金属内部的结构,对其微观世界的认识又前进了一大步。

近20年来,各种电子显微分析设备不断被研制成功,人们已经可以看到原子在材料中的排列,这一切都使金属材料的研究进入了一个崭新的阶段。

不断开拓新的功能:高温合金、钛合金、金属间化合物、阻尼合金、超导合金、形状记忆合金、储氢合金、纳米金属材料、非晶态金属材料。

非晶态金属

1960年美国加洲大学Duwez小组用快冷技术首次获得了非晶态合金(Amorphous alloys) Au70Si30,发现非晶态合金具有很多常规合金不可比拟的优越性。

强度最高、韧性最好、最耐腐蚀、最易磁化

非晶的结构:晶体和非晶体都是真实的固体。晶体是长程有序,在晶体中原子的平衡位置为一个平移的周期阵列。非晶体是长程无序,短程有序,原子排列无周期性,又称金属玻璃。

玻璃化转变动力学性质和冷却速度有关,冷却速度提高,玻璃转变温度降低。

要使原子冻结成保持非晶固体的位移,必须满足原子弛豫时间(t)大于实验冷却时间。

相对于处于能量最低的热力学平衡态的晶体相来说,非晶态固体是处于亚稳态。

金属玻璃一旦形成,就能保持实际上无限长的时间。

结晶的基本过程:形核、长大

C曲线中开始结晶时间的长短决定了生成物的状态

两个方向:降低临界冷却速度、发展快速冷却技术。

非晶的结构特点:

(1)非晶态是一种亚稳态,是在特定条件下形成的,因此在一定条件下将向晶态转变,在向晶态转变的过程中形核率高,因此可以得到十分细小的晶体,在许多条件下还可以 形成一些过度结构。

(2)非晶态合金中没有位错,没有相界和晶界,没有第二相,因此可以说是无晶体缺陷的固体。

(3)原则上可以得到任意成分的确均质合金相,因此大大开阔了合金材料的范围,并且可以获得晶态合金所不能得到的优越性能。

非晶合金的性能:

(1)特殊的物理性能:优异的磁学性能是许多非晶态合金的突出特点,具有软磁性能的合金很容易磁化,一些非晶态永磁合金经过部分晶化后,性能还有大幅度的提高。非晶合金还有较高的电阻率,密度比晶体合金低1-2%,原子的扩散系数大一个数量级,热膨胀系数为晶体的一半左右

(2)优良的耐腐蚀性能:由于其结构更加均匀,使腐蚀过程中不易形成微电池,因而具有更强的抗腐蚀能力。例如,在FeCl3溶液中,钢完全不耐腐蚀,而Fe-Cr非晶合金基本不腐蚀,在H2SO4中,Fe-Cr非晶的腐蚀率是不锈钢的千分之一。其中Cr的主要作用是形成富Cr的钝化膜。

(3)优异的力学性能:非晶合金中原子之间的键合比一般的晶体中的键强,而且无位错等晶体缺陷,因此具有极高的强度。例如,4340超强度钢的断裂强度为1.6GPa,而非晶Fe80B20合金为3.63GPa,Fe60Cr6Mo6B28则达到4.5GPa。在具有高强度的同时,非晶态合金还有良好的韧性和良好的延展性,较高的硬度和耐磨性。

非晶的应用

新一代变压器铁芯,不仅易磁化、矫顽力低,且有很高的电阻,可以大为降低涡流,如Fe81B13.5Si3.5C2和Fe82B10Si8等铁基软磁材料的磁损是常用硅钢片的1/3-1/5,能耗可以因此降低2/3,此外还可做磁记录装置、记忆元件材料等。

由于制造大块非晶困难,因此其应用也受到限制,但可作为复合材料的增强体,高强度、抗海水腐蚀的铜基非晶合金可作为制造潜水艇的材料,某些铁基非晶合金可作为快中子反应堆的化学过滤器。

高纯金属是现代许多高、新技术的综合产物,虽然20 世纪30 年代便已出现“高纯物质”这一名称,但把高纯金属的研究和生产提高到重要日程,是在二次世界大战后,首先是原子能研究需要一系列高纯金属,而后随着半导体技术、宇航、无线电电子学等的发展,对金属纯度要求越来越高,大大促进了高纯金属生产的发展。
纯度对金属有着三方面的意义。第一,金属的一些性质和纯度关系密切。纯铁质软,含杂质的铸铁才是坚硬的。另一方面,杂质又是非常有害的,大多数金属因含杂质而发脆,对于半导体,极微量的杂质就会引起材料性能非常明显的变化。锗、硅甲含有微量的m 、V 族元素、重金属、碱金属等有害杂质,可使半导体器件的电性能受到严重影响。第二,纯度研究有助阐明金属材料的结构敏感性、杂质对缺陷的影响等因素,并由此为开发预先给定材料性质的新材料设计创造条件。第三,随着金属纯度的不断提高,将进一步揭示出金属的潜在性能,如普通金属被是所有金属中最脆的金属。而在高纯时被便出现低温塑性,超高纯时更具有高温超塑性。超高纯金属的潜在性能的发现,有可能开阔新的应用领域,在材料学方面打开新的突破口,为高技术的延伸铺平道路。

