❶ 糖化血紅蛋白的檢測方法
1、陽離子交換色譜法
原理:糖化導致血紅蛋白分子表面陽離子丟失。在弱的陽離子交換劑中,例如Biorex70,伴有增加的離子濃度和(或)pH下降,糖化血紅蛋白在非糖化血紅蛋白前先洗脫。這現象產生了糖化血紅蛋白最初的術語「快速血紅蛋白」。陽離子交換色譜法可用於小型、微型或大型柱層析方法或部分或全自動的PHLC/FPLC方法。因為,其他翻譯後修飾血紅蛋白,例如醛亞胺型、甲醯化、乙醯化、乙醛加合物、降解物、老化人工物品和異常血紅蛋白電荷交換也不同於正常的HbA0,所以已經列出了許多陽離子交換層析法的干擾因素。使用常規HPLC的方法。分離糖化血紅蛋白亞組分是能達到滿足需求的臨床精密度。然而,已知HbA1c的峰不是均一的而是包含一重要的非糖化血紅蛋白部分。少數糖化血紅蛋白也整合到HbA0主峰中。通過使用特殊的柱原料(poly-CATA)和30~40 min分離時間可以改善分離效果。這些方法可以作為參考步驟但不適合常規使用。所有的陽離子交換色譜法對pH和溫度的變化敏感,因此要控制pH和溫度。
說明:根據紅細胞代謝動力學推測初始HbA1c值大約每日破壞1/120(≈0.83%)。因為糖化在合適的治療下甚至健康人也產生,故這個理論值在體外不能達到。控制不理想的糖尿病患者通過加強治療而達到血糖量正常,可以發現HbA1c值最大下降率以大約每10 d下降正常血糖的1%(絕對的)。由於測定糖化血紅蛋白方法的精確性,兩次測定值HbA1c的差異大約1%就可認為具有臨床相關性。因為這些原因,在HbA1c兩次測定間至少有2周的時間,推薦4~6周的間隔。
因為升高的糖化血紅蛋白值是長期高糖血症的糖尿病患者相當可靠的指示劑,因而是可能診斷糖尿病的。在未治療的個體,正常的糖化血紅蛋白值臨床上可以排除明顯的糖尿病。但由於它不能檢測糖耐量受損,所以作為診斷和(或)篩選目的唯一的參數,使用糖化血紅蛋白是存在問題的。
2、電泳法
原理:相比於非糖化血紅蛋白,因糖化而變化的總電荷和糖化血紅蛋白的等電點變化是瓊脂糖凝膠或者pH梯度5.0~6.5的凝膠等電聚焦電泳分離的基礎。瓊脂糖凝膠電泳的血紅蛋白亞組分解析度很小,而等電聚焦可以更好地使亞組分分離。可能由於試驗的自動化程度不足,重要性已經下降。
3、親和層析法
原理:硼酸結合順式-羥基。商品化的m-氨基苯硼酸瓊脂糖共價結合的親和柱已可用於微柱分析檢測。將血樣本中的血紅蛋白加到層析柱後,所有的糖化血紅蛋白(HbA1和旁鏈糖化的血紅蛋白;總糖化血紅蛋白)與硼酸結合而非糖化血紅蛋白通過層析柱可被測量。在加入高濃度也包含順式-羥基的多羥基復合物,例如山梨醇後,糖化血紅蛋白與硼酸的結合被替換而從柱子上洗脫下來。親和層析法對經翻譯以後修飾的血紅蛋白和病理血紅蛋白的影響相對不敏感。利用親和層析法,僅能測定總糖化血紅蛋白。廣泛使用的親和層析方法,允許用經驗演算法從總糖化血紅蛋白值計算出「標準的HbA1c」。
4、免疫分析法
在纈氨酸β-N-末端糖化的血紅蛋白提供了一個容易被抗體識別的抗原表位。可以用單克隆抗體或多克隆抗體進行放射免疫分析和免疫酶學分析測定,抗體特異識別β鏈N-末端糖化的血紅蛋白最後4~8個氨基酸組成的抗原表位。異常的血紅蛋白或翻譯後經修飾的血紅蛋白無干擾。
目前的免疫化學試驗不僅檢測HbA1c,通常也同時檢測HbA2c,因為血紅蛋白A2糖化δ鏈的表位是相同的。抗體直接抗β-鏈的最後四個氨基酸的糖化表位的免疫化學試驗也可用進行檢測,例如HbS1c。在大多數情況下HbA2c意義不大,雖然鐮刀細胞病時可以准確地測定纈氨酸β-N-氨基末端糖化程度,但它仍不能100%代表HbA1c。
5、離子層析法
離子層析法精密度高、重復性好且操作簡單, 被臨床廣泛採用。檢測原理由於血紅蛋白β-鏈N 末端纈氨酸糖化後所帶電荷不同, 在偏酸溶液中總糖化血紅蛋白( GH b) 及H bA 均具有陽離子的特性, 因此經過陽離子交換層析柱時可被偏酸的緩沖液平衡過的樹脂來吸附, 但二者吸附率不同, GH b正電荷較少吸附率較低, H bA 正電荷較多吸附率較高。用不同pH 的磷酸鹽緩沖液可以分次洗脫出GH b 和H bA, 用KCN 可將H b轉化為高鐵氰化血紅蛋白, 用分光光度計測定。或者得到相應的H b層析譜, 其橫坐標是時間, 縱坐標是百分比。HbA1c值以百分率來表示。現在大部分都用全自動測定儀測定。
6、等電點聚集法
是測定GH b的新技術, 它是在聚丙烯酞凝膠中加人載體兩性介質的薄板上形成一個由陽極到陰極逐漸增加的pH 梯度, 溶血液中各個組份將移動到各自的等電點的pH 位置上, 這樣就得到比一般電泳法更好的分劃效果和比較集中的色帶, 通過解析度高的微量光密度儀掃描, 可以准確地測定出各自組份的含量。由於它能夠分辨出一級結構不同的HbA、HbAc、HbF、HbS 及HbC等, 可完全避開各種物質的干擾。
7、化學發光法
採用離子捕捉免疫分析法, 應用抗原抗體反應原理, 聯以熒游標記物, 通過連接帶負電的多陰離子復合物, 吸附到帶正電的纖維表面, 經過一系列徹底清洗等步驟後, 測定熒光強度變化率, 計算濃度。採用專用試劑包和免疫發光分析儀,其檢測系統易於規范和重復, 可減少操作技術誤差, 檢測的靈敏度和特異性高, 批內、批間變異系數小, 回收率高, 准確度高, 交叉污染率小, 影響因素少。
8、酶法
原理為用特殊蛋白酶分解Hb, 3~ 5 min內果糖基氨基酸從H b分離, 果糖基氨基酸氧化酶( FAOD )從果糖基氨基酸產生H2O2, H2O2經POD與DA- 64反應, 選擇751 nm 測吸光度改變求得GHb濃度。
❷ 色譜層析的色譜理論
保留時間的理論
保留時間是樣品從進入色譜柱到流出色譜柱所需要的時間,不同的物質在不同的色譜柱上以不同的流動相洗脫會有不同的保留時間,因此保留時間是色譜分析法比較重要的參數之一。
保留時間由物質在色譜中的分配系數決定:
tR = t0(1 + KVs / Vm)
