水處理樹脂分為陽離子樹脂和陰離子樹脂,陽離子樹脂又細分為鈉型和氫型,鈉型樹脂將水中的鈣鎂離子交換成鈉離子,使水變軟.氫型樹脂是將水中的鈣鎂離子交換成氫離子使水軟化.陰離子樹脂中含被可置換的氫氧根離子,能置換出水中的酸根離子。羅門哈斯離子交換樹脂同時使用陰離子樹脂和氫型陽離子樹脂可以將水變為純凈水。
一、離子交換樹脂基礎介紹
離子交換樹脂的全名稱由分類名稱、骨架(或基因)名稱、基本名稱組成。孔隙結構分凝膠型和大孔型兩種,凡具有物理孔結構的稱大孔型樹脂,在全名稱前加「大孔」。分類屬酸性的應在名稱前加「陽」,分類屬鹼性的,在名稱前加「陰」。如:大孔強酸性苯乙烯系陽離子交換樹脂。
離子交換樹脂還可以根據其基體的種類分為苯乙烯系樹脂和丙烯酸系樹脂。樹脂中化學活性基團的種類決定了樹脂的主要性質和類別。首先區分為陽離子樹脂和陰離子樹脂兩大類,它們可分別與溶液中的陽離子和陰離子進行離子交換。陽離子樹脂又分為強酸性和弱酸性兩類,陰離子樹脂又分為強鹼性和弱鹼性兩類
(或再分出中強酸和中強鹼性類)。
二、離子交換樹脂的基本類型
(1) 強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
(2) 弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+
而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
(3) 強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
(4) 弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
(5) 離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
三、離子交換樹脂基體的組成
離子交換樹脂(ionresin)的基體(matrix),製造原料主要有苯乙烯和丙烯酸(酯)兩大類,它們分別與交聯劑二乙烯苯產生聚合反應,形成具有長分子主鏈及交聯橫鏈的網路骨架結構的聚合物。苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。
這兩類樹脂的吸附性能都很好,但有不同特點。丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,便於再生,在糖廠中可用作主要的脫色樹脂。苯乙烯系樹脂擅長吸附芳香族物質,善於吸附糖汁中的多酚類色素(包括帶負電的或不帶電的);但在再生時較難洗脫。因此,糖液先用丙烯酸樹脂進行粗脫色,再用苯乙烯樹脂進行精脫色,可充分發揮兩者的長處。
樹脂的交聯度,即樹脂基體聚合時所用二乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強;而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。工業應用的離子樹脂的交聯度一般不低於4%;用於脫色的樹脂的交聯度一般不高於8%;單純用於吸附無機離子的樹脂,其交聯度可較高。
有任何問題可以追問~~~
B. 離子交換樹脂的再生意義是什麼原理是什麼
離子交換樹脂使用一段時間後,吸附的雜志達到飽和的狀態,需要進行再生處理,使用化學葯劑將樹脂所吸附的離子和其他雜質洗脫除去棚粗,讓其回復原來的組成和性能。所以意義是將飽和離子交換樹脂把結合上的陰陽離子拿下來,讓它恢復軟化水的功能。該項操作使其資源可再生,節約成本,保護環境。
離子交換樹脂的再生原理:
1、 常規的再生處理:強酸行和強鹼性樹脂再生困難,需要再生劑量比理棚毀論值高很多;
弱酸性或弱鹼性則較易再生,所以劑量只需稍多於理論值。
大孔型和交聯度低的樹脂易再生,鏈和鎮凝膠型和交聯度高的樹脂則要較長的再生反應時間。
再生劑的種類根據樹脂的離子類型來選用,並適當地選擇價格低的酸鹼或鹽。
2、 特殊的再生處理:污染嚴重的樹脂,可用酸、鹼性食鹽溶液反復處理。如果效果未達到理想狀態,還可以用氧化法處理(加入次氯酸鈉溶液)。
C. 離子交換樹脂的作用有哪些
離子交換樹脂是一種獨特的過濾材料,具有出色的過濾性能。它能夠有效濾除水中的氯離子、鈣離子、鎂離子以及多種金屬離子,顯著降低了水質的硬度。相比傳統的活性炭,離子交換樹脂的吸附能力更為強大,凈化效果更佳,因此在當前的水處理領域被廣泛應用。