金属的纯度是相对于杂质而言的,广义上杂质包括化学杂质(元素)和物理杂质(晶体缺陷)。但是,只有当金属纯度极高时,物理杂质的概念才是有意义的,因此生产上一般仍以化学杂质的含量作为评价金属纯度的标准,即以主金属减去杂质总含量的百分数表示,常用N ( nine的第一字母)代表。如99.9999 %写为6N , 99.99999 %写为7N 。此外,半导体材料还用载流子浓度和低温迁移率表示纯度。金属用剩余电阻率RRR和纯度级R表示纯度。国际上关于纯度的定义尚无统一标准。一般讲,理论的纯金属应是纯净完全不含杂质的,并有恒定的熔点和晶体结构。但技术上任何金属都达不到不含杂质的绝对纯度,故纯金属只有相对含义,它只是表明目前技术上能达到的标准。随着提纯水平的提高,金属的纯度在不断提高。例如,过去高纯金属的杂质为10-6级(百万分之几),而超纯半导体材料的杂质达10一9 级(十亿分之几),并逐步发展到10 一12 级(一万亿分之几)。同时各个金属的提纯难度不尽相同,如半导体材料中称9N 以上为高纯,而难熔金属钨等达6N 已属超高纯。
高纯金属制取通常分两个步骤进行,即纯化(初步提纯),和超纯化(最终提纯)。生产法大致分为化学提纯和物理提姓两类。为获高纯金属,有效除去难以分离的杂质,往往需要将化学提纯和物理提纯配合使用,即在物理提纯的同时,还进行化学提纯,如硅在无坩埚区熔融时可用氢作保护气,如果在氢气中加入少量水蒸气,则水与硅中的硼起化学反应,可除去物理提纯不能除去的硼。又如采用真空烧结法提纯高熔点金属钽、铌等时,为了脱碳,有时需要配人比化学计量稍过量的氧,或为脱氧配人一定数量的碳,这种方法又称为化学物理提纯。

一、化学提纯

化学提纯是制取高纯金属的基础。金属中的杂质主要靠化学方法清除,除直接用化学方法获得高纯金属外,常常是把被提纯金属先制成中间化合物(氧化物、卤化物等), 通过对中间化合物的蒸馏、精馏、吸附、络合、结晶、歧化、氧化、还原等方法将化合物提纯到很高纯度,然后再还原成金属,如锗、硅选择四氯化锗、三氧氢硅、硅烷( SiH4)作为中间化合物,经提纯后再还原成锗和硅。化学提纯方法很多,常用的列于表一

表一:常用化学提纯方法

二、物理提纯

物理提纯主要利用蒸发、凝固、结晶、扩散、电迁移等物理过程除去杂质。物理提纯方法主要有真空蒸馏、真空脱气、区域熔炼、单晶法(参见半导体材料章)、电磁场提纯等,此外还有空间无重力熔炼提纯方法。
物理提纯时,真空条件非常重要。高纯金属精炼提纯一般都要在高真空和超高真空(10一6 一10-8Pa )中进行,真空对冶金过程的重要作用主要是:① 为有气态生成物的冶金反应创造有利的化学热力学和动力学条件,从而使在常压下难以从主金属中分离出杂质的冶金过程在真空条件下得以实现;② 降低气体杂质及易挥发性杂质在金属中的溶解度,相应降低其在主金属中的含量;③ 降低金属或杂质挥发所需温度,提高金属与杂质问的分离系数;④ 减轻或避免金属或其他反应剂与空气的作用,避免气相杂质对金属或合金的。污染。因此许多提纯方法,如真空熔炼(真空感应熔炼、真空电弧熔炼、真空电子束熔炼)、真空蒸馏、真空脱气等必须在真空条件下进行。
1 .真空蒸馏
真空蒸馏是在真空条件下,利用主金属和杂质从同一温度下蒸气压和蒸发速度的不同,控制适当的温度,使某种物质选择性地挥发和选择性地冷凝来使金属纯化的方法,这种方法以前主要用来提纯某些低沸点的金属(或化合物),如锌、钙、镁、镓、硅、锂、硒、碲等,随着真空和超高真空技术的发展,特别是冶金高温高真空技术的发展,真空蒸馏也用于稀有金属和熔点较高的金属如铍、铬、钇、钒、铁、镍、钴等的提纯。

蒸馏的主要过程是蒸发和冷凝,在一定温度下,物质都有一定的饱和蒸气压,当气压中物质分压低于它在该温度下的饱和蒸,气压的蒸气压时,该物质便不断蒸发。蒸发的条件是不断供给被蒸发物质热量,并排出产生的气体;冷凝是蒸发的逆过程,气态物质的饱和蒸气压随温度下降而降低,当气态组分的分压大于它在冷凝温度下的饱和蒸气压时,这种物质便冷凝成液相(或固相),为使冷凝过程进行到底,必须及时排出冷凝放出的热量。影响真空蒸馏提纯效果的主要因素是:① 各组分的蒸气分压,分压差越大,分离效果越好;② 蒸发和冷凝的温度和动力学条件,一般温度降低可增大金属与杂质蒸气压的差距,提高分离效果;③ 待提纯金属的成分,原金属中杂质含量越低,分离效果越好;④ 金属和蒸发和冷凝材料间的作用,要求蒸发冷凝材料本身有最低的饱和蒸气压;⑤ 金属残余气体的相互作用;⑥ 蒸馏装置的结构;⑦ 真空蒸馏有增锅式和弟增锅式两种,无增锅蒸馏一般通过电磁场作用将金属熔体悬浮起来(见图一 ) ,有关蒸馏工艺请参见上述元素的精制过程。

图一: 无坩埚蒸馏装置

1—绐料机构;2—待提纯金属;3—挡板;4—阴极;5—冷凝器;
6—遮热板;7—金属收集器;8—真空;9—抽真空装置

2 .真空脱气
真空脱气是指在真空条件下脱除金属中气体杂质的过程。实际上是降低气体杂质在金属中的溶解度。根据西韦茨定律,恒温下双原子气体在金属中的溶解度和气体分压的平方根成正比。因此提高系统的真空度,便相当于降低气体的分压,亦即能降低气体在金属中的溶解度,而超过溶解度的部分气体杂质便会从金属中逸出而脱除。以担粉真空热处理为例,在高真空(2.5 一6μPa)条件下,担的水分在100 一200℃ 急剧挥发,600 - 700℃ 氢化物分解逸出,碱金属及其化合物在1100 一1600℃ 温度下挥发,大部分铁、镍、铬等以低熔点氧化物形态挥发,2300℃ 时氮挥发逸出,对比氢、氮对金属亲和势大的氧,则以加碳脱氧(「C] +「O] = CO↑)和以上杂质金属低价氧化物MeON 的方式除去。真空脱气广泛用于高熔点金属钨、钼、钒、铌、钽、铼等的纯化。

