在中國,MBR技術在處理垃圾滲濾液方面已經進入工程應用階段。青島的小澗西垃圾填埋場、北京的北神樹垃圾填埋場、阿蘇衛垃圾填埋場、佛山的高明白石坳填埋場以及哈爾濱的西南垃圾填埋場,還有峨眉山市垃圾填埋場等多家處理垃圾的地方,都採用了MBR技術。這些處理方法取得了顯著的效果。
以北京阿蘇衛垃圾填埋場為例,其在2007年改建垃圾滲濾液處理工程,採用了MBR技術。該技術使用了分體式生化反應器,包括生化反應器和超濾兩個單元。超濾採用了直徑為0.1米的有機管式超濾膜,通過MBR處理,實現了凈化水和菌體的分離,同時通過污泥迴流,使生化反應器中的污泥濃度保持在10~15g/L之間。經過不斷馴化的微生物菌群,可以逐步降解滲濾液中的難生物降解有機物。整個MBR處理工藝的出水中,SS去除率達到了100%,COD和NH3-N的去除率分別為87%和75%,這大大減少了後續深度處理中膜污染的風險。
峨眉山市垃圾填埋場的日處理垃圾規模為200噸,設計的垃圾滲濾液處理規模為80噸,採用了「厭氧+膜-生物反應器+納濾」的組合工藝。MBR反應器採用一體式設計,膜組件則採用了微濾膜。MBR處理後的出水中,COD、BOD、NH3-N、SS的去除率都非常高,且運行階段的出水水質優於《生活垃圾填埋場污染控制標准》。這些成功的案例證明,MBR技術在處理垃圾滲濾液方面已經積累了豐富的工藝設計經驗。
多項成功的工程實踐表明,MBR技術在處理垃圾滲濾液時表現優異,不僅能夠有效去除各種污染物,還能夠降低後續處理過程中的膜污染風險,從而提高整個處理系統的效率和穩定性。因此,MBR技術在垃圾滲濾液處理中確實是一種值得推薦的方法。
㈡ 垃圾滲濾液的處理方案
垃圾滲濾液的水質受垃圾成分、降水量、填埋工藝及填埋時間等因素的影響,具有成分復雜、及-N濃度高、水質變化大等特點,用常規的生化處理方法難以處理達標。與生化法相比,膜分離技術受原水水質變化的影響較小,能夠保持出水水質穩定,用於處理垃圾滲濾液具有明顯的優勢。碟管式反滲透(DTRO)工藝是一種新型的反滲透處理技術,在高濃度料液處理中應用廣泛,在垃圾滲濾液處理中也得到應用。
垃圾滲濾液(DTRO)工藝流程圖如圖所示
滲濾液先匯集到調節池進行水質、水量調節,原水貯罐出水經加酸調節pH值,以防止碳酸鹽類無機鹽結垢,再經砂式過濾器和芯式過濾器過濾降低SS濃度。預處理後的滲濾液進入第一級系統,在膜組件中進行反滲透,產生的透過液進入第二級DTRO系統,第一級DTRO濃縮液排入濃縮液儲池等待回灌;第二級DTRO系統透過液排入脫氣塔,吹脫除去水中二氧化碳等氣體,使pH值達到6~9,然後進入清水池,達標後排放,第二級DTRO濃縮液迴流進入第一級DTRO的進水端。金正環保是DTRO膜的生產企業,在DTRO膜法處理垃圾滲濾液有多年的工程經驗。
㈢ MBR+納濾+反滲透處理垃圾滲濾液好嗎
可以的,因為有不少這樣的案例。
我國利用MBR技術處理垃圾滲濾液已處於工程應用階段,青島小澗西垃圾填埋場、北京北神樹垃圾填埋場、北京阿蘇衛垃圾填埋場、佛山高明白石坳填埋場、哈爾濱西南垃圾填埋場、峨眉山市垃圾填埋場等多家垃圾處理場均採用MBR技術處理垃圾滲濾液,並取得了良好的處理效果。
