Ⅰ 離子交換層析基本信息
離子交換層析是一種利用物質的電荷特性進行分離和純化的技術。其核心是基質,通常是帶有電荷的樹脂或纖維素。這些基質根據其電荷性質可分為兩類:陰離子交換樹脂,帶有正電荷,和陽離子樹脂,帶有負電荷。
在蛋白質分離純化過程中,離子交換層析的原理基於蛋白質的等電點特性。當蛋白質處於不同的pH環境中,其帶電狀態會發生變化。陰離子交換樹脂會結合帶有負電荷的蛋白質,使得這些蛋白質被吸附在柱子上。要將它們分離出來,可以通過逐步提高洗脫液中的鹽濃度,結合較弱的蛋白質首先會脫落下來。
相反,陽離子交換樹脂結合的是帶有正電荷的蛋白質。這些蛋白質的洗脫則需要採用不同的策略,如增加洗脫液中的鹽濃度或者提高其pH值,這樣結合強度較弱的蛋白質會先被釋放出來。通過這樣的方法,離子交換層析能夠有效地實現蛋白質的分離和純化。
離子交換層析(Ion Exchange Chromatography簡稱為IEC)是以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別而進行分離的一種層析方法。1
Ⅱ 離子交換層析蛋白純化
離子交換層析是一種基於不同蛋白質與離子交換樹脂上電荷基團可逆結合力的差異進行分離的技術。離子交換樹脂是帶有電荷基團的高分子聚合物凝膠顆粒,通過這一技術,依據流動相中蛋白質的電荷性質,實現對目標蛋白的分離與純化。
離子交換樹脂主要分為陽離子交換樹脂和陰離子交換樹脂。陽離子交換樹脂帶負電,能與陽離子物質結合,通常分為強酸型、中等酸型和弱酸型;陰離子交換樹脂帶正電,能與陰離子物質結合,分為強鹼型、中等鹼型和弱鹼型。這些樹脂的離子交換特性取決於電荷基團的解離度,強酸型樹脂對H*的結合力比Na+小,弱酸型樹脂對H'的結合力比Na*大;強鹼型樹脂對OH 的結合力比CI小,而弱酸型樹脂對OH 的結合力比CT大。
離子交換樹脂的交換容量反映了其與溶液中蛋白質進行交換的能力,它不僅與樹脂本身有關,還與實驗條件密切相關。離子交換樹脂的總交換容量用每毫克或每毫升交換劑含有可解離基團的毫克當量數來表示,對分離蛋白質的離子交換樹脂而言,通常用每毫克或每毫升交換劑能夠吸附某種蛋白質的量來表示。
在離子交換層析實驗中,選擇合適的離子交換樹脂對於分離效果至關重要。陽離子交換樹脂在等電點pl<pH條件下與蛋白結合,等電點pl>pH的蛋白與之結合。強型離子交換樹脂使用的pH范圍廣,適合制備去離子水和分離在極端pH溶液中解離且較穩定的物質。樹脂基質的疏水性影響蛋白質的穩定性和分離效果,分離生物大分子時,應選擇親水性基質的交換劑,以溫和的方式吸附和洗脫蛋白質,避免破壞生物大分子的活性。
離子交換層析的基本步驟包括離子交換樹脂的選擇、離子交換層析柱的制備、緩沖液的制備、加樣、洗脫以及離子交換柱的再生。在加樣過程中,需注意樣品液的離子強度和pH,上樣量應由交換容量決定。洗脫過程中,採用線性梯度洗脫,通過逐步增大離子強度,使結合在離子交換樹脂上的蛋白質組分依次被洗脫下來。洗脫液的選擇需保證在整個洗脫液梯度范圍內,所有待分離蛋白質組分穩定,並能夠被洗脫下來。洗脫速度需保持恆定,以獲得較好的解析度,但需考慮解析度與洗脫速度之間的關系,以優化分離效果。
在離子交換層析實驗中,影響交換容量的因素主要有樹脂顆粒大小、顆粒內孔隙大小、離子強度和pH。顆粒大小和孔隙大小影響離子交換樹脂與樣品組分作用的有效表面積,pH對弱酸和弱鹼型離子交換樹脂影響較大,而離子強度增大通常導致交換容量下降。通過優化實驗條件和參數,可以實現對目標蛋白質的高效純化。