3 .区域熔炼

区域熔炼是一种深度提纯金属的方法,其实质是通过局部加热狭长料锭形成一个狭窄的熔融区,并移动加热使此狭窄熔融区按一定方向沿料锭缓慢移动,利用杂质在固相与液相同平衡浓度差异,在反复熔化和凝固的过程中,杂质便偏析到固相或液相中而得以除去或重新分布;熔区一般采用电阻加热,感应加热或电子束加热,下图为锗区域熔炼示意图。

图二:锗的区域熔炼提纯示意图

区域熔炼广泛用于半导体材料煌高熔点金属钨、钼、钽、铌的提纯,更用于高纯铝、镓、锑、铜、铁、银等金属的提纯。对含杂质约1x10-3 %的锗,在区域提纯6 次后,高纯锗部分的杂质浓度可降到1x 10一8 %。钨单晶经5 次区熔后可由40 提高到2000。

4 .电迁移提纯

电迁移是指金属和杂质离于在电场的作用下往一定方向迁移或扩散速度的差别来达到分离杂质的目的。是新近发展起来的用于深度提纯金属的方法,其特点是分离间隙杂质(特别是氧、氮、碳等)的效果好,但目前仅应用于小量金属的提纯。将其和其他提纯方法结合使用,可获超高纯度的金属。

将棒状样品通过流电,母体金属和杂质离子便向一定方向移动,这时离子的漂移速度为:V = UF

式中,V 为离子漂移速度;U 为离子迁移率;F 为作用于离子的外力,它由电场作用力。和导电电子散射作用于离子的力组成。这些作用力和离子有效电荷数有关。依母体离子和杂质离子的电荷数不同租扩散、漂移速度不同而达到分离目的。

5 .电磁场提纯

在电磁场作用下深度提纯高熔点金属的技术越来越多地被采用。电磁场不限于对熔融金属的搅拌作用,更主要的是电磁场下可使熔融金属在结晶过程中获得结构缺陷的均匀分布,并细化晶粒结构。在半导体材料拉制单晶时,在定向结晶时熔体中存在温度波动,这种温度波动会导致杂质的层状分布,而一个很小的恒定磁场就足以消除这种温度波动。在多相系统结晶时,利用电磁场可使第二相定向析出,生成类似磁性复合材料的各向异性的组织结构,电磁场还用于悬浮熔炼,这时电磁场起能源支撑作用和搅拌作用,利用杂质的蒸发和漂走第二相(氧化物、碳化物等)来纯化金属。由于不存在和容器接触对提纯金属造成的污染问题,被普遍用于几乎所有高熔点金属的提纯,如钨、钼、钽、铌、钒、铼、锇、钌、锆等。
6 .提纯方法的综合应用
各个提纯方法都是利用金属的某个物理性质或化学性质和杂质元素间的差异而进行分离达到提纯目的的,如真空蒸馏是利用金属和杂质的饱和蒸气压和挥发速度的差异。区域熔炼是利用杂质在固相和液相间的溶解度差异而进行提纯分离的,因而各个方法都有一定的长处(对某些杂质分离效果好)和短处(对另一些杂质分离效果差)。即使是同一个提纯方法,也因金属性质的不同,提纯效果差别很大,如区域熔炼对高熔点金属的提纯效果好,但对某些稀土金属的提纯效果则不理想。欲获深度提纯金属的效果,一般需要综合应用多种提纯手段。在这方面,各个方法的合理结合应用和先后顺序使用十分重要,通常是将电子束熔炼或蒸馏和区域熔炼或电迁移法相结合,即先进行电子束熔炼或蒸馏提纯,再以区域熔炼或电迁移提纯作为终极提纯手段,以被为例,为获超高纯铍,最好先多次蒸馏提纯,再真空熔炼,最后进行区域熔炼或电迁移提纯,经这样提纯后所得铍单晶纯度达99 .999 % ,残余电阻率R>1 000 。在制取超纯锗时,一般先用化学法除去磷、砷、铝、硅、硼等杂质,再用区熔法提纯得到电子级纯锗;最后多次拉晶和切割才能达到13N 的纯度要求。下表为各种方法结合使用提纯金属铼的效果。

表二:各种提纯方法提纯金属铼的效果

7 .宇宙空间条件下提纯金属

宇宙空间的开发为提纯金屑制造了新的机会。宇宙空间的超高真空(约10-1OPa)、超低温和基本上的无重力,为金属提纯提供了优越条件。在这种条件下,液态金属中将不会有对流的问题,结晶时杂质的分布将只具有纯扩散性质,熔化金属毋需坩埚,超高真空尤其有利于杂质的挥发和脱气。这些对于采用熔炼、蒸发、区域熔炼等方法提纯化学活性大的金属和半导体材料来说更是非常理想的条件。以提纯锗为例,在地球上锗垂熔时杂质稼的分离系数为0.1/0.15,而在宇宙空间时则达0.23/0.17 。在无重力条件拉制的晶体的完整性较在重力条件下的完整性好很多。以锑化铟为例,其位错密度比只是在重力条件下的位错密度的1/6 。由于宇宙中液态金属表面张力系数值很大,故在宇宙间用无坩埚区域熔炼法必定能制备出极高纯度和完整性的单晶来。此外,超低“宇宙”温度也具有良好的应用前景。

