❶ 純化水設備系統常見的消毒方式有哪幾種
1、 紫外線殺菌消毒方法
在純化水設備當中,紫外線殺菌是常用的殺菌方法,主要有殺菌、降解TOC和破除臭氧的作用。它可以減慢水系統中的新菌落生產速度進而影響生物膜的形成,但對已經生成的生物膜是無效的,只對浮游微生物部分有效。紫外線殺菌的效果有紫外線的強度、紫外線的光譜度和照射時間決定。當波長為253.7mm時可以獲得優質的殺菌效果。
2、臭氧殺菌消毒方法
臭氧殺菌通過氧化作用破壞微生物膜的結構,可以滅殺細菌繁殖體和芽孢、病毒、真菌等,還能夠破壞肉毒桿菌黴素。在制葯純化水設備系統中,純化水水罐、各種過濾器、膜和分配管網系統中都會有微生物繁殖和滋生,臭氧能夠有效除去水中的鹵化物並降解生物膜,同時沒有殘留物,是目前純化水系統和高純水系統中能連續去除細菌和病毒的好方法。臭氧殺菌方法已經成為國內外主流的制葯純化水消毒方式。
3、巴氏殺菌消毒方法
巴氏消毒用於純化水設備正常運行時的微生物抑制。經過巴氏消毒後的純化水設備系統仍然有小部分無害或者有益、較耐熱的細菌,同時消毒操作時間相對較長,常採用80℃以上的熱水循環一兩個小時才能完成巴士消毒。優點是可以有效的控制純化水系統中的微生物污染水平在50CFU/ml,並且可以控制純化水設備的內毒素在5EU/ml的水平。
❷ 純化水循環系統巴氏消毒周期從一周一次延長到四周一次有無風險
當然有風險,時間或周期的延長過程中不能有效的評估是否有二次污染,這是問題所在。延長沒問題,重點是在延長期內的檢測是最重要的。
❸ 純化水管道什麼方法消毒
四川高德特為你解答:純化水管道一般採用巴氏消毒的方法進行系統消毒。關閉內所有使用點容,檢查儲罐中的水是否滿足要求;用回水末端的熱交換器將系統中的純化水加熱到80℃以上,並且在此溫度下保持120分鍾。滅菌過程中,要保持系統中的純化水處於循環狀態。
❹ 純化水系統管路的巴氏消毒中,80℃循環60min,每個使用點間斷排放半分鍾,這粒「間斷」的具體含義是
巴氏消毒應用在純水管路中,為了使用水點不出現漏消的現象,要進行逐個間斷排放,也就是消毒下,如果不進行間斷排放,而是全部開閥的狀態的化,容易影響系統循環溫度,浪費操作人力。
❺ 純化水巴氏消毒為什麼規定80℃
巴斯消毒不一定是80度哦,他是一般根據溫度和消毒時間定的,如果是70頁可以,不過消毒時間會長哦。
❻ 求助 注射用水管道滅菌用巴氏消毒法 的時間和溫度應是多少
可以採用純蒸汽或過熱水消毒。巴氏消毒不能去除水中內毒素,不能保證無菌。
❼ 巴氏消毒保存時間最長是多久呢Co60射線滅菌和120度高溫蒸汽滅菌相比,哪個滅菌更徹底呢
巴氏消毒:
定義:將液體加熱到一定溫度並持續一段時間,以沙溪可能導致疾病、變質或不需要的發酵微生物的過程。
原理:在一定溫度范圍內,溫度越低,細菌繁殖越慢;溫度越高,繁殖越快,但溫度太高,細菌就會死亡。
巴氏消毒其實就是利用病原體不是很耐熱的特點,用適當的溫度和保溫時間處理,將其全部殺滅。但經巴氏消毒後,仍保存小部分無害或者有益、較耐熱的細菌或細菌芽胞,因此,巴氏消毒不是「無菌」處理過程。
效果:選擇巴氏消毒手段的制葯用水系統需採用不銹鋼材質新型安裝,其微生物污染水平通常能有效的控制在低於50CFU/ml的水平。由於巴氏消毒能有效的控制系統的內源性微生物污染,一個前處理能力較好的水系統,細菌內毒素可控制在5EU/ml的水平。
方法:常採用80℃以上的熱水循環1~2h。
臭氧殺菌:
原理:通過氧化作用破壞微生物膜的結構而實現殺菌效果。