式中tR表示某物質的保留時間,t0是色譜系統的死時間,即流動相進入色譜柱到流出色譜柱的時間,這個時間由色譜柱的孔隙、流動相的流速等因素決定。K為分配系數,VsVm表示固定相和流動相的體積。這個公式又叫做色譜過程方程,是色譜學最基本的公式之一。
在薄層色譜中沒有樣品進入和流出固定相的過程,因此人們用比移值標示物質的色譜行為。比移值是一個與保留時間相對應的概念,它是樣品點在色譜過程中移動的距離與流動相前沿移動距離的比值。與保留時間一樣,比移值也由物質在色譜中的分配系數決定:
R_f=frac{V_m+KV_s}
其中Rf是比移值,K表示色譜分配系數,VsVm表示固定相和流動相的體積。
基於熱力學的塔板理論
塔板理論是色譜學的基礎理論,塔板理論將色譜柱看作一個分餾塔,待分離組分在分餾塔的塔板間移動,在每一個塔板內組分分子在固定相和流動相之間形成平衡,隨著流動相的流動,組分分子不斷從一個塔板移動到下一個塔板,並不斷形成新的平衡。一個色譜柱的塔板數越多,則其分離效果就越好。
根據塔板理論,待分離組分流出色譜柱時的濃度沿時間呈現二項式分布,當色譜柱的塔板數很高的時候,二項式分布趨於正態分布。則流出曲線上組分濃度與時間的關系可以表示為:
C_t=frac{sigmasqrt{2pi}} e^{-frac{(t-t_R)^2}{2sigma^2}}
這一方程稱作流出曲線方程,式中Ct為t時刻的組分濃度;C0為組分總濃度,即峰面積;σ為半峰寬,即正態分布的標准差;tR為組分的保留時間。
根據流出曲線方程人們定義色譜柱的理論塔板高度為單位柱長度的色譜峰方差:
H=frac{sigma^2}
理論塔板高度越低,在單位長度色譜柱中就有越高的塔板數,則分離效果就越好。決定理論塔板高度的因素有:固定相的材質、色譜柱的均勻程度、流動相的理化性質以及流動相的流速等。
塔板理論是基於熱力學近似的理論,在真實的色譜柱中並不存在一片片相互隔離的塔板,也不能完全滿足塔板理論的前提假設。如塔板理論認為物質組分能夠迅速在流動相和固定相之間建立平衡,還認為物質組分在沿色譜柱前進時沒有徑向擴散,這些都是不符合色譜柱實際情況的,因此塔板理論雖然能很好地解釋色譜峰的峰型、峰高,客觀地評價色譜柱地柱效,卻不能很好地解釋與動力學過程相關的一些現象,如色譜峰峰型的變形、理論塔板數與流動相流速的關系等。
基於動力學的Van Deemter方程
Van Deemter方程是對塔板理論的修正,用於解釋色譜峰擴張和柱效降低的原因。塔板理論從熱力學出發,引入了一些並不符合實際情況的假設,Van Deemter方程則建立了一套經驗方程來修正塔板理論的誤差。
Van Deemter方程將峰形的改變歸結為理論塔板高度的變化,理論塔板高度的變化則源於若干原因,包括渦流擴散、縱向擴散和傳質阻抗等。
由於色譜柱內固定相填充的不均勻性,同一個組分會沿著不同的路徑通過色譜柱,從而造成峰的擴張和柱效的降低。這稱作渦流擴散
縱向擴散是由濃度梯度引起的,組分集中在色譜柱的某個區域會在濃度梯度的驅動下沿著徑向發生擴散,使得峰形變寬柱效下降。
傳質阻抗本質上是由達到分配平衡的速率帶來的影響。實際體系中,組分分子在固定相和流動相之間達到平衡需要進行分子的吸附、脫附、溶解、擴散等過程,這種過程稱為傳質過程,阻礙這種過程的因素叫做傳質阻抗。在理想狀態中,色譜柱的傳質阻抗為零,則組分分子流動相和固定相之間會迅速達到平衡。在實際體系中傳質阻抗不為零,這導致色譜峰擴散,柱效下降。
在氣相色譜中Van Deemter方程形式為:
H=A+frac{mu}+Cmu
其中H為塔板數,A為渦流擴散系數,B為縱向擴散系數,C為傳質阻抗系數,μ為流動相流速。
在高效液相色譜中,由於流動相粘度遠遠高於氣相色譜,縱向擴散對峰型的影響很小,可以忽略不計算,因而Van Deemter方程的形式為:
H = A + Cμ
【基本技術和方法】
色譜法,又稱層析法。根據其分離原理,有吸附色譜、分配色譜、離子交換色譜與排阻色譜等方法。
吸附色譜是利用吸附劑對被分離物質的吸附能力不同,用溶劑或氣體洗脫,以使組分分離。常用的吸附劑有氧化鋁、硅膠、聚醯胺等有吸附活性的物質。
分配色譜是利用溶液中被分離物質在兩相中分配系數不同,以使組分分離。其中一相為液體,塗布或使之鍵合在固體載體上,稱固定相;另一相為液體或氣體,稱流動相。常用的載體有硅膠、硅藻土、硅鎂型吸附劑與纖維素粉等。
離子交換色譜是利用被分離物質在離子交換樹脂上的離子交換勢不同而使組分分離。常用的有不同強度的陽、陰離子交換樹脂,流動相一般為水或含有有機溶劑的緩沖液。
排阻色譜又稱凝膠色譜或凝膠滲透色譜,是利用被分離物質分子量大小的不同和在填料上滲透程度的不同,以使組分分離。常用的填料有分子篩、葡聚糖凝膠、微孔聚合物、微孔硅膠或玻璃珠等,可根據載體和試樣的性質,選用水或有機溶劑為流動相。
色譜法的分離方法,有柱色譜法、紙色譜法、薄層色譜法、氣相色譜法、高效液相色譜法等。色譜所用溶劑應與試樣不起化學反應,並應用純度較高的溶劑。色譜時的溫度,除氣相色譜法或另有規定外,系指在室溫下操作。
分離後各成分的檢出,應採用各單體中規定的方法。通常用柱色譜、紙色譜或薄層色譜分離有色物質時,可根據其色帶進行區分,對有些無色物質,可在245-365nm的紫外燈下檢視。紙色譜或薄層色譜也可噴顯色劑使之顯色。薄層色譜還可用加有熒光物質的薄層硅膠,採用熒光熄滅法檢視。用紙色譜進行定量測定時,可將色譜斑點部分剪下或挖取,用溶劑溶出該成分,再用分光光度法或比色法測定,也可用色譜掃描儀直接在紙或薄層板上測出,也可用色譜掃描儀直接以紙或薄層板上測出。柱色譜、氣相色譜和高效液相色譜可用接於色譜柱出口處的各種檢測器檢測。柱色譜還可分部收集流出液後用適宜方法測定。
【柱色譜法】( Column chromatography)