此文附图,参考:http://www.chinesemine.cn/zy/2008/0706/article_202.html

㈣ 铂族金属的其他知识

铂族金属除锇为蓝灰色金属外,其他均为银白色金属。它们对普通的酸和化学试剂有优良的抗蚀性能。
钯对酸的抗蚀能力稍差,能很快地溶解于硝酸中。铱、铑、钌能抗单一的酸和化学试剂的侵蚀,甚至在王水中也很难溶解。
铂和铑的抗氧化性很好,在空气中能长期保持光泽。不要让佩戴的铂金饰品染上油污或漂白水,油污会影响饰品的光泽;漂白水可能会使首饰产生斑点。一定不要将铂金首饰和黄金首饰同时佩戴,因为黄金质地较软,如果互相摩擦,黄金粉末会吸附在铂金上,使铂金变黄,影响铂金特有的纯净光泽。如果你的铂金饰品上镶有钻石,建议你每年将铂金饰品送到珠宝店去检验一下,及时进行专业清洁和整修,令铂金钻石首饰常戴常新。
铂和钯对气体有很强的吸附能力,当粒度很细(如铂黑、钯黑)或呈胶态(如胶体铂)时,吸附能力就更强,因此它们具有优良的催化特性(见金属催化剂)。铂族金属为过渡金属,有多个化合价,最稳定的化合价如下:钌为+3;铑为+3;钯为+2,+4;锇为+3,+4;铱为+3,+4;铂为+2,+4。它们有生成络合物的强烈倾向,最常见的是生成配位数4或6的络合物。总之,它们的化学性质很复杂。 国外铂族金属生产的发展概论
世界铂族金属工业生产开始于1778年,1823年以前主要依靠哥伦比亚的砂铂矿。1778~1965年,哥伦比亚共生产铂族金属约104吨,其最高年产量为(1928年)1.93吨。1824年俄国乌拉尔大型砂铂矿开采以后,成为世界上最大生产者,1912年的产量曾达6.5吨,到1930年,共生产铂(及少量铱、锇)约245吨。1911年全世界生产6.189吨铂族金属。其中俄国占93.1.,哥伦比亚占6.1%,美国占0.5%,澳大利亚占0.3%。L.Howe估算,截至1917年1月,世界所产铂族金属(249~342吨)其中约90%来自俄国。
1952年后,加拿大产量显著增加,1936年超过苏联居世界首位。60年代以后,苏联、南非成为最主要的生产者。苏联、南非、加拿大的产量占世界产量的98%以上。1980年世界共产铂族金属205吨。其中南非97.9吨,苏联96.4吨,其他10.7吨(主要为加拿大生产)。1985年世界生产铂族金属230吨,苏联和南非分别为115吨和100吨,合计占世界产量的93%。1986年产量为255吨,苏联和南非分别为124吨和116吨,占世界产量的95%。表17-2为世界在1921~1982年间的铂族金属产量的统计。
目前南非是最大的产铂国,(年产量占世界总产量的三分之二)主要是开采布什维尔德火成杂岩体中的麦伦斯基矿脉。UG-2矿脉因为品位高(3~8g/t,平均约5g/t)受到重视而开采,但其产量随市场供需求及价格情况而变动。波动幅度达三分之一。南非最大的铂公司是吕斯腾堡矿业公矿占7%,另外3%由乌拉尔及远东阿尔丹地区的砂矿提供。
加拿大的产量中,国际镍公司占90%,鹰桥镍公司占9%,铂产量(吨)为:1980年,40;1981年,37;1982年,25;1983年,25。其次是英帕拉公司,相应的年产量(吨)为:30;26;22和21。第三是西铂公司,相应年产量(吨)为:2.6,2.9,3.1和2.5。另外还有兰特矿业公司(年生产能力3.7~5.6吨),阿托克公司(约0.5吨)。南非供应西方所需钯量的1/3,1981年产量29吨。
苏联的产量中,诺里尔斯克共生矿中90%,科拉半岛共生诺兰达铜公司从铜冶炼中回收少量。
许多国家都积极勘探和开发本国的铂族金属资源,但观其资源及生产前景,今后世界铂族金属的供给仍然主要靠南非、苏联,其中南非主要产铂,苏联主要是钯。
中国铂族金属生产
中国在1965年以前仅从有色金属冶炼的副产品中回收数量有限的铂钯。此后,中国建立,并扩大综合回收铂族金属,其产量逐年增长。 砂铂矿或含铂族金属的砂金矿用重选法富集可得精矿,铂或锇、铱的含量能达70%~90%,可直接精炼。
砂铂矿资源日渐减少,且因近代有色金属工业发展,50年代以来铂族金属主要从铜镍硫化共生矿中提取,小部分从炼铜副产品中提取。铜镍硫化共生矿在火法冶金时,精矿中所含的铂族金属90%以上可富集于铜镍冰铜(锍)中。再经转炉吹炼富集成高冰镍后,缓冷、研磨、浮悬和磁选分离,得含铂族金属的铜镍合金。把这种合金硫化熔炼,细磨磁选,以分离铜镍,产出含铂族金属更富的铜镍合金。将此合金铸成阳极,进行电解时,铂族金属进入阳极泥。阳极泥经酸处理后,就可得铂族金属精矿。采用羰基法从镍精矿或铜镍合金制取镍时,铂族留于羰化残渣中,经硫酸处理或加压浸出(见浸取)其他金属后可得铂族精矿。中国金川有色金属公司将含铂族的铜镍合金,再次硫化熔炼和细磨、磁选得到富铂的铜镍合金,用盐酸浸出分离镍,用控制电位氯化法分离铜,然后提取铂族金属。
铂族含量高的高冰镍(如南非的原料),直接用氧压下硫酸浸出,或氯化冶金分离其他金属后获得铂族精矿。铂族精矿可直接溶解、分离、提纯,或先将锇、钌氧化挥发分离后,再分离、提纯其他铂族金属(见镍冶炼过程有价金属的回收)。