北京阿蘇衛垃圾填埋場在2007年改建垃圾滲濾液處理工程,使用MBR技術處理垃圾滲濾液。MBR採用分體式生化反應器,包括生化反應器和超濾兩個單元。超濾採用直徑為0.1m的有機管式超濾膜,經MBR處理後,通過超濾膜分離凈化水和菌體,污泥迴流可使生化反應器中的污泥濃度達到10~15g/L,經過不斷馴化形成的微生物菌群,對滲濾液中難生物降解的有機物也能逐步降解。整個MBR處理工藝出水,SS去除率達到100%,COD以及NH3-N去除率分別達到87%、75%,減少了後續深度處理中膜污染的程度。
峨眉山市垃圾填埋場垃圾處理規模為200t/d,垃圾滲濾液處理規模設計為80t/d,選用「厭氧+膜-生物反應器+納濾」的組合工藝處理。MBR反應器採用一體式,膜組件採用微濾膜。MBR出水水質COD、BOD、NH3-N、SS的去除率分別達到了很高,運行階段出水水質優於《生活垃圾填埋場污染控制標准》。多項成功的工程證明,MBR處理垃圾滲濾液技術已擁有成熟的工藝設計經驗。
㈣ 處理的是垃圾滲濾液,超濾出來的水可以直接進反滲透嗎
對於垃圾滲濾液,現在流行的深度處理工藝都是超濾+反滲透。正常來說,超濾的出水已經很不錯了,這個時候進反滲透完全沒有問題的。所以,你提出的這個方案是成熟可行的。
但是,在實際運行當中,滲濾液對超濾膜的要求非常高,再者,由於滲濾液高污染,超濾膜的壽命將大大減少!並且隨著垃圾場的運營年限的加長,滲濾液越難處理,超濾膜越容易出現問題。所以,在實際運行當中,超濾膜更換的頻率很高的。
反滲透進水有以下幾種要求。
⑴細菌
由於細菌會以醋酸纖維為食物,因此醋酸膜易受細菌侵襲,對原水必須徹底殺菌,對於復合膜,雖然其不受細菌侵襲,但細菌黏膜會造成膜的污堵,一般可採取加氯殺菌,加氯量要根據需氯實驗加以確定。
醋酸纖維膜素要求給水中含有殘余氯,以防細菌滋生,而氯含量過高又會破壞膜,最大允許連續余氯的含量為1mg/L。
復合膜抗氯性差,一般不允許含有餘氯,採取加氯殺菌後,需加偏亞硫酸鈉,它可水解為亞硫酸氫鈉或經活性碳過濾消除余氯。
使用偏亞硫酸鈉偏亞硫酸氫鈉除余氯的反應如下
Na2S2O5+H2O→2NaHSO3
NaHSO3+HClO→HCl+NaHSO4
理論上,1.34kg的 Na2S2O5可以去除1kg余氯,然而一般在溶解氧的情況下,對苦鹹水去除1kg余氯需投加3 kg Na2S2O5。
Na2S2O5在涼爽乾燥的儲存條件下,貨架上的有效期為4~6個月,溶液的有效期則隨濃度而改變,見下表。
溶液濃度/%(質量) 最長有效期/天 溶液濃度/%(質量) 最長有效期/天
2 3 20 30
10 7 30 180
當採用地下水做水源時,未被污染的地下水細菌含量很少,在這種情況下採用復合膜則即不需加氯也無需除氯。
氯為什麼會起殺菌作用?當氯加到水裡面後,就會發生下面的反應
Cl2+H2O→HClO+HCl
HClO→H+ +ClO-
HClO為次氯酸,ClO-為次氯酸根,由於H+能被水裡的鹼度中和,最後水中只剩下 HClO及ClO-。兩者在水裡所佔百分數主要決定於水的PH值,但水的溫度也有影響,PH值小 於7時,水中HClO佔75%,ClO-佔25% ,溫度降低時HClO所佔比例還要大,在0℃時HClO增加到83%,而ClO-減到17%。
對於氯氣的殺菌機理有不同的說法,但比較合理的解釋是:它所生成的次氯酸產生殺菌作用,而不是氯本身,也不是它所生成的ClO-的作用。HClO是一個中性分子,可以擴散到帶負電的細菌表面,並穿過細菌的細胞膜進入細菌內部,HClO分子進入細菌後由於Cl原子氧化作用破壞了細菌的某種酶的系統(酶是一種蛋白質成分的催化劑,細菌的氧分要經過它的作用才能被吸收),最後導致細菌的死亡,而次氯酸根ClO-雖然也包括一個氯原子,但它帶負電,不能靠近帶負電的細菌,所以也不 能穿過細菌的細胞膜進入細菌內部,因此很難起殺菌作用,這種說法還可以說明水溫低和PH值低時殺菌效果比較好的現象。