所用色譜管為內徑均勻、下端縮口的硬質玻璃管,下端用棉花或玻璃纖維塞住,管內裝有吸附劑。色譜柱的大小,吸附劑的品種和用量,以及洗脫時的流速,均按各單體中的規定。吸附劑的顆粒應盡可能保持大小均勻,以保證良好的分離效果,除另有規定外通常多採用直徑為0.07-0.15mm的顆粒。吸附劑的活性或吸附力對分離效果有影響,應予注意。
吸附劑的填裝 干法:將吸附劑一次加入色譜管,振動管壁使其均勻下沉,然後沿管壁緩緩加入開始層析時使用的流動相,或將色譜管下端出口加活塞,加入適量的流動相,旋開活使流動相緩緩滴出,然後自管頂緩緩加入吸附劑,使其均勻地潤濕下沉,在管內形成松緊適度的吸附層。操作過程中應保持有充分的流動相留在吸附層的上面。濕法:將吸附劑與流動相混合,攪拌以除去空氣泡,徐徐傾入色譜管中,然後再加入流動相,將附著於管壁的吸附劑洗下,使色譜柱表面平整。
俟填裝吸附劑所用流動相從色譜柱自然流下,液面將柱表面相平時,即加試樣溶液。
試樣的加入 除另有規定外,將試樣溶於層析時使用的流動相中,再沿色譜管壁緩緩加入。注意勿使吸附劑翻起。或將試樣溶於適當的溶劑中。與少量吸附劑混勻,再使溶劑揮發去盡後使呈鬆散狀;將混有試樣的吸附劑加在已制備好的色譜柱上面。如試樣在常用溶劑中不溶解,可將試樣與適量的吸附劑在乳缽中研磨混勻後加入。
洗脫 除另有規定外,通常按流動相洗脫能力大小,遞增變換流動相的品種和比例,分別分部收集流出液,至流出液中所含成分顯著減少或不再含有時,再改變流動相的品種和比例。操作過程中應保持有充分的流動相留在吸附層的上面。
【紙色譜法】(Paper chromatography)
以紙為載體,用單一溶劑或混合溶劑進行分配。亦即以紙上所含水分或其他物質為固定相,用流動相進行展開的分配色譜法。
所用濾紙應質地均勻平整,具有一定機械強度,必須不含會影響色譜效果的雜質,也不應與所用顯色劑起作用,以免影響分離和鑒別效果,必要時可作特殊處理後再用。
試樣經層析後可用比移值(Rf)表示各組成成分的位置(比移值=原點中心至色譜斑點中心的距離與原點中心至流動相前沿的距離之比),由於影響比移值的因素較多,因此一般採用在相同實驗條件下對照物質對比以確定其異同。作為單體鑒別時,試樣所顯主色譜斑點的顏色(或熒光)與供置,應與對照(標准)樣所顯主色的譜斑點或供試品-對照品(1∶1)混合所顯的主色譜斑點相同。作為質量指標(純度)檢查時,可取一定量的試樣,經展開後,按各單體的規定,檢視其所顯雜質色譜斑點的個數或呈色(或熒光)的強度。作為含量測定時,可將色譜斑點剪下洗脫後,再用適宜的方法測定,也可用色譜掃描儀測定。
1、下行法 所用色譜缸一般為圓形或長方形玻璃缸,缸上有磨口玻璃蓋,應能密閉,蓋上有孔,可插入分液漏斗,以加入流動相。在近缸頂端有一用支架架起的玻璃槽作為流動相的容器,槽內有一玻璃棒,用以支持色譜濾紙使其自然下垂,避免流動相沿濾紙與溶劑槽之間發生虹吸現象。
取適當的色譜濾紙按纖維長絲方向切成適當大小的紙條,離紙條上端適當的距離(使色譜紙上端能足夠浸入溶劑槽內的流動相中,並使點樣基線能在溶劑槽側的玻璃支持棒下數厘米處)用鉛筆劃一點樣基線,必要時色譜紙下端可切成鋸齒形,以便於流動相滴下。
將試樣溶於適當的溶劑中,製成一定濃度的溶劑。用微量吸管或微量注射器吸取溶劑,點於點樣基線上,溶液宜分次點加,每次點加後,俟其自然乾燥、低溫烘乾或經溫熱氣流吹乾。樣點直徑一般不超過0.5cm,樣點通常應為圓形。
將點樣後的色譜濾紙上端放在溶劑槽內,並用玻璃棒壓住,使色譜紙通過槽側玻璃支持棒自然下垂,點樣基線在支持棒下數厘米處。色譜開始前,色譜缸內用各單體中所規定的溶劑的蒸氣飽和,一般可在色譜缸底部放一裝有流動相的平皿,或將浸有流動相的濾紙條附著在色譜缸的內壁上,放置一定時間,俟溶劑揮發使缸內充滿飽和蒸氣。然後添加流動相,使浸沒溶劑槽內濾紙,流動相即經毛細管作用沿濾紙移動進行展開至規定距離後,取出濾紙,標明流動相前沿位置,俟流動相揮散後按規定方法檢出色譜斑點。
2、上行法 色譜缸基本和下行法相似,唯除去溶劑槽和支架,並在色譜缸蓋上的孔中加塞,塞中插入玻璃懸鉤,以便將點樣後的色譜濾紙掛在鉤上。色譜濾紙一般長約25cm,寬度則視需要而定。必要時可將色譜濾紙捲成筒形。點樣基線距底邊約2.5cm,點樣方法與下行法相同。色譜缸內加入適量流動相,放置,俟流動相蒸氣飽和後,再下降懸鉤,使色譜濾紙浸入流動相約0.5cm,流動相即經毛細管作用沿色譜濾紙上升,除另有規定外,一般展開至15cm後,取出晾乾,按規定方法檢視。
色譜可以向一個方向進行,即單向色譜;也可進行雙向色譜,即先向一個方向展開,取出,俟流動相完全揮發後,將濾紙轉90°,再用原流動相或另一種流動相進行展。亦可多次展開,連續展或徑向色譜等。
【薄層色譜法】(Thin-layer chromatography)
按各單體所規定的載體,放入適當容器,加入適量水以配成懸浮液,在厚度均勻一致的50×200mm或200×200mm平滑玻璃板上將此懸浮液均布成0.25mm的厚度,風干後一般在110℃下乾燥0.5-1h(或按單體規定)。
以離薄層板一端約25mm的位置作為點樣基線,用微量吸管按規定量吸取試樣液和對照(標准)液,點於基線上,點與點之間的距離在10mm以上,液點的直徑約3mm,風干後,基線一端向下,將薄層板放入展開溶劑,溶劑層深10mm,並預經開展溶劑的蒸汽飽和。在展開溶劑從基線上升至規定距離(一般為15cm)後,取出薄層板,風干,然後按規定的方法,對斑點的位置和顏色進行檢查。
【氣相色譜法】(Gas chromatography)
氣相色譜法是在以適當的固定相做成的柱管內,利用氣體(載氣)作為移動相,使試樣(氣體、液體或固體)在氣體狀態下展開,在色譜柱內分離後,各種成分先後進入檢測器,用記錄儀記錄色譜譜圖。
在對裝置進行調試後,按各單體的規定條件調整柱管、檢測器、溫度和載氣流量。進樣口溫度一般應高於柱溫30-50度。如用火焰電離檢測器,其溫度應等於或高於柱溫,但不得低於100℃,以免水汽凝結。色譜上分析成分的峰的位置,以滯留時間(從注入試樣液到出現成分最高峰的時間)和滯留容量(滯留時間×載氣流量)來表示。這些在一定條件下,就能反應出物質所具有特殊值,並據此確定試樣成分。