在铜的火法冶金和电解精炼过程中,铂族金属和金银一起进入阳极泥。用此种阳极泥炼出多尔银(含少量金的粗银),铂族金属富集于多尔银中。铂族金属在火法炼铅过程中进入粗铅,可用灰吹法除铅得多尔银,铂族便富集其中;如果粗铅加锌脱银,铂族金属富集于银锌壳中,然后脱锌得多尔银。多乐银电解精炼时,为了避免钯损失于电解银中,银阳极的含金量常控制在小于4.5%,同时控制金钯比等于或大于10。若部分钯和少量铂进入硝酸银电解液,可用活性炭吸附,或用“黄药”选择性沉淀加以回收。通常在电解银时,铂族金属富集于银阳极泥中。如铂族金属含量较高,可先用王水溶解阳极泥,然后分别回收;如含量较低,常用硫酸溶解除银,残渣铸成粗金电极,然后电解提金;铂、钯富集于电解母液中,用草酸沉淀金后,用甲酸钠沉淀铂和钯加以回收;富集于金阳极泥中的其他铂族金属可再分离。 铂族金属的提取和精制流程因原料成分、含量的不同而异,典型流程见图。将铂族金属精矿或含铂族金属的阳极泥用王水溶解,钯、铂、金均进入溶液。用盐酸处理以破坏亚硝酰化合物(赶硝),然后加硫酸亚铁沉淀出金。加氯化铵,铂呈氯铂酸铵【(NH4)2PtCl6】沉淀出,煅烧氯铂酸铵可得含铂99.5%以上的海绵铂。分离铂后的滤液,加入过量的氢氧化铵,再用盐酸酸化,沉淀出二氯二氨络亚钯【Pd(NH3)2Cl2】形式的钯,再在氢气中加热煅烧可得纯度达99.7%以上的海绵钯。
经上述王水处理后的不溶物与碳酸钠、硼砂、密陀僧(PbO)和焦炭共熔,得贵铅。用灰吹法除去大部分铅,再用硝酸溶解银和残留的铅,铑、铱、锇、钌富集于残渣中。将此残渣与硫酸氢钠熔融,铑转化为可溶性的硫酸盐,用水浸出,加氢氧化钠沉出氢氧化铑,再用盐酸溶解,得氯铑酸。溶液提纯后,加入氯化铵,浓缩、结晶出氯铑酸铵【(NH4)3RhCl6】。在氢气中煅烧,可得海绵铑。
在硫酸氢钠熔融时,铱、锇、钌不反应,仍留于水浸残渣中。将残渣与过氧化钠和苛性钠一起熔融,用水浸出;向浸出液中通入氯气并蒸馏,钌和锇以氧化物形式蒸出。用乙醇-盐酸溶液吸收,将吸收液再加热蒸馏,并用碱液吸收得锇酸钠。在吸收液中加氯化铵,则锇以铵盐形式沉淀,在氢气中煅烧,可得锇粉。在蒸出锇的残液中加氯化铵,可得钌的铵盐,再在氢气中煅烧,可得钌粉。
浸出钌和锇后的残渣主要为氧化铱(IrO2),用王水溶解,加氯化铵沉出粗氯铱酸铵【(NH4)2IrCl6】,经精制,在氢气中煅烧,可得铱粉。
将铂族金属粉末用粉末冶金法或通过高频感应电炉熔化可制得金属锭。
用溶剂萃取法分离提纯铂族金属的工艺得到应用,常用的萃取剂有磷酸三丁酯(TBP)、三烷基氧膦(TRPO)、二丁基卡必醇(DBC)、烷基亚砜等。
制取高纯铂族金属 一般将金属溶解后,经反复提纯,精制方法有载体氧化水解、离子交换、溶剂萃取和重复沉淀等,然后再以铵盐沉出,经煅烧可得相应的高纯金属。 铂族金属和合金有很多重要的工业用途。过去主要是制造蒸馏釜以浓缩铅室法制得稀硫酸,也曾用铂铱合金制造标准的米尺和砝码。在19世纪中叶,俄国曾制造铂铱合金币在市场上流通。早年在照相术上采用“铂黑印片术”,大量使用铂盐,印出的照片美观而持久,一般已不用此法。
铂族金属及其合金的主要用途为制造催化剂。其活性、稳定性和选择性都好,化学工业上的很多过程(如炼油工业中的铂重整工艺)都使用铂族催化剂。氨氧化制硝酸时,使用铂铑合金网作催化剂。
在铂铑网下增加金钯捕集网以减少铂、铑的损失。钯是化学工业中加氢的催化剂。此外消除汽车排气污染的催化剂用量增长极快。在美国用于汽车排气净化的铂,1978年为60万金衡盎司(1金衡盎司=31.1035克),占总消费量的51.3%,1979年为66万金衡盎司,占66%。
铂铑合金对熔融的玻璃具有特别的抗蚀性,可用于制造生产玻璃纤维的坩埚。生产优质光学玻璃时,为防止熔融的玻璃被玷污,也必须使用铂制坩埚和器皿。1968年国际实用温标规定,在630.74~1064.43℃范围内的测温标准仪器是 Pt-10Rh/Pt热电偶。用于测量13.81~903.89K温域的标准仪器是铂电阻温度计,其电阻器必须是无应变退火后的纯铂丝,100℃时的电阻比(R100/R0)应大于1.39250。
铂铱、 铂铑、 铂钯合金有很高的抗电弧烧损能力,被用作电接点合金,这是铂的主要用途之一。铂铱合金和铂钌合金用于制造航空发动机的火花塞接点。
铂的化学性质稳定,纯铂、铂铑合金或铂铱合金制造的实验室器皿如坩埚、电极、电阻丝等是化学实验室的必备物。铂钴合金是一种可加工的磁能积(即电磁能密度)高的硬磁材料。铂和铂合金广泛用于制造各种首饰特别是镶钻石的戒指、表壳和饰针。铂或钯的合金也可作牙科材料。
铂、钯和铑可作电镀层,常用于电子工业和首饰加工中。银和铂表面镀铑,可增强表面的光泽和耐磨性。
涂钌和铂的钛阳极代替了电解槽中的石墨阳极,提高了电解效率,并延长电极寿命,是氯碱工业中一项重要的技术改进,为钌在工业上使用开辟了新途径。锇铱合金可制造笔尖和唱针。钯合金还用于制造氢气净化材料和高温钎焊焊料等。在化学工业中还使用包铂设备。 铂族金属主要生产国的产量见表2。铂族金属价格波动很大,总的趋势是上涨(表3)。在各部门消耗铂和钯的情况,以美国为例,见表4。