從上面的化學方程式可以看出,加入水中的氯氣只有1/2變成HClO的成分,另外的1/2在水中產生Cl-,不起殺菌作用。
採用加HClO時的反應如下
HClO+H2O→ HClO+(Na+ ) + (OH-)
從方程式可以看出一個分子的HClO的作用相當於一個分子的 Cl2。
(2)含鐵量
鐵的氧化速度取決於鐵的含量水中溶解氧的濃度和PH值,PH值越高氧化速度越快,因此,降低PH值可以防止氧化。給水最大允許含鐵量於含氧量和PH值的關系如下表示。
(3)顆粒物質
不允許大於5um的顆粒物質進入高壓泵及反滲透組件,這一點必須確保,以免損壞設備。
(4)SDI和濁度
SDI必須小於5,越小越好,濁度應小於0.2NTU(最大允許濁度為1NTU)
(5)油和脂
水中不允許含有油和脂。
(6)有機物
水中的有機物RO膜的影響最為復雜,一些有機物對膜的影響不大,而另一些則可能造成膜的有機污染,對於地表水應盡量在凝聚澄清過程中 去除有機物,還可以採用活性碳過濾進一步降低有機物含量。
(7)SiO2
濃水不允許析出SiO2 ,當SiO2 過飽和則可能聚合而形成不溶解的膠體硅或者硅膠而引起結垢。
純水25℃時,無定形硅的溶解度約為100 mg/L(以SiO2計),溶解度隨溫度呈直線變化,0℃時為0 mg/L,到40℃時增加到160 mg/L,在中性PH值條件下,溶解的只是硅膠;在鹼性溶液中,無定形硅的溶解度較中性溶液大,主要原因是由於硅酸電離,然而在有鋁出現時,溶解度可能降低很多,原因是由於硅酸鋁的溶解度極小的緣故。
如果 SiO2的濃度太高,則需要預處理或者降低回收率,防止形成硅垢的方法如下。
① 控制系統回收率。這是一種最容易的防硅垢的方法,靠降低系統回收率使濃水中SiO2的濃度降低到(在給定PH值和溫度下)SiO2的飽和溶解度以下。
② 採用石灰軟化。一般可降低給水中50%的SiO2或者澄清器中多加些氯化鐵和鋁酸鈉。
③ 溫度控制。因為無定形SiO2的溶解度取決於溫度,提高水的溫度可以防止SiO2結垢,也可以將提高溫度與降低系統回收率結合使用。
出現硅垢必須立即清洗,硅垢一旦形成非常難於出除。
(1) 防垢
必須防止CaCO3 CaSO4 SrSO4 BaSO4 和CaF2垢。
膜結垢是由於給水中的微溶鹽在給水濃縮時超過了溶度積而沉澱 到膜上,在苦鹹水中,CaCO3和CaSO4通常都需要處理,其他鹽類SrSO4 BaSO4 和CaF2也需要根據計算來確定在濃水中是否會超過溶解度極限。
如果微溶鹽 超過了溶解極限,需要採取以下一種或幾種方法。
① 降低系統回收率,避免超過溶度積。
② 採取離子交換法軟化除去鈣離子。
③ 加酸去除碳酸或重碳酸離子。
④ 加阻垢劑。
對於大多數水都存在CaCO3結垢趨勢,確定給水的CaCO3結垢趨勢,對苦鹹水一般採用Langelier飽和指數(LSI)。
確定是否結CaSO4 SrSO4或 BaSO4垢需要計算濃水中這些鹽是否超過了它們的溶度積,各個鹽的溶度積與濃水中相應鹽的離子積比較
當IPb>Ksp 有沉澱生成
當IPb=Ksp 無沉澱生成
當 IPb<Ksp 處於臨界狀態
為防止結垢,建議IPb≤0.8Ksp。