根據色譜上出現的物質成分的峰面積或峰高進行定量。峰面積可用面積測定儀測定,按半寬度法求得(即以峰1/2處的峰寬×峰高求得)。峰高的測定方法是從峰高的頂點向記錄紙橫座標准垂線,找出此垂線與峰的兩下端聯結線的交點,即以此交點至峰頂點的距離長度為峰高。
定量方法可分以下三種:
1、內標准法 取標准被測成分,按依次增加或減少的已知階段量,各自分別加入各單體所規定的定量內標准物質中,調制標准溶液。分別取此標准液的一定量注入色譜柱,根據色譜圖取標准被測成分的峰面積和峰高和內標物質的峰面積和峰高的比例為縱坐標,取標准被測成分量和內標物質量之比,或標准被測成分量為橫坐標,製成標准曲線。
然後按單體中所規定的方法調制試樣液。在調制試樣液時,預先加入與調制標准液時等量的內標物質。然後按製作標准曲線時的同樣條件下得出的色譜,求出被測成分的峰面積或峰高和內標物質的峰積或峰高之比,再按標准曲線求出被測成分的含量。
所用的內標物質,應採用其峰面積的位置與被測成分的峰的位置盡可能接近並與被測成分以外的峰位置完全分離的穩定的物質。
2、絕對標准曲線法 取標准被測成分 按依次增加或減少階段法,各自調製成標准液,注入一定量後,按色譜圖取標准被測成分的峰面積或峰高為縱坐標,而以標准被測成分的含量為橫坐標,製成標准曲線。然後按單體中所規定的方法制備試樣液。取試樣液按制標准曲線時相同的條件作出色譜,求出被測成分的峰面積和峰高,再按標准曲線求出被測成分的含量。
3、峰面積百分率法 以色譜中所得各種成分的峰面積的總和為100,按各成分的峰面積總和之比,求出各成分的組成比率。
【氣液色譜法】(gas-liquid chromatography)
這時所指的氣液色譜法,主要用於各種香料物質的分析,基本條件和參數主要依照美國精油協會(EOA)於1979年所建議的方法。其基本原理、操作、標准狀態等均與上述氣相色譜法相同。
1、柱 用304號合金所制不銹鋼管,長3m,內徑2.16-2.57mm,外徑3.18mm。底物:極性柱為聚乙二醇20M(Carbowax 20M),分子量約2萬;非極性柱為氣相色譜級甲基硅氧烷(SE-30),或二甲基硅氧烷(OV-1或OV-101)。底物濃度:重量的105。固體載體:10目或20目熔融煅燒過的硅藻土,經硅烷化和酸洗後,其自由傾落密度為0.2g/cm3,最小120目,最大80目。裝填密度每cm3應大於0.24g。
2、載氣 氦, 氮。最低流量為每分鍾25-50ml。
【分析狀態】
極性柱:起始溫度,最低75度;最終溫度,最高225度。升溫速度,每分鍾2-8度。
非極性柱:起始溫度,最低75度;最終溫度,不超過275度;升溫速度,每分鍾2-8度。
進樣溫度:225-250度。試樣量:0.1-1ul。
檢測器:用熱導池。檢測器的操作條件應維持恆定。
❸ 按層析原理分類除了凝膠層析之外還有哪幾類層析
免疫親和層析
吸附物質與特異性配基配對到色譜基質上,且與配基間具有可逆的相互作用。
離子交換層析
吸附物質通過表面凈電荷的差異,分別與帶正負電荷的層析色譜結合。
疏水相互作用層析
根據吸附物質表面疏水性的不同,利用與疏水層析介質疏表面可逆的相互作用來實現分離。
凝膠過濾層析
根據分子通過凝膠填料大小不同對其進行分離。
反向層析
類似於疏水相互作用層析
❹ 吸附薄層層析與分配,離子交換薄層層分析的區別
離子交換層析(Ion Exchange Chromatography簡稱為IEC)是以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別而進行分離的一種層析方法。1848年,Thompson等人在研究土壤鹼性物質交換過程中發現離子交換現象。本世紀40年代,出現了具有穩定交換特性的聚苯乙烯離子交換樹脂。50年代,離子交換層析進入生物化學領域,應用於氨基酸的分析。目前離子交換層析仍是生物化學領域中常用的一種層析方法,廣泛的應用於各種生化物質如氨基酸、蛋白、糖類、核苷酸等的分離純化。常用的離子交換劑有:離子交換纖維素、離子交換葡聚糖和離子交換樹脂 。
離子交換層析中,基質是由帶有電荷的樹脂或纖維素組成。帶有正電荷的稱之陰離子交換樹脂;而帶有負電荷的稱之陽離子樹脂。離子交換層析同樣可以用於蛋白質的分離純化。由於蛋白質也有等電點,當蛋白質處於不同的pH條件下,其帶電狀況也不同。陰離子交換基質結合帶有負電荷的蛋白質,所以這類蛋白質被留在柱子上,然後通過提高洗脫液中的鹽濃度等措施,將
吸附在柱子上的蛋白質洗脫下來。結合較弱的蛋白質首先被洗脫下來。反之陽離子交換基質結合帶有正電荷的蛋白質,結合的蛋白可以通過逐步增加洗脫液中的鹽濃度或是提高洗脫液的pH值洗脫下來。
⒈離子交換劑預處理和裝柱對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。洗滌好的纖維素使用前必須平衡至所需的pH和離子強度。已平衡的交換劑在裝柱前還要減壓除氣泡。為了避免顆粒大小不等的交換劑在自然沉降時分層,要適當加壓裝柱,同時使柱床壓緊,減少死體積,有利於解析度的提高。柱子裝好後再用起始緩沖液淋洗,直至達到充分平衡方可使用。
⒉加樣與洗脫加樣:層析所用的樣品應與起始緩沖液有相同的pH和離子強度,所選定的pH值應落在交換劑與被結合物有相反電荷的范圍,同時要注意離子強度應低,可用透析、凝膠過濾或稀釋法達此目的。樣品中的不溶物應在透析後或凝膠過濾前,以離心法除去。為了達到滿意的分離效果,上樣量要適當,不要超過柱的負荷能力。柱的負荷能力可用交換容量來推算,通常上樣量為交換劑交換總量的1%-5%。