㈤ 废贵重金属如何提炼

专利光盘:C52贵金属的提炼和回收技术 [C52-001]TDI氢化废钯碳催化剂中回收钯的工艺方法 [C52-002]氨氧化炉废料回收铂金的方法 [C52-003]奥沙利铂的制备 [C52-004]奥沙利铂提纯 [C52-005]钯催化剂的回收 [C52-006]便于分离和回收利用的贵金属纳米粒子的制备方法 [C52-007]铂催化剂的回收方法 [C52-008]铂配合物及其制备方法和用途 [C52-009]铂族金属回收中的改进 [C52-010]铂族金属硫化矿或其浮选精矿提取铂族金属及铜镍钴 [C52-011]纯铂或铂合金快速溶解法及应用 [C52-012]从铂铑合金中分离出铂铑的方法 [C52-013]从碲多金属矿中提取精碲的工艺方法 [C52-014]从电解生产双氧水的阳极泥回收铂和铅的方法 [C52-015]从非极性有机溶液中回收催化金属 [C52-016]从废钯碳催化剂回收钯的方法及焚烧炉系统 [C52-017]从废钯碳催化剂中回收钯的方法 [C52-018]从废催化剂回收铂的方法 [C52-019]从废催化剂回收金和钯的方法及液体输送阀 [C52-020]从废催化剂中回收铂的方法 [C52-021]从废催化剂中回收铂族金属的方法 [C52-022]从废铝基催化剂回收铂及铝的方法和消化炉 [C52-023]从废重整催化剂中回收铂、铼、铝等金属的方法 [C52-024]从贵金属微粒分散液中回收贵金属的方法 [C52-025]从含铂碘化银渣中回收银铂的方法 [C52-026]从含碳矿物中回收贵金属的方法 [C52-027]从精矿中回收贵金属的方法 [C52-028]从难处理矿石回收贵金属值的方法 [C52-029]从汽车尾气废催化剂中回收铂、钯、铑的方法 [C52-030]从羰化反应剩余物中回收铑的方法 [C52-031]从羰基化反应产物中回收铑 [C52-032]从铜阳极泥中回收金铂钯和碲 [C52-033]从烯烃羰基化催化剂废液中回收金属铑的方法 [C52-034]从氧化合成反应产物中回收铑的方法 [C52-035]从有机混合物分离铑的方法 [C52-036]粗铑及含铑量高的合金废料的溶解与提纯方法 [C52-037]萃取分离金和钯的萃取剂及其应用 [C52-038]低品位及难处理贵金属物料的富集活化溶解方法 [C52-039]第Ⅷ族贵金属的回收工艺 [C52-040]电子废料的贵金属再生回收方法 [C52-041]复杂组分溶液中高含量锇、钌的测定方法 [C52-042]改性石硫合剂提取贵金属的方法 [C52-043]贵金属的回收 [C52-044]第Ⅷ族贵金属的回收工艺2 [C52-045]贵金属的回收方法 [C52-046]羰基化反应残余物中贵金属的回收 [C52-047]贵金属的回收方法3 [C52-048]贵金属的碎化溶解方法 [C52-049]贵金属和有色金属硫化矿复合浮选药剂 [C52-050]贵金属铑的回收 [C52-051]贵金属熔炼渣湿法冶金工艺 [C52-052]贵金属提取用的保温电解槽 [C52-053]贵金属提取用的电解槽 [C52-054]含贵金属废水回收处理装置 [C52-055]回收低钯含量废催化剂的方法 [C52-056]一种从含有贵金属的废催化剂中回收贵金属的方法 [C52-057]从贵金属微粒分散液中回收贵金属的方法4 [C52-058]用超临界水反应剂自有机贵金属组合物回收贵金属 [C52-059]由贵金属矿中回收贵金属有用成分的湿法冶金方法 [C52-060]从含碳矿物中回收贵金属的方法5 [C52-061]从难处理矿石回收贵金属值的方法6 [C52-062]回收贵金属 [C52-063]回收贵金属和叔膦的方法 [C52-064]从精矿中回收贵金属的方法7 [C52-065]用不混溶液体从羰基化反应残余物中回收贵金属 [C52-066]从废铑催化剂残液中回收金属铑的方法 [C52-067]回收贵金属和叔膦的方法8 [C52-068]回收铑催化剂的方法 [C52-069]一种从羰基合成反应废铑催化剂中回收铑的方法 [C52-070]回收铑的方法 [C52-071]回收铑的方法9 [C52-072]回收铑的方法10 [C52-073]从羰化反应剩余物中回收铑的方法11 [C52-074]从氧化合成反应产物中回收铑的方法12 [C52-075]一种从羰基合成产物的蒸馏残渣中回收铑的方法 [C52-076]铑催化剂的处理方法 [C52-077]利用加压氢还原分离提纯铱的方法 [C52-078]利用引晶生长法制备均匀球形铂颗粒的方法 [C52-079]溶液中铑、铱与金、铂、钯分离富集方法 [C52-080]顺铂细粉及其制备方法 [C52-081]钛基材料镀铂方法 [C52-082]通过煅烧含金属的碱性离子交换树脂来回收金属的方法 [C52-083]无铑亮黄金水及制备方法 [C52-084]吸附在活性炭上的贵金属的提取方法和系统 [C52-085]吸附在活性炭上的贵金属的洗脱方法 [C52-086]锡阳极泥提取贵金属和有价金属的方法 [C52-087]硝酸装置贵金属回收器 [C52-088]岩石风化土吸附型稀散贵金属的提取技术方案 [C52-089]一种钯催化剂再生方法 [C52-090]一种从羰基合成产物的蒸馏残渣中回收铑的方法13 [C52-091]一种从羰基合成反应废铑催化剂中回收铑的方法14 [C52-092]一种分离铂钯铱金的方法 [C52-093]一种分离提纯贵金属的方法 [C52-094]一种合成羟胺盐的贵金属催化剂的再生方法 [C52-095]一种环状氨基甲酸酯类贵金属萃取剂 [C52-096]一种纳米级铂族金属簇的制备方法 [C52-097]一种生产精炼铂的工艺 [C52-098]一种双取代环状碳酸酯类贵金属萃取剂 [C52-099]一种提取锇、铱、钌的方法 [C52-100]一种提取金属钯的方法 [C52-101]铱的回收和提纯方法 [C52-102]用不混溶液体从羰基化反应残余物中回收贵金属15 [C52-103]用超临界水反应剂自有机贵金属组合物回收贵金属16 [C52-104]用控制电位法从阳极泥提取贵金属 [C52-105]用硫醚配位体从水溶液中分离钯的方法 [C52-106]由贵金属矿中回收贵金属有用成分的湿法冶金方法17 [C52-107]有机螯合剂促进活性碳纤维还原吸附贵金属离子的方法 [C52-108]真空蒸馏提锌和富集稀贵金属法 [C52-109]制备铂(Ⅱ)配合物的一种方法 [C52-110]制备铂化合物的方法 [C52-111]制备铂化合物的方法18 [C52-112]制备纳米贵金属微粒的方法 [C52-113]制取纯钯的方法 [C52-114]制取纯铱的方法 [C52-115]从低品位锡矿中直接提取金属锡的方法 [C52-116]从电解生产双氧水的阳极泥回收铂和铅的方法19 [C52-117]从镀锡、浸锡和焊锡的金属废料回收锡的方法及其装置 [C52-118]从粉状金属物料直接电解回收锡铅合金的方法 [C52-119]从黄杂铜中分离铜、锌、铅、铁、锡的工艺方法 [C52-120]从炼铜废渣中回收锡、铜、铅、锌等金属的方法 [C52-121]从硫化铅精矿冶炼金属铅的设备 [C52-122]从氯化渣中综合回收金银及铅锡等有价金属的方法 [C52-123]从铅锑粗合金中分离铅锑的方法 [C52-124]从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 [C52-125]从铅阳极泥中回收银、金、锑、铜、铅的方法 [C52-126]从铅阳极泥中回收银、金、锑、铜、铅的方法20 [C52-127]从碳酸中除去铅和镉的方法 [C52-128]从钨酸盐溶液中沉淀除钼、砷、锑、锡的方法 [C52-129]从锡精矿直接制取锡酸钠的生产方法 [C52-130]从锡矿石中萃取锡 [C52-131]脆硫铅锑矿铅锑直接分离新工艺 [C52-132]脆硫铅锑尾矿的处理方法 [C52-133]低质粗锡直接电解生产优质精锡的方法 [C52-134]底吹炉高铅渣液态直接还原炼铅的方法 [C52-135]电解法制备高纯度活性二氧化铅的方法 [C52-136]废旧电池铅回收的方法 [C52-137]废旧蓄电池铅清洁回收方法 [C52-138]废旧蓄电池铅清洁回收技术 [C52-139]废铅熔炼回转炉 [C52-140]废铅酸蓄电池生产再生铅、红丹和硝酸铅 [C52-141]废铅蓄电池回收铅技术 [C52-142]分离回收镀白铜针铜锡的方法及其阳极滚筒装置 [C52-143]分离冶金炉尘中锌铅的新工艺 [C52-144]高活性微米纯铅粉制造技术 [C52-145]高铅锑分离法 [C52-146]高铟高铁锌精矿的铟、铁、银、锡等金属回收新工艺 [C52-147]固相反应制备二氧化锡纳米晶的方法 [C52-148]含锑粗锡分离锑的方法 [C52-149]含铁、锰、锌、铅的烟尘回收铅、锌的方法 [C52-150]含锡渣直接电解生产精锡的工艺 [C52-151]褐煤炼锡 [C52-152]黑铜提锡工艺 [C52-153]降铅液及其制备方法 [C52-154]利用含铅废渣生产铅盐的方法 [C52-155]纳米锑掺杂的二氧化锡水性浆料及其制备方法 [C52-156]浅色锑掺杂纳米氧化锡粉体的制备方法 [C52-157]纳米氧化锡粉体的制备方法 [C52-158]难选锡中矿的高温氯化方法 [C52-159]贫锡复杂物料高温氯化焙烧工艺 [C52-160]铅炉渣磁选富集有价金属及其冶炼方法 [C52-161]铅锑冶炼废渣处理方法 [C52-162]铅锌矿的全湿法预处理方法 [C52-163]一种无污染含铅废弃物再生纯铅冶炼工艺 [C52-164]铅冶炼工艺 [C52-165]浅色锑掺杂纳米氧化锡粉体的制备方法21 [C52-166]生铅和精铅的除铊方法 [C52-167]湿法炼铅的一种工艺 [C52-168]水口山炼铅法 [C52-169]碳酸钠转化处理铅基金矿或铅矿工艺 [C52-170]锑火法精炼除铅法及其液态除铅剂 [C52-171]锑铅合金用硫除铅的方法 [C52-172]铜锡混杂屑末的分离方法 [C52-173]退锡或锡铅废液中回收锡的方法 [C52-174]脱铋浮渣的脱铅方法 [C52-175]无污染炼铅方法 [C52-176]无氧化锡球颗粒的制备方法及所使用的成型机 [C52-177]锡矿氯化挥发法 [C52-178]锡粒的制备方法 [C52-179]镀锡钢板电镀用锡粒的制备方法 [C52-180]锡石多金属硫化矿无抑制选矿工艺流程 [C52-181]锡中矿水冶法制取海绵锡和锡盐 [C52-182]锡中矿液相氧化法制取二氧化锡 [C52-183]新式铅冶炼反射炉 [C52-184]氧化铟锡粉末的制备方法 [C52-185]一种从废蓄电池回收铅的方法 [C52-186]一种从铁水中提锡的方法 [C52-187]一种火法处理锑贵铅工艺 [C52-188]一种铅锌多金属硫化矿的分离方法 [C52-189]一种锑的熔融萃取精炼除铅剂 [C52-190]一种无污染含铅废弃物再生纯铅冶炼工艺22 [C52-191]一种由方铅矿制备铅盐新工艺 [C52-192]以废蓄电池渣泥生产活性铅粉的方法 [C52-193]用粗焊锡生产高纯锡的工艺 [C52-194]用反射炉复合法炼铅的方法 [C52-195]用硅氟酸从硫化铅精矿浸取铅的工艺 [C52-196]用硫化铅矿直接提炼金属铅的方法 [C52-197]用绒毯溜槽从重选尾矿中回收钨、锡矿物的选矿方法 [C52-198]用于铅锌矿选择浮选的捕集剂及其制备方法 [C52-199]用于铅锌矿选择浮选的捕集剂用途 [C52-200]用于选择性浮选铅锌矿的促集剂 [C52-201]由铅阳极泥制取硝酸银、回收铜、铅、锑的方法 [C52-202]由铜合金制成的自来水管件的选择性除铅的工艺及除铅液 [C52-203]再生铅的冶炼方法 [C52-204]在中性介质中用电解还原回收废蓄电池中的铅方法 [C52-205]重选用于选别细粒浸染状构造低品位铅锌矿 [C52-206]回收废钯或氧化铝催化剂中金属钯的方法 [C52-207]铂族金属的分离,回收方法 [C52-208]通过许多破碎悬浮阶段从燃煤炉渣中回收贵金属 [C52-209]一种从羰基合成产物中回收铑的工艺 [C52-210]一种纳米贵金属及其制备方法和应用 [C52-211]用萃取法回收废催化剂中的铂 [C52-212]用巯基胺型螯合树脂回收电镀废液中的金和钯 [C52-213]用细菌菌体从低浓度的钯离子废液中回收钯的方法 [C52-214]在聚乙烯吡啶上捕集气态钌的方法, 特别用于从辐照核燃料中回收放射性钌 [C52-215]彩钼铅矿的化学分选方法 [C52-216]从方铅矿中直接提取铅的方法及设备 [C52-217]从含氧化铅和或金属铅的材料提取金属铅的湿冶法 [C52-218]粗锡精炼除铅.铋的方法及装置 [C52-219]纳米晶氧化铒-氧化锡粉体材料及其制备方法和用途 [C52-220]铅-锑粗合金离心偏析分离法 [C52-221]一种铜转炉烟灰矿渣成团冶炼铅的新工艺及其成团配方 [C52-222]应用混合捕集剂作为非硫化物矿,特别是锡石的浮选助剂 [C52-223]用熔融态锡金属回收处理印刷电路板的方法及其装置 [C52-224]直接铅熔炼生产金属铅的一种方法 详见: http://item.taobao.com/auction/item_detail--.jhtml?taomi=%%ixUuMif0i%2FqmrFlZ%2B6wu%2BaCjQpTCK1kelk9Joalg%3D%3D&ref=&ali_trackid=2:mm_12637321_0_0,12014693:102410930_1_660859680

阅读全文

与钌的蒸馏工艺相关的资料

热点内容
发黑工艺废水怎么处理 浏览:486
大松空气净化器f1故障怎么解决 浏览:905
珠海水质有水垢吗 浏览:850
提升柜避雷器作用 浏览:140
甲苯减压蒸馏采集六分温度 浏览:121
酒精和水蒸馏收集温度范围 浏览:31
饮水机的啤酒是多少升 浏览:795
壁管饮水机怎么拆 浏览:836
致享空气滤芯多少钱 浏览:203
阴离子交换树脂氨基酸 浏览:350
过滤器无烟煤滤料供应 浏览:801
石灰法去氟离子化学反应式 浏览:37
焦化废水出水怎么办 浏览:521
苏州环保水处理公司 浏览:883
净水器用多少年 浏览:895
水龙头过滤网锈死怎么拧开 浏览:333
五合一净水器哪个好 浏览:408
葡萄酒蒸馏过程 浏览:862
大雨258挖掘机空调滤芯在哪里 浏览:648
宜春街上哪里有卖小米净水器的 浏览:101