效果:臭氧水的殺菌速度極快,100μg/L臭氧濃度在1min內能殺死60000個微生物。水中臭氧濃度超過8μg/L時,微生物即停止繁殖,水中臭氧濃度超過50μg/L時,系統能有效殺菌微生物和細菌。ISPE建議水中臭氧濃度控制在20~200μg/L。臭氧能有效去除水中的鹵化物並降解生物膜,同時經紫外破除後完全無殘留,是純化水系統和高純水系統中能連續去除細菌和病毒的最好方法。
臭氧的半衰期僅為30~60min,為保證系統沒有離子污染、提高臭氧溶解度,目前主要推薦採用水電解的方式產生臭氧。
與巴氏消毒相比,臭氧殺菌系統除了有操作簡單、水溫無波動、消毒時間短和降解生物膜等優點外,管道材質選擇餘地也非常大。
純蒸汽殺菌:
定義:指利用高溫高壓蒸汽新型滅菌的方法。
效果:純蒸汽殺菌可殺死一些微生物,包括細菌的芽孢,真菌的孢子或休眠體等耐高溫的個體。
方法:目前常以溫度121℃、滅菌30min作為純蒸汽殺菌參數。
純蒸汽殺菌時,一定要排盡罐體內的不凝性空氣,否則會大大降低滅菌效果,同時,滅菌過程中系統所有低點的冷凝水菌需得到及時排放,在疏水器前端採用溫度感測器進行在線監測,在最冷點的溫度達到滅菌溫度時開始計時滅菌。
優點:時間短、氣化潛熱、系統簡單。
過熱水殺菌:
定義:指利用高溫高壓過熱水進行滅菌的方法。
效果:同純蒸汽。
與純蒸汽殺菌相比,過熱水殺菌的優點:
1. 採用工業蒸汽為熱源,無需另外製備純蒸汽。
2. 滅菌過程中,無需考慮最低點冷凝水的排放問題。
3. 採用注射用水系統已有的維持80℃高溫循環用雙板管式換熱器進行系統升溫,節省項目投資且操作非常方便。
當系統用點較多,且冷用點採用全自動Subloop設計時,過熱水消毒優勢更加明顯。過熱水滅菌時,注射用水罐體內氣相位高壓純蒸汽,可有效實現罐體呼吸器的在線滅菌,同時,滅菌過程中需考慮注射用水輸送泵發生「氣蝕現象」。
❽ 純化水設備系統的驗證周期
十大復優秀水處理工程商科瑞為制您解答:
純化水設備系統除了初始的驗證之外,為了保持純化水設備驗證持續狀態,在設備運行期間必須做到:
(1)純化水系統改建後(包括關鍵設備和使用點的改動)必須作驗證。
(2)純化水正常運行後一般循環水泵不得停止工作,若較長時間停用,在正式生產3個
星期前開啟純水處理系統並做3個周期的監控。
(3)純化水管道一般每周用清潔蒸汽消毒或巴氏消毒一次。
如有其它疑問,可進入網站查詢相關內容。
❾ 純化水設備使用時間久了需要消毒嗎
純化水設備使用時間久了需要消毒嗎?答案是肯定的。
純化水設備一般活性炭過濾器會內選擇巴氏消毒;由於活容性炭有多孔吸附的特性,大量的TOC被吸附後會出現微生物繁殖,長時間運行後產生的微生物一旦泄漏至後端處理單元,勢必會對後端處理單元的使用效果產生影響並帶來很大的微生物污染風險,因此需要為活性炭過濾器設置高溫消毒系統,對其產水的微生物指標進行有效控制。
常見的消毒方式:巴氏消毒、蒸汽消毒、紫外線殺菌方式是活性炭過濾器非常有效的消毒方式。其反洗和正洗可參照多介質過濾器。
紫外線殺菌:
和使用率等的葯劑殺菌不同,採用紫外線殺菌完全沒有葯劑殘留,也沒有副產物的生成,消毒效果會一句作用對象的不同而不同。採用UV253.7在1-21mj/cm²(單位:兆焦耳/平方厘米)的照射劑量下可以進行細菌消毒(炭疽(jū))菌的芽孢例外,劑量為55mj/cm²)(90%不活化))。
❿ 煮沸消毒滅菌法把誰煮沸100攝氏度,要幾分鍾可以殺死細菌繁殖體,幾小時可以殺死芽胞
1.熱力消毒