洗脫:已結合樣品的離子交換前,可通過改變溶液的pH或改變離子強度的方法將結合物洗脫,也可同時改變pH與離子強度。為了使復雜的組份分離完全,往往需要逐步改變pH或離子強度,其中最簡單的方法是階段洗脫法,即分次將不同pH與離子強度的溶液加入,使不同成分逐步洗脫。由於這種洗脫pH與離子強度的變化大,使許多洗脫體積相近的成分同時洗脫,純度較差,不適宜精細的分離。最好的洗脫方法是連續梯度洗脫,洗脫裝置見圖16-6.兩個容器放於同一水平上,第一個容器盛有一定pH的緩沖液,第二個容器含有高鹽濃度或不同pH的緩沖液,兩容器連通,第一個容器與柱相連,當溶液由第一容器流入柱時,第二容器中的溶液就會自動來補充,經攪拌與第一容器的溶液相混合,這樣流入柱中的緩沖液的洗脫能力即成梯度變化。第一容器中任何時間的濃度都可用下式進行計算:
C=C2-(C2-C1)(1-V)A2/A1
式中A1、A2分別代表兩容器的截面積:C1、C2分別表示容器中溶液的濃度;V為流出體積對總體積之比。當A1=A2時為線性梯度,當A1>A2時為凹形梯度,A1>A2時為凸形梯度。
洗脫時應滿足以下要求:①洗脫液體積應足夠大,一般要幾十倍於床體積,從而使分離的各峰不致於太擁擠。②梯度的上限要足夠高,使緊密吸附的物質能被洗脫下來。③梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。
⒊洗脫餾份的分析按一定體積(5-10ml/管)收集的洗脫液可逐管進行測定,得到層析圖譜。依實驗目的的不同,可採用適宜的檢測方法(生物活性測定、免疫學測定等)確定圖譜中目的物的位置,並回收目的物。
⒋離子交換劑的再生與保存離子交換劑可在柱上再生。如離子交換纖維素可用2mol/:NaCl淋洗柱,若有強吸附物則可用0.1mol/LNaOH洗柱;若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌,其順序為:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存離子交換劑時要加防腐劑。對陰離子交換劑宜用0.002%氯已定(洗必泰),陽離子交換劑可用乙基硫柳汞(0.005%)。有些產品建立用0.02%疊氮鈉。
⒌離子交換層析的應用離子交換層析技術已廣泛用於各學科領域。在生物化學及臨床生化檢驗中主要用於分離氨基酸、多肽及蛋白質,也可用於分離核酸、核苷酸及其它帶電荷的生物分子。
概念
層析是「色層分析」的簡稱。利用各組分物理性質的不同,將多組分混合物進行分離及測定的方法。有吸附層析、分配層析兩種。一般用於有機化合物、金屬離子、氨基酸等的分析。
層析(chromatography)利用物質在固定相與流動相之間不同的分配比例,達到分離目的的技術。層析對生物大分子如蛋白質和核酸等復雜的有機物的混合物的分離分析有極高的分辨力。
[編輯本段]語源學
chrome意為「色彩」,graphy源自希臘文,意為「寫」。色譜為層析的同義語,都是從英語chromatography譯來的。
層析(色譜) chromatograpby
在把微細分散的固體或是附著於固體表面的液體作為固定相,把液體(與上述液體不相混合的)或氣體作為移動相的系統中,使試料混合物中的各成分邊保持向兩相分布的平衡狀態邊移動,利用各成分對固定相親和力不同所引起的移動速度差,將它們彼此分離開的定性與定量分析方法,稱為層析,亦稱色譜法。根據移動相種類的不同,分為液體層析、氣體層析二種。用作固定相的有矽膠、活性炭、氧化鋁、離子交換樹脂、離子交換纖維等,或是在硅藻土和纖維素那樣的無活性的載體上附著適當的液體,也可使用其他物質。將作為固定相的微細粉末狀物質裝入細長形圓筒中進行的層析稱為柱層析(column chromatogra-phy),在玻璃板上塗上一層薄而均的物質作為固定相的稱為薄層層析(thin-layer chromatography),後者可與用濾紙作為固定相的紙上層析進行同樣的分析,即在固定相的一端,點上微量試料,在密閉容器中,使移動相(液體)從此端滲入,移動接近另一端。通過這種展開操作,各成分呈斑點狀移動到各自的位置上,再根據Rf值的測定進行鑒定。當斑點不易為肉眼觀察時,可利用適當的顯色劑,或通過紫外燈下產生熒光的方法進行觀察。也可採用在第一種移動相展開後再用另一移動相進行展開(這時的展開方向應與原方向垂直),使各成分分離完全的雙相層析(two-dimensional chromatography)。分離後,將斑點位置的固定相切取下來,把其中含有來自試料的物質提取進行定量分析。但為制備與定量,柱層析則更為適宜。在柱層析中,移動相從加入試料的一端展開到達另一端後,繼續展開使各成分和移動相一起向柱外分別溶出,這就是廣泛使用的所謂洗提層析(elution chromatography)。層析根據固定相與溶質(試料)間親和力的差異分為吸附型、分配型、離子交換型(離子交換層析)等三種類型。但這並不是很嚴格的,有時常見到其中間類型。此外,近來也應用親和層析,即將與基質類似的化合物(通常為共價鍵)結合到固定相上,再利用其特異的親和性沉澱與其對應的特定的酶或蛋白質。
[編輯本段]類別
◆按層析的機理劃分:
吸附層析、分配層析、離子交換層析、凝膠過濾層析、親和層析等。
吸附層析:利用吸附劑表面對不同組分吸附性能的差異,達到分離鑒定的目的。
分配層析:利用不同組分在流動相和固定相之間的分配系數不同,使之分離。
離子交換層析:利用不同組分對離子交換劑親和力的不同。
凝膠層析:利用某些凝膠對於不同分子大小的組分阻滯作用的不同。
◆按流動相與固定相的不同劃分:
氣相層析、液相層析。這兩大類層析是以流動相不同來劃分的。如同時區分流動相和固定相,劃分為:氣固層析、氣液層析、液固層析和液液層析等。
◆按操作形式劃分:
柱層析、紙層析、薄層層析、高效液相層析等。
柱層析:將固定相裝於柱內,使樣品沿一個方向移動而達到分離。
紙層析:用濾紙做液體的載體,點樣後,用流動相展開,以達到分離鑒定的目的。
薄層層析:將適當粒度的吸附劑鋪成薄層,以紙層析類似的方法進行物質的分離和鑒定。
