A. 離子交換柱交換過程化學方程式
強酸型陽離子交換樹脂:R-SO3H (有許多SO3H基團)
強鹼型陰離子交換樹脂:[R4N]OH (有許多內OH基團)
R-SO3H + M(+) = RSO3M + H(+) 將所有陽離容子吸附到樹脂上,釋放出H(+);
[R4N]OH + X(-) = [R4N]X + OH(-) 將所有陰離子吸附到樹脂上,釋放出OH(-);
H(+) + OH(-) = H2O 陽離子交換產生的H(+)與陰離子交換產生的OH(-)結合成水。
B. 離子交換的原理
離子交換是應用離子交換劑(最常見的是離子握旅交換樹脂)分離含電解質的液體混合物的過程。離子交換過程是液固兩相間的傳質(包括外擴散和內擴散)與化學反應(離子交換反應)過程,稿帆通常離子交換反應進行得很快,過程速率主要由傳質速率決定。
水溶液中的一些陽離子進入反離子層,而原來在反離子層中的陽離子進入水溶液,這種發生在反離子層與正常濃度處水溶液之間的同性離子交換被稱為離子交換作用。離子交換主要發生在擴散層與正常水溶液之間,由於黏土顆粒表面通常帶的是負電荷,故離子交換以陽離子交換為主,故又稱為陽離子交換。離子交換嚴格服從當量定律,即進入反離子層的陽離子與被置換出反離子層的陽離子的當量相等。
C. 離子交換分離法包括哪幾個過程
1、樹脂的選擇與處理;裝柱過程;交換過程;洗脫過程。
2、離子交換分離法是利用交換劑與溶液中的離子發生交換進行分離的方法,是一種固液分離方法。廣泛應用於水處理、醫葯、冶金、化工等領域。
3、離子交換分離法是利用交換劑與溶液中的離子發生交換進行分離的方法,是一種固液分離方法。天然的離子交換劑有粘土、沸石、澱粉、纖維素、蛋白質等,但實際應用中最主要的類別是離子交換樹脂,離子交換膜等。離子交換樹脂又分為酸性離子交換樹脂、鹼性離子交換樹脂、中性離子交換樹脂等。離子交換的過程,就是交換劑中的離子與溶液中的離子實現總量上的等電荷互換,從而實現分離溶液中目標離子的效果。詳見離子交換樹脂詞條。
D. 什麼是離子交換過程,影響離子交換過程的因素有哪些
離子交換過程歸納為如下幾個過程
1. 水中離子在水溶液中向樹脂表面擴散
2. 水中離子進入樹脂顆粒的交聯網孔,並進行擴散
3. 水中離子與樹脂交換基團接觸,發生復分解反應,進行離子交換
4. 被交換下來的離子,在樹脂的交聯網孔內向樹脂表面擴散
5. 被交換下來的離子,向水溶液中擴散
影響交換的主要因素有流速、原料液濃度、溫度等。
流速
原料液的流速實際上反映了達到反應平衡的時間,在交換過程中,離子進行擴散—交換—擴散一系列步驟,有效地控制流速很重要。一般,交換液流速大,離子的透析量就高,未來及交換而通過樹脂層流失的量增多。因此,應根據交換容量等選擇適宜的流速。
原料液濃度
樹脂中可交換的離子與溶液中同性離子既有可能進行交換,也有可能相斥,液相離子濃度高,樹脂接觸機會多,較易進入樹脂網孔內,液相濃度低,樹脂交換容量大時,則相反。但液相離子濃度過高,將引起樹脂表面及內部交聯網孔收縮,也會影響離子進入網孔。實驗證明,在流速一定時,溶液濃度越高,溶質的流失量液越大。
溫度
溫度越提高,離子的熱運動越劇烈。單位時間碰撞次數增加,可加快反應速率。但溫度太高,離子的吸附強度會降低,甚至還會影響樹脂的熱穩定性,經濟上不利,實際生產中採用室溫操作較宜。
E. 離子交換原理 離子是怎麼交換的
1、離子交換是應用離子交換劑(最常見的是離子交換樹脂)分離含電解質的液體混合物的過程。離子交換過程是液固兩相間的傳質(包括外擴散和內擴散)與化學反應(離子交換反應)過程,通常離子交換反應進行得很快,過程速率主要由傳質速率決定。