一般,微溶鹽的溶解度隨溶液離子強度增加而增加,對大多數苦鹹水中遇到的微溶鹽 Ksp作為離子強度函數的數據可供利用。
因為RO過程中微溶鹽的結垢趨勢是由最濃的水流來決定的,所以 Ksp是根據濃水流的離子強度來確定。
(2) 進水參數方面的要求
① 水溫。反滲透膜元件對進水的水溫均有一定的要求,以海德能公司為例,除了其生產的拿高溫膜元件外,其生產的復合膜要求將進水溫度控制在0~45℃,其生產的醋酸纖維素膜要求將進水溫度控制在0~40℃。
② 最高進水壓力。反滲透膜元件對最高壓力有一定的要求,海德能公司生產的苦鹹水用工業膜最高進水壓力為600psi(4.16Mpa),其生產的海水淡化膜最高進水壓力為1200 psi(8.27Mpa)。
③ 每支膜最高進水流量。反滲透膜元件對最高進水流量有一定的要求,海德能公司8″膜元件的最高進水流量為75gpm(17t/h)。4″膜元件的最高進水流量為16 gpm(3.6t/h)。
④ 單支膜元件最高壓力損失。考慮到單支膜元件的壓力差太高時會造成膜元件的機械損傷,因而對單支膜元件最高壓力損失有一定要求,海德能公司要求系統中任何一支膜元件上的最高壓力損失不能超過68.9 Mpa(10 psi)。
⑤ 濃縮水與透過水量之比。考慮到膜的耐污染能力等方面的因素,對每支膜的濃縮水與透過水量之比是有一定要求的,以海德能公司為例,均要求單支膜元件上濃縮水與透過水量的最小比例為5:1。
㈤ 垃圾滲濾液濃水怎麼處理
首先,濃水回灌使得污染物持續累積,影響原有滲濾液處理設施處理能力和處理效率。對於垃圾填埋場處理設施來說,濃縮液中高濃度鹽一直在處理設施積累,導致滲濾液電導率攀升,影響滲濾液處理生化段微生物活性,最終導致滲濾液處理設施完全失效,同時增加深度處理壓力,導致膜系統出水率持續降低。對於垃圾焚燒處理設施來說,濃縮液中的鹽會轉移到焚燒灰渣,大大增加焚燒灰渣處理和利用難度,也會導致爐排、煙氣處理設備腐蝕等嚴重問題。
其次,2022年2月28日國家生態環境部發布了《生活垃圾填埋場污染控制標准(徵求意見稿)》,意見稿中第9.3.2條規定,「處理滲濾液產生的濃縮液應單獨處置,不得回灌生活垃圾填埋場或進入污水集中處理設施。」
......
根據以上情況,建議對垃圾滲濾液進行全量化處理。
所謂垃圾滲濾液全量化處理,是指通過膜技術、蒸發和固化等系列先進技術和工藝,將滲濾液全部進行無害化處理,無任何尾液、母液外排或回灌,清液全部回用或達標排放,尾渣固化無害填埋,沒有膜濃縮液問題,可以徹底解決滲濾液困擾。
垃圾滲濾液全量化處理解決方案參考工藝
1、混凝沉澱+TUF+物料分離+ DTRO減量+低溫負壓蒸發+乾燥(乾燥污泥分區無害填埋),適用於≥200m³/d的情況。
該工藝具有如下優勢:
混凝沉澱能改善結垢問題;
TUF硬度分離效果好,佔地面積小;
物料膜去除有機物,解決蒸發沸點升高問題;
DTRO減量可降低濃水水量,降低整體投資;
低溫負壓MVR清液得率高,水質好,穩定除鹽,不容易結垢;
乾燥可減少污泥量,處理物料膜濃水和蒸發母液,鹽泥含水率可做到20%以下。
2、混凝沉澱+低溫負壓MVR+固化,適用於100m³/d~200m³/d的情況。
3、HPRO減量+LEVA低溫真空蒸發+乾燥/固化,適用於<100m³/d的情況。
HPRO減量可減小蒸發規模,降低整體成本;
低溫真空蒸發解決蒸發系統結垢問題,佔地面積小,硬度分離效果好。
以上供參考,望採納!