以上劃分無嚴格界限,有些名稱相互交叉,如親和層析應屬於一種特殊的吸附層析,紙層析是一種分配層析,柱層析可做各種層析。
[編輯本段]基本原理
層析須在兩相系統間進行。一相是固定相,需支持物,是固體或液體。另一相為流動相,是液體或氣體。當流動相流經固定相時,被分離物質在兩相間的分配,由平衡狀態到失去平衡到又恢復平衡,即不斷經歷吸附和解吸的過程。隨著流動相不斷向前流動,被分離物質間出現向前移動的速率差異,由開始的單一區帶逐漸分離出許多區帶,這個過程叫展層。
系數K是物質在兩相中的濃度比。K值大,則在固定相中吸附牢,K值小吸附差。各物質間的K值差別大,則易被分離。不同類型層析的K值含義不同,可視為吸附平衡常數,分配常數或離子交換常數等。
研究層析現象而發展的塔板理論,與有機化學實驗中的分餾法原理有些相似。被分餾的有機溶劑在分餾柱內的填充物上形成許多熱交換層,從而把低沸點溶劑先分餾出來,達到純化的目的。在層析時用理論塔板數n來衡量層析效能。
tR為物質在層析柱上的保留時間,W為洗脫下來的物質峰形的寬度。n值愈大表示層析柱的效能愈高。如用理論塔板高度H表示,則包含了層析柱長度的因子。
式中L為層析柱的柱長。H值越大,則柱效越低。
此外影響層析分離效果的還有渦流擴散、縱向擴散和傳質阻抗等因素。因此選擇層析固定相支持物的粒度、均勻度等物理性能,流動相的層析系統和溫度等都是做好層析的關鍵。
[編輯本段]幾種常用的層析
◆吸附層析
吸附劑的吸附力強弱,是由能否有效地接受或供給電子,或提供和接受活潑氫來決定。被吸附物的化學結構如與吸附劑有相似的電子特性,吸附就更牢固。常用吸附劑的吸附力的強弱順序為:活性炭、氧化鋁、硅膠、氧化鎂、碳酸鈣、磷酸鈣、石膏、纖維素、澱粉和糖等。以活性炭的吸附力最強。吸附劑在使用前須先用加熱脫水等方法活化。大多數吸附劑遇水即鈍化,因此吸附層析大多用於能溶於有機溶劑的有機化合物的分離,較少用於無機化合物。洗脫溶劑的解析能力的強弱順序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。為了能得到較好的分離效果,常用兩種或數種不同強度的溶劑按一定比例混合,得到合適洗脫能力的溶劑系統,以獲得最佳分離效果。
◆分配層析
在支持物上形成部分互溶的兩相系統。一般是水相和有機溶劑相。常用支持物是硅膠、纖維素和澱粉等,這些親水物質能儲留相當量的水。被分離物質在兩相中都能溶解,但分配比率不同,展層時就會形成以不同速度向前移動的區帶。
◆離子交換層析
支持物是人工交聯的帶有能解離基團的有機高分子,如離子交換樹脂、離子交換纖維素、離子交換凝膠等。帶陽離子基團的,如磺酸基(—SO3H)、羧甲基(—CH2COOH)和磷酸基等為陽離子交換劑。帶陰離子基團的,如DEAE—(二乙基胺乙基)和QAE—(四級胺乙基)等為陰離子交換劑。離子交換層析只適用於能在水中解離的化合物,包括有機物和無機物。對於蛋白質、核酸、氨基酸及核苷酸的分離分析有極好的分辨力。離子交換基團在水溶液中解離後,能吸引水中被分離物的離子,各種物質在離子交換劑上的離子濃度與周圍溶液的離子濃度保持平衡狀態,各種離子有不同的交換常數,K值愈高,被吸附愈牢。洗脫時,增加溶液的離子強度,如改變pH,增加鹽濃度,離子被取代而解吸下來。洗脫過程中,按K值不同,分成不同的區帶。
◆凝膠過濾層析
支持物是人工合成的交聯高聚物,在水中膨脹後成為凝膠。凝膠內為內水層,凝膠周圍的水為外水層。控制交聯度以形成不同孔徑的網狀結構。交聯度小的孔徑大,交聯度大的孔徑小。凝膠只允許被分離物質中小於孔徑的分子進入,大於孔徑的分子被排斥在外水層,最先被洗脫下來。而進入孔徑的分子也按分子量大小大致分離成不同的區帶。選擇不同規格的凝膠,可把一個混合物按分子量的差異分成不同的組分。這種方法曾被稱為分子篩。目前常用的凝膠商品有:葡聚糖凝膠(sephadex)、聚丙烯醯胺凝膠(bio-gel)、瓊脂糖凝膠(sepharose)和聚苯乙烯凝膠(styragel)等。
◆親和層析
在一對有專一的相互作用的物質中,把其中之一聯結在支持物上,用於純化相對的另一物質。常見的親和對如:酶和抑制劑,抗原和抗體,激素和受體等。支持物為瓊脂糖或纖維素等。
◆氣相層析
屬於分配層析或吸附層析,僅適用於分析分離揮發性和低揮發性物質。固定相是在惰性支持物(如磨細的耐火磚)上覆蓋一層高沸點液體,如硅油、高沸點石蠟和油脂、環氧類聚合物。外塗層約為支持物重量的20%。分析時操作溫度范圍,一般從室溫到200℃。特殊的層析柱能達到500℃。流動相常用氦、氬或氮為展層氣體。氣相層析分離的區帶十分清晰,是由於揮發性物質在兩相間能很快達到平衡,所需分析時間大為縮短,一般為數分鍾至10餘分鍾。檢測記錄系統繪出的各峰是測定流出氣體電阻變化的結果,因而測定樣品量可到微克和毫微克水平。具有快速、靈敏和微量的優點。氣相層析也能用於分離制備樣品,但需增加將流出氣體通過冷凍將分離物回收的裝置。
◆紙層析
以濾紙為支持物的分配層析。組成濾紙的纖維素是親水物質,能形成水相和展層溶劑的兩相系統,被分離物質在兩相中的分配保持平衡關系。紙層析用於分析簡單的混合物時可做單向層析。對於復雜的混合物,可做雙向層析。1944年A.J.P.馬丁第一次用紙層析分析氨基酸,得到很好的分離效果,開創了近代層析的發展和應用的新局面。70年代以後,紙層析已逐漸為其他分辨力更高、速度更快和更微量化的新方法,如離子交換層析、薄層層析、高效液相層析等所代替。
◆薄層層析
在玻璃片、金屬箔或塑料片上鋪上一層約1~2毫米的支持物,如纖維素、硅膠、離子交換劑、氧化鋁或聚醯胺等,根據需要做不同類型的層析。聚醯胺薄膜是一種特異的薄層,將尼龍溶解於濃甲酸中,塗在滌綸片基上,當甲酸揮發後,在滌綸片基上形成一層多孔的薄膜,其分辨力超過了用尼龍粉鋪成的薄層。薄層層析較紙層析優越在於分辨高,展層時間短。例如用紙層析做氨基酸分析,往往需要兩天時間,而且對層析條件要求嚴格,不易得到滿意的分離效果。如用薄層層析做,一般約需半小時,分離效果更好。薄層層析一般用於定性分析。也能用於定量分析和制備樣品。