2、離子交換反應一般是可逆的,在一定條件下被交換的離子可以解吸(逆交換),使離子交換劑恢復到原來的狀態,即離子交換劑通過交換和再生可反復使用。同時,離子交換反應是定量進行的,所以離子交換劑的交換容量(單位質量的離子交換劑所能交換的離子的當量數或摩爾數)是有限的。
F. 離子交換器的工作原理
工作原理就是離子的交換。
運行時:陽樹脂(H-R)+(M+)-->:(M-R)+(H+)
陰樹脂(OH-R)+(X-)-->:(X-R)+(OH-)
其中M+為金屬離子,X-為陰離子。
再生過程為其逆過程。
離子交換器的失效控制
離子交換除鹽水處理最簡單的流程為 陽床-陰床 組成的一級復床除鹽系統。有的一級復床除鹽系統採用單元制,即每套一級復床除鹽系統包括 陽床、(除碳器)、陰床各一台,在離子交換除鹽運行過程中,無論是陽床還是陰床先失效,都是同時再生;還有的一級復床除鹽系統採用母管制,即陽床與陽床或陰床與陰床是並聯運行的,哪一台交換器失效就再生哪一台。
1 檢測和控制原理
強酸性陽樹脂對水中各種陽離子的吸附順序為:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金屬離子Na+被吸附的能力最弱,所以當離子交換時樹脂層的各種離子吸附層逐漸下移,H+.最後被其他陽離子置換下來,當保護層穿透時,首先泄漏的是最下層的Na+;因此監督陽離子交換器失效是以漏鈉為標準的;其反應方程為(A代表金屬陽離子,R為樹脂基團):
An+ +nRH=RnA+n H+
HCO3- + H+ =H2O+CO2↑
強鹼性陰樹脂對水中各種陰離子的吸附順序為:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以當離子交換時樹脂層的各種離子吸附層逐漸下移,OH-.被其他陰離子置換下來,當保護層穿透時,首先泄漏的是最下層的HSiO3-;因此監督陰離子交換器失效是以漏硅為標準的;其反應方程為(B代表酸根陰離子,R為樹脂基團):
Bm- +mROH=RmB+mOH-
2 控制點和控制方法
由於母管制系統包含了單元制系統,而且它具有能充分使用樹脂、提高交換器的出水能力、降低酸鹼消耗等優點,我們在研究中主要討論以這種結構為基礎的離子交換除鹽水處理系統。
以成都生物製品研究所蛋白分離車間純水站為例,該系統為母管制水處理系統,系統的結構為:砂濾-活性炭過濾-粗濾-陽床- 一陰-二陰-混床-精濾-純水罐,系統產水能力為5 t/h,在系統的失效控制研究中,我們提出單元失效控制概念,也就是充分利用了母管制制水系統的優點對系統進行失效控制。
(1)RO對各有機溶質的去除率大於NF膜。(2)不同有機溶質的去除率不相同,有的甚至相差很大(例如,RO和NF膜對乙酸的吸光度去除率分別為95.34%、81.45%,而對苯胺的吸光度去除率則分別為61.50%、46.82%)。
3 出水水質
原水經一級復床除鹽後,電導率(25℃)低於10μS/cm,水中硅含量低於100μg/L。
G. 廢水離子交換處理法的交換過程
①被來處理溶液中的某離子遷移到附源著在離子交換劑顆粒表面的液膜中;
②該離子通過液膜擴散(簡稱膜擴散)進入顆粒中,並在顆粒的孔道中擴散而到達離子交換劑的交換基團的部位上(簡稱顆粒內擴散);
③該離子同離子交換劑上的離子進行交換;
④被交換下來的離子沿相反途徑轉移到被處理的溶液中。離子交換反應是瞬間完成的,而交換過程的速度主要取決於歷時最長的膜擴散或顆粒內擴散。
拋光樹脂是由氫型強酸性陽離子交換樹脂及氫氧型強鹼性陰離子交換樹脂混合而成 來保證系統出水水質能夠維持用水標准。一般出水水質都能達到18兆歐以上,以及對TOC、SIO2都有一定的控制能力。拋光樹脂出廠的離子型態都是H、OH型,裝填後及可使用無需再生。