微生物的代謝作用,包括化學和物理的反應,深受溫度的影響,在一定范圍內提高溫度可以加速微生物的呼吸作用。溫度在微生物的活動中起著非常重要的作用。阻止工藝用水系統內細菌生長的最有效、最可靠的辦法就是系統在高於細菌生存的溫度下運行操作。一般情況下,微生物生長的溫度范圍大約為-5℃~80℃,就某一種微生物而言,其適合生長的溫度范圍通常較窄,這個最適合微生物生長的溫度叫做某種微生物生長的最適合溫度,在這個溫度范圍內,該種微生物生長最快。微生物生長的最高溫度是指在最適合溫度以上,微生物停止生長的溫度。微生物生長的最低溫度是指在最適合溫度以下,微生物停止生長的溫度。在最低溫度和最適合溫度之間,微生物生長的速度隨溫度的升高增加。在最適合溫度和最高溫度之間,微生物生長的速度隨溫度的升高增加。在最適合溫度和最高溫度之間,微生物生長的速度隨溫度的升高而降低。表5-2中列處了部分細菌在不同溫度條件下的生長情況。
通常,工藝以上系統可以定期使用純蒸汽消毒,使管道系統重新回到系統微生物控制指標優良狀態下,如果工藝用水系統內部的水始終保持在熱處理環境下,例如≥80℃,可以減少對管道系統定期進行衛生處理的頻率。
微生物對熱的耐受能力,因其細胞本質及其環境條件不同而有所區別。工藝用水管道系統熱處理的溫度和時間條件,可以根據大多數細菌的耐熱情況適當地確定。表5-3為一些常見細菌的致死溫度及其時間。
在80℃熱處理條件下運行的工藝用水系統,有經驗數據記錄顯示微生物生長受到良好的控制。低於80℃的溫度的熱處理的實際作用必須根據實例的試驗數據加以證明。需要注意上表列出的這個溫度范圍並不能去除工藝用水系統中的細菌內毒素。細菌內毒素的去除,必須通過將工藝用水處理系統設計成為具有去除熱原的能力。
表5-2部分細菌和真菌在不同溫度條件下的生長情況
微 生 物
Microorganism 溫 度 范 圍
Temperature Range
最低
Lowest 最適合
Best 最高
Highest
無色桿菌(Achromobacter ichthyodermis) -2 25 30
嗜熱防線菌(Actinomyces ichihyodermis) 28 50 65
根癌病土壤桿菌(Agrobacierium tumefaciense) 0 25~28 37
枯草芽孢桿菌(B.thermophilus) 15 30~37 55
嗜熱糖化芽孢桿菌(Bacillus subtilis) 52 65 75
破傷風俊狀芽孢桿菌(Clonridium tetani) 14 37~38 50
白喉棒狀桿菌(Corynebacterium diphtheriae) 15 34~36 40
大腸桿菌(Escherichia coli) 10 30~37 43
肺炎克氏桿菌(Klebsierlla pneumoniae) 12 37 40
嗜熱乳桿菌(L.thermophilus) 30 50~63 65
金黃色化濃小球菌(Mierococcus pyrogenes v.Aureus) 15 37 40
結核分枝桿菌(Mycobacterius tuberrhoeae) 30 37 42
淋病奈氏球菌(Neisseris gonorrhoeae) 5 37 55
銅綠色假單孢菌(Pseudomonas aeruginosa) 0 37 42
嗜熱鏈黴菌(Streptomyces thermophilus) 20 40~45 53
黑麴黴(A.niger) 7 30~39 47
灰綠葡萄孢霉(Botrytis nilans) 0 15~25 35
尖鐮孢霉(Fusarium oxysporium) 4 15~32 40