◆高效液相層析(又名高壓液相色譜)
70年代新發展的層析法。其特點是:用高壓輸液泵,壓強最高可達5000psi(相當於34個標准大氣壓)。用直徑約3~10微米的超細支持物裝填均勻的不銹鋼柱。常用的支持物是在玻璃小珠上塗一層1~2微米的二氧化硅,經硫醯氯反應生成Si—Cl,進一步連接疏水的烷基,如Si—C18H37,或陽離子交換基團—Si(CH2)n—C6H4SO3H,或陰離子交換基團—Si(CH2)nNH2。這種支持物能承受很高的壓力,化學性能穩定。用不同類型支持物的HPLC,可做吸附層析、離子交換層析和凝膠過濾層析。其分析微量化可達10-10克水平。但用於制備,可以純化上克的樣品。展層時間短,一般需幾分鍾到10餘分鍾。其分析速度、精確度可與氣相層析媲美。HPLC適於分析分離不揮發和極性物質。而氣相層析只適用於揮發性物質,兩者互為補充,都是目前最為理想的層析法。HPLC配有程序控制洗脫溶劑的梯度混合儀,數據處理的積分儀和記錄儀等電子系統,成為一種先進的分析儀器,在生物化學、化學、醫葯學和環境科學的研究中發揮了重要作用。
◆反相層析
在吸附層析中,高極性物質在層析柱上吸附較牢,洗脫時發生拖尾現象和保留時間長的問題。如果在支持物上塗上一層高碳原子的疏水性強的烷烴類,洗脫液用極性強的溶劑,如甲醇和水的混合物。則被分離樣品中的極性強的物質不被吸附,最先洗下來,得到較好的分離效果。這種層析法與普通的吸附層析法相反,故稱為反相層析。目前用HPLC做反相層析常用的ODS柱,即在支持物的表面上連接了C18H37Si—基團。
◆同系層析
在核酸分析中,將樣品經核酸酶部分裂解成不同長度的核苷酸片段,用同位素標記後,在DEAE纖維素薄層上分離,用含有未標記的相同的核苷酸片段作展層溶劑,這樣,未標記的核苷酸把標記過的核苷酸推進,使按分子量大小不同把標記核苷酸片段,按由小到大的次序排列,達到分離的目的。於是把這種層析法稱為同系層析。同系層析和電泳相結合曾用於寡核苷酸的順序分析。
紙層析是層析法的一種,要了解紙層法還得從層析法開始.層析法又稱色層分析法或色譜法(Chromatography),是一種基於被分離物質的物理、化學及生物學特性的不同,使它們在某種基質中移動速度不同而進行分離和分析的方法。例如:我們利用物質在溶解度、吸附能力、立體化學特性及分子的大小、帶電情況及離子交換、親和力的大小及特異的生物學反應等方面的差異,使其在流動相與固定相之間的分配系數(或稱分配常數)不同,達到彼此分離的目的。
層析法的最大特點是分離效率高,它能分離各種性質極相類似的物質。而且它既可以用於少量物質的分析鑒定,又可用於大量物質的分離純化制備。因此,作為一種重要的分析分離手段與方法,它廣泛地應用於科學研究與工業生產上。現在,它在石油、化工、醫葯衛生、生物科學、環境科學、農業科學等領域都發揮著十分重要的作用。
層析根據固定相基質的形式分類,層析可以分為紙層析、薄層層析和柱層析。其中紙層析是指以濾紙作為基質的層析。
❺ 什麼是層析 有什麼要注意的
在分離分析特別是蛋白質分離分析中,層析是相當重要、且相當常見的一種技術,其原理較為復雜,對人員的要求相對較高,這里只能做一個相對簡單的介紹。
一、 吸附層析
1、 吸附柱層析
吸附柱層析是以固體吸附劑為固定相,以有機溶劑或緩沖液為流動相構成柱的一種層析方法。
2、 薄層層析薄層層析是以塗布於玻板或滌綸片等載體上的基質為固定相,以液體為流動相的一種層析方法。這種層析方法是把吸附劑等物質塗布於載體上形成薄層,然後按紙層析操作進行展層。
3、 聚醯胺薄膜層析聚醯胺對極性物質的吸附作用是由於它能和被分離物之間形成氫鍵。這種氫鍵的強弱就決定了被分離物與聚醯胺薄膜之間吸附能力的大小。層析時,展層劑與被分離物在聚醯胺膜表面競爭形成氫鍵。因此選擇適當的展層劑使分離在聚醯胺膜表面發生吸附、解吸附、再吸附、再解吸附的連續過程,就能導致分離物質達到分離目的。
二、 離子交換層析離子交換層析是在以離子交換劑為固定相,液體為流動相的系統中進行的。離子交換劑是由基質、電荷基團和反離子構成的。離子交換劑與水溶液中離子或離子化合物的反應主要以離子交換方式進行,或藉助離子交換劑上電荷基團對溶液中離子或離子化合物的吸附作用進行。`
三、 凝膠過濾凝膠過濾又叫分子篩層析,其原因是凝膠具有網狀結構,小分子物質能進入其內部,而大分子物質卻被排除在外部。當一混合溶液通過凝膠過濾層析柱時,溶液中的物質就按不同分子量篩分開了。
四、 親和層析 親和層析的原理與眾所周知的抗原一抗體、激素一受體和酶一底物等特異性反應的機理相類似,每對反應物之間都有一定的親和力。正如在酶與底物的反應中,特異的廢物(S')才能和一定的酶(E)結合,產生復合物(E-S')一樣。在親和層析中是特異的配體才能和一定的生命大分子之間具有親和力,並產生復合物。而親和層析與酶一底物反應不同的是,前者進行反應時,配體(類似底物)是固相存在;後者進行反應時,底物呈液相存在。實質上親和層析是把具有識別能力的配體L(對酶的配體可以是類似底物、抑制劑或輔基等)以共價鍵的方式固化到含有活化基團的基質M(如活化瓊脂糖等)上,製成親和吸附劑M-L,或者叫做固相載體。而固化後的配體仍保持束縛特異物質的能力。因此,當把圍相載體裝人小層析柱(幾毫升到幾十毫升床體積)後,讓欲分離的樣品液通過該柱。這時樣品中對配體有親和力的物質S就可藉助靜電引力、范德瓦爾力,以及結構互補效應等作用吸附到固相載體上,而無親和力或非特異吸附的物質則被起始緩沖液洗滌出來,並形成了第一個層析峰。然後,恰當地改變起始緩沖 液的PH值、或增加離子強度、或加人抑③劑等因子,即可把物質S從固相載體上解離下來,並形成了第M個層析峰(見圖6-2)。顯然,通過這一操作程序就可把有效成分與雜質滿意地分離開。如果樣品液中存在兩個以上的物質與固相載體具有親和力(其大小有差異)時,採用選擇性緩沖液進行洗脫,也可以將它們分離開。用過的固相載體經再生處理後,可以重復使用。