這種樹脂的核心優勢在於其高效的離子交換能力。當水流經過離子交換樹脂時,樹脂中的離子會與水中不希望的離子發生交換,從而凈化水質。這一過程中,樹脂中的鈉離子會與水中的鈣、鎂離子交換位置,使得原本硬度較高的水變得柔軟,有效減少了水垢的形成。此外,離子交換樹脂還能夠有效去除水中的有害物質,如鉛、汞等重金屬離子,保障飲水的安全性。
除了在水處理方面的應用,離子交換樹脂還在其他領域發揮著重要作用。在制葯行業,它用於提純和分離葯物成分;在食品工業中,它被用來凈化飲料和酒類;在環保領域,它能夠有效處理工業廢水中的有害物質。這些廣泛的應用場景都得益於離子交換樹脂卓越的性能和穩定性。
總的來說,離子交換樹脂以其優異的過濾性能和廣泛的應用前景,成為了現代水處理和其他工業領域中不可或缺的重要材料。隨著科技的進步和研究的深入,相信未來離子交換樹脂將在更多領域展現出其巨大的潛力和價值。
D. 弱酸陽離子安換樹脂軟化為什麼要轉成Na型
第一個階段是20世紀60年代的開創時期。這個時期電滲析是我國最早得到推廣應用的膜分離過程,其應用領域涉及苦鹹水淡化;電廠鍋爐補給水預除鹽等。第二個階段是20世紀70年代。這一時期,電滲析、反滲透、超濾和微濾等各種膜和相應組件、裝置都在研究中,或已開發出來,除電滲析外,其它膜組件仍未得到應用。第三個階段是20世紀80年代以後。這一時期我國膜分離技術跨入應用階段,一些技術上較為成熟的膜過程開始得到應用。在自己研製成功的醋酸纖維素(CA)膜於復合膜生產裝置的基礎上,又相繼引進了外國有關公司的反滲透膜生產線。反滲透技術已在我國電廠鍋爐補給水預除鹽、超純水製造、海水和苦鹹水淡化等方面大規模推廣應用,並取得很好的技術效益和經濟效益。因此,提高膜預處理的綜合利用研究意義重大且大有前途。
自超濾膜預處理後,多年來國內外研究人員都一直在探索預處理的新途徑。到1995年12月,全世界RO淡化工廠產水量達7293079m3/d,占總淡化生產量的35%,占當年世界淡化市場88%。RO技術將成為21世紀淡化技術的主要方法。
技術實現要素:
本發明正是基於以上技術問題,提供一種以弱酸陽離子樹脂交換酸化軟化方法。該方法主要針對河水而言,由於河水中含有較多的生活污水,而本發明通過設計合理的工藝流程,提高純水的回收率,並簡化原水的處理過程,降低水耗,使以河水制純水具有優越的經濟效益。
本發明的技術方案為:
一種以弱酸陽離子樹脂交換酸化軟化方法,其包括如下步驟:
(1)將待處理的水放入已放置了絮凝劑的澄清池中,除去大部分膠質物質;再將水經過過濾器,進一步除去膠質物質;
(2)將經過步驟(1)處理後的水通過弱酸陽離子樹脂交換床,使水中的陽離子(如Ca2+、Mg2+、Na+等)被樹脂吸附,樹脂中的H+進入水中,與水中的陰離子組成相應的無機酸,反應式如下:
弱酸陽離子樹脂交換床失效後,向其添加無機酸使其再生,且將弱酸陽離子樹脂上部的晶型變為H+型,將弱酸陽離子樹脂的下部的晶型變為Na+型,無機酸的加入量與水的質量比為1.01-1.015。作為優選,所述的無機酸為硝酸、鹽酸或硫酸。弱酸陽離子樹脂交換床再生的時間不超過1h,再生的水溫為30- 45℃,壓力為常壓,無機酸的流量不超60m3/h。
待水在弱酸陽離子樹脂交換床交換完成後,用脫鹽水對弱酸陽離子樹脂進行置換,置換的溫度為30-45℃,壓力為常壓,交換時間不超過1h,脫鹽水流量不超60m3/h。
待脫鹽水置換後,用清水對弱酸陽離子樹脂進行清洗;清洗的溫度小於 45℃,壓力為常壓,清洗時間不超過1h,清水流量不超80m3/h,弱酸陽離子樹脂交換床中的清洗出水電導小於1200μs/cm。
(3)將經過弱酸陽離子樹脂,除去大部分陽離子後並攜帶H+的水進入保安過濾器和反滲透RO膜除去絕大部分離子;再將經過RO膜除去大部分離子後的水進入強酸陽離子交換床,進一步除去陽離子;經過RO膜除去大部分離子後,因進入RO膜的水帶酸性,CO32-大部分以游離CO2存在,產生的游離二氧化碳經脫碳風機除去。
(4)將經步驟(3)中除去陽離子的水進入陰離子交換床,除去大部分陰離子,特別是硅酸根離子,除去大部分陰離子,得到除鹽水;
(5)將步驟(4)中得到的除鹽水再經過混床進一步除鹽,混床相當於 1000-2000個復合床對除鹽水進一步除鹽,得到精製水。