蘋果青黴(Penicillium expansum) 0 25~27 30
酵母菌(Saccharomyces sp.) 0.5 25~30 40
普通變形桿菌(Proteus vulgaris) 10 37 43
(1)、巴氏消毒
巴氏消毒主要利用高溫處理來殺死微生物。高溫殺死微生物的能力極強,高溫可以凝固微生物細胞內部的一切蛋白質,鈍化其酶系統,造成細菌細胞的死亡。
經典的巴氏消毒主要使用在食品工業中對牛奶進行消毒處理,用以殺滅牛奶中的結核菌,同時還不會破壞牛奶中的新鮮維生素和蛋白質,使牛奶成為安全的營養品。採用巴氏消毒牛奶的工藝條件是,先將牛奶加熱到80℃,停留一定時間,進行消毒,消毒後再冷卻至常溫,再出消毒器成為產品。為了節省能源,一般採用多效巴氏消毒器消毒牛奶。在多效消毒器中,第一效是將冷牛奶與熱牛奶進行熱交換器;第二效是將加熱過的冷牛奶與蒸汽交換冷牛奶加熱至80℃並停留一般時間,完成對牛奶的消毒;第三效是將一效與冷牛奶交換過的熱牛奶用水冷卻至常溫出消毒器即成牛奶成品。
對水系統的細菌控制採用巴氏消毒的方法也可行,水中存在著雜菌,由於雜菌在熱水中不易生存,細菌不耐熱。一般消滅這些雜菌採用靜止水消毒時,消毒水水溫要加熱到95℃~100℃這樣才能達到最佳效果。當用加熱器、膨脹水箱、水泵、80℃熱水的消毒流程時,由於水的高速流動,不斷沖刷和加熱管道與設備中的介質,使管道與設備介質中的細菌無法藏身,同時受熱而亡,這樣用80℃的熱水,是能達到滅菌的目的,需要重視的是消毒操作和消毒處理時間。
表5-3常見細菌的致死溫度與時間
細 菌 種 類
Bacteria 致死溫度及時間
Lethal Temperature and Time
傷寒沙門氏桿菌(Salmonella typhi) 58℃ 30min
白喉棒狀桿菌(Corynebacterium diphtheriae) 50℃ 10min
嗜熱乳桿菌(Lactobacillus thermophilus) 71℃ 30min
普通變形桿菌(Proteus vulgaris) 55℃ 60min
大腸桿菌(Escherichia coli) 60℃ 10min
肺炎球菌(Pneumonococcus pneumoniae 56℃ 5~7min
維氏硝化桿菌(Nitrobacter winogradskyi) 50℃ 5min
粘質賽氏桿菌(Serratia marcescens) 55℃ 60min
純化水系統中的活性炭過濾器和軟化器是有機物集中的地方,容易長菌。巴氏消毒主要解決碳活性碳的清理、消毒工作。純化水系統中的活性碳在工作一段時間後,在活性碳的內表面吸附堆積了不少有機、無機鹽和氯氣等有害物質。特別是碳濾中的活性碳是細菌的滋生地,這些細菌在通過後續處理工序中的反滲透膜時,又不能被完全處理掉,這是對活性碳定期消毒處理的主要原因。
在過去傳統的操作中,只是對碳濾進行正沖和反沖,正沖和反沖只能沖掉活性碳間的絮凝物,無法清理活性碳內表面的吸附堆積物,用80℃±3℃的熱水來處理活性碳,一方面可以將活性碳內表面吸附的堆積物沖刷出來,另一方面可以使活性碳內表面的細菌生長和繁衍,在熱處理條件下受到抑制,而自行死亡。這對充分發揮活性碳的作用,延長活性碳的使用壽命,減少水系統的細菌量,產生不可估量的影響。
通常可採用巴氏消毒法進行消毒處理,即用80℃的熱水循環1小時~2小時。結束時反洗,一則起再生作用,二則消毒,這種方法行之有效。純化水系統中的另一可以採用巴氏消毒處為純化水的使用迴路。