上面介紹的親和層析法亦稱特異性配體親和層析法。除此之外,還有一種親和層析法叫通用性配體親和層析法。這兩種親和層析法相比,前者的配體一般為復雜的生命大分子物質(如抗體、受體和酶的類似底物等),它具有較強的吸附選擇性和較大的結合力。而後者的配體則一般為簡單的小分子物質(如金屬、染料,以及氨基酸等),它成本低廉、具有較高的吸附容量,通過改善吸附和脫附條件可提高層析的解析度。
五、 聚焦層析聚焦層析也是一種柱層析。因此,它和另外的層析一樣,照例具有流動相,其流動相為多緩沖劑,固定相為多緩沖交換劑。 聚焦層析原理可以從PH梯度溶液的形成、蛋白質的行為和聚焦效應三方面來闡述。
1、PH梯度溶液的形成在離子交換層析中,PH梯度溶液的形成是靠梯度混合儀實現的。例如,當使用陰離子 劑進行層析時,制備PH由高到低呈線性變化的梯度溶液的方法是,在梯度儀的混合室(這層析柱者)中裝高PH溶液,而在另一室裝低PH極限溶液,然後打開層析柱的下端出口,讓洗脫液連續不斷地流過柱體。這時從柱的上部到下部溶液的PH值是由高到低變化的。而在聚焦層析中,當洗脫液流進多緩沖交換劑時,由於交換劑帶具有緩沖能力的電荷基團,故PH梯度溶液可以自動形成。例如,當柱中裝陰離子交換劑PBE94(作固定相)時,先用起始緩沖液(配方見表了一2)平衡到PHg,再用含PH6的多緩沖劑物質(作流動相)的淋洗液通過柱體,這時多緩沖劑中酸性最強的組分與鹼性陰離子交換對結合發生中和作用。隨著淋洗液的不斷加人,住內每點的PH值從高到低逐漸下降。照此處理J段時間,從層析柱頂部到底部就形成了PH6~9的梯度。聚焦層析柱中的PH梯度溶液是在淋洗過程中自動形成的,但是隨著淋洗的進行,PH梯度會逐漸向下遷移,從底部流出液的PH卻由9逐漸降至6,並最後恆定於此值,這時層析柱的PH梯度也就消失了。
2.蛋白質的行為蛋白質所帶電荷取決於它的等電點(PI)和層析柱中的PH值。當柱中的PH低於蛋白質的PI時,蛋白質帶正電荷,且不與陰離於交換劑結合。而隨著洗脫劑向前移動,固定相中的PH值是隨著淋洗時間延長而變化的。當蛋白質移動至環境PH高於其PI時,蛋白質由帶正電行變為帶負電荷,並與陰離子交換劑結合。由於洗脫劑的通過,蛋白質周圍的環境PH 再次低於PI時,它又帶正電荷,並從交換劑解吸下來。隨著洗脫液向柱底的遷移,上述過程將反復進行,於是各種蛋白質就在各自的等電點被洗下來,從而達到了分離的目的。
不同蛋白質具有不同的等電點,它們在被離子交換劑結合以前,移動之距離是不同的,洗脫出來的先後次序是按等電點排列的。
❻ 離子交換層析的具體操作
對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。
洗滌好的纖維素使用前必須平衡至所需的pH和離子強度。已平衡的交換劑在裝柱前還要減壓除氣泡。為了避免顆粒大小不等的交換劑在自然沉降時分層,要適當加壓裝柱,同時使柱床壓緊,減少死體積,有利於解析度的提高。
柱子裝好後再用起始緩沖液淋洗,直至達到充分平衡方可使用。 加樣:
層析所用的樣品應與起始緩沖液有相同的pH和離子強度,所選定的pH值應落在交換劑與被結合物有相反電荷的范圍,同時要注意離子強度應低,可用透析、凝膠過濾或稀釋法達此目的。樣品中的不溶物應在透析後或凝膠過濾前,以離心法除去。為了達到滿意的分離效果,上樣量要適當,不要超過柱的負荷能力。柱的負荷能力可用交換容量來推算,通常上樣量為交換劑交換總量的1%-5%。 已結合樣品的離子交換前,可通過改變溶液的pH或改變離子強度的方法將結合物洗脫,也可同時改變pH與離子強度。為了使復雜的組份分離完全,往往需要逐步改變pH或離子強度,其中最簡單的方法是階段洗脫法,即分次將不同pH與離子強度的溶液加入,使不同成分逐步洗脫。由於這種洗脫pH與離子強度的變化大,使許多洗脫體積相近的成分同時洗脫,純度較差,不適宜精細的分離。最好的洗脫方法是連續梯度洗脫,洗脫裝置見圖16-6.兩個容器放於同一水平上,第一個容器盛有一定pH的緩沖液,第二個容器含有高鹽濃度或不同pH的緩沖液,兩容器連通,第一個容器與柱相連,當溶液由第一容器流入柱時,第二容器中的溶液就會自動來補充,經攪拌與第一容器的溶液相混合,這樣流入柱中的緩沖液的洗脫能力即成梯度變化。第一容器中任何時間的濃度都可用下式進行計算:
C=C2-(C2-C1)(1-V)A2/A1
式中A1、A2分別代表兩容器的截面積:C1、C2分別表示容器中溶液的濃度;V為流出體積對總體積之比。當A1=A2時為線性梯度,當A1>A2時為凹形梯度,A1>A2時為凸形梯度。
洗脫時應滿足以下要求:
①洗脫液體積應足夠大,一般要幾十倍於床體積,從而使分離的各峰不至於太擁擠。
②梯度的上限要足夠高,使緊密吸附的物質能被洗脫下來。
③梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。
洗脫餾份的分析按一定體積(5-10ml/管)收集的洗脫液可逐管進行測定,得到層析圖譜。依實驗目的的不同,可採用適宜的檢測方法(生物活性測定、免疫學測定等)確定圖譜中目的物的位置,並回收目的物。
離子交換劑的再生與保存離子交換劑可在柱上再生。如離子交換纖維素可用2mol/:NaCl淋洗柱,若有強吸附物則可用0.1mol/LNaOH洗柱;若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌,其順序為:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存離子交換劑時要加防腐劑。對陰離子交換劑宜用0.002%氯已定(洗必泰),陽離子交換劑可用乙基硫柳汞(0.005%)。有些產品建議用0.02%疊氮鈉。