(2)、純蒸汽消毒
純蒸汽滅菌其實就是採用濕熱滅菌的原理和方法,對主要工藝用水系統進行滅菌處理。利用高壓純蒸汽這種熱力學滅菌手段,殺滅工藝用水系統中的設備(貯罐、泵、過濾器等)內部和管道內壁可能存在的細菌。純蒸汽滅菌系濕熱滅菌,其滅菌能力很強,極其有效,且在整個滅菌的過程中,沒有任何影響水質的附加物或殘留物。純蒸汽滅菌是熱力學滅菌中最有效及用途最廣的方法。除工藝用水系統的滅菌以外,整個葯品生產工藝過程中,葯品、葯品的溶液、玻璃器械、培養基、無菌衣、敷料以及其他遇高溫與濕熱不發生變化或損壞的物質,均可採用純蒸汽進行滅菌。
⑴純蒸汽滅菌的原理
如前所述,純蒸汽滅菌即是濕熱滅菌。濕熱滅菌是指物質在滅菌器內(在主要工藝用水系統滅菌中為設備與管道零件等)利用高壓純蒸汽與其他熱力學滅菌手段殺滅細菌,高壓純蒸汽的比熱大、穿透力極強、很容易使蛋白質變行、滅菌能力很強,是熱力學滅菌中最為有效及適用性最廣的方法。
在自然界,有機物生命的生存繁殖的理想范圍是-5℃~80℃之間,除了某些耐熱的芽孢以外,當溫度高於這個范圍,生物體通常會死亡。濕熱滅菌即是利用微生物的這一特性,使用處於壓力下的滅菌蒸汽作為滅菌劑,使微生物細胞喪失繁殖能力,導致微生物死亡。
從微生物死亡的機理上講,微生物的死亡可追溯到細胞中主要蛋白質及核酸的變性。這種變性是分子中氫鍵分裂所致,當氫鍵斷裂時,結構被破壞,分子從而喪失其功能。但應注意,這種變性可以是逆轉的,也可能是不可逆轉的。如果氫鍵破裂的臨界數量未能達到,分子又可能回到原有的形式。
⑵與濕熱滅菌有關的常數
①D值
D值即微生物的耐熱參數,系指一定溫度下,將微生物殺滅90%(即使之下降一個對數單位)所需的時間。D值越大,說明該微生物的耐熱性越強。不同的微生物在不同環境條件下具有各不相同的D值。
②Z值
Z值即滅菌溫度系數,系指使某一種微生物的D值下降一個對數單位,滅菌溫度應升高度數,通常取10℃。
③Fr值
Fr值即T℃滅菌時間,為滅菌程序所賦予持滅菌品在T℃下的滅菌時間,以分表示,由於D值是隨溫度的變化而變化,所以要在不同濕度下達到相同的滅菌效果,Fr值將會隨D值的變化而變化。滅菌溫度高時,Fr值變小,滅菌溫度低時,所需Fr值就大。
④F0值
F0值即標准滅菌時間,系滅菌過程賦予待滅菌物品在121℃下的等效滅菌時間,即為T=121℃、Z=10時的F0值,121℃為標准狀態,F0值即為標准滅菌時間,以分表示。
⑤滅菌率L
L值指在某間溫度下滅菌一分鍾所相應的標准滅菌時間的分鍾數,即F0和Fr的比值(L= F0/Fr)。當Z=10℃時,不同溫度下的L值是不同的(見表1)。不同Z值下的滅菌率均可查得(見表2)。
⑥無菌保證值(SAL)
無菌保證值SAL(Sterility Assurance Level)為滅菌產品經滅菌後微生物殘存機率的負對數值,表示物品被滅菌後的無菌狀態。國際上把該值定為6作為最低限度的無菌保證要求,即滅菌後微生物污染的概率不得大於百萬分之一。
⑦純蒸汽滅菌條件
根據純蒸汽發生器的能力和工藝用水系統的復雜程度,可選擇如下條件進行滅菌:
115.5℃ 30分鍾
121.5℃ 20分鍾
(3)工藝用水系統純蒸汽滅菌方法
①工藝用水管道進行滅菌時,純蒸汽壓力為0.2Mpa;
②當管道內溫度升至121℃時開始計時,滅菌35分鍾。滅菌指示帶應變色,否則須重新滅菌;
③滅菌後如工藝用水系統若不立即使用,應對系統充氮保護;
④貯罐等容器設備,純蒸汽滅菌前應進行清洗,滅菌後若過夜後使用,在使用前應用注射用水再次淋洗。