導航:首頁 > 凈水問答 > 環氧系離子交換樹脂

環氧系離子交換樹脂

發布時間:2024-11-21 04:21:11

離子交換樹脂的基本類型

1.離子交換樹脂的基本類型
(1)  強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
(2)  弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
(3) 強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
(4) 弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
(5)  離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
2、離子交換樹脂基體的組成
離子交換樹脂的基體(matrix),製造原料主要有苯乙烯和丙烯酸(酯)兩大類,它們分別與交聯劑二乙烯苯產生聚合反應,形成具有長分子主鏈及交聯橫鏈的網路骨架結構的聚合物。苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。
這兩類樹脂的吸附性能都很好,但有不同特點。丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,便於再生,在糖廠中可用作主要的脫色樹脂。苯乙烯系樹脂擅長吸附芳香族物質,善於吸附糖汁中的多酚類色素(包括帶負電的或不帶電的);但在再生時較難洗脫。因此,糖液先用丙烯酸樹脂進行粗脫色,再用苯乙烯樹脂進行精脫色,可充分發揮兩者的長處。
樹脂的交聯度,即樹脂基體聚合時所用二乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強;而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。工業應用的離子樹脂的交聯度一般不低於4%;用於脫色的樹脂的交聯度一般不高於8%;單純用於吸附無機離子的樹脂,其交聯度可較高。
除上述苯乙烯系和丙烯酸系這兩大系列以外,離子交換樹脂還可由其他有機單體聚合製成。如酚醛系(FP)、環氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
3、離子交換樹脂的物理結構
離子樹脂常分為凝膠型和大孔型兩類。
凝膠型樹脂的高分子骨架,在乾燥的情況下內部沒有毛細孔。它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通常稱為顯微孔(micro-pore)。濕潤樹脂的平均孔徑為2~4nm(2×10-6 ~4×10-6mm)。
這類樹脂較適合用於吸附無機離子,它們的直徑較小,一般為0.3~0.6nm。這類樹脂不能吸附大分子有機物質,因後者的尺寸較大,如蛋白質分子直徑為5~20nm,不能進入這類樹脂的顯微孔隙中。
大孔型樹脂是在聚合反應時加入致孔劑,形成多孔海綿狀構造的骨架,內部有大量永久性的微孔,再導入交換基團製成。它並存有微細孔和大網孔(macro-pore),潤濕樹脂的孔徑達100~500nm,其大小和數量都可以在製造時控制。孔道的表面積可以增大到超過1000m2/g。這不僅為離子交換提供了良好的接觸條件,縮短了離子擴散的路程,還增加了許多鏈節活性中心,通過分子間的范德華引力(van de Waal's force)產生分子吸附作用,能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。大孔樹脂還有多種優點:耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
4、離子交換樹脂的離子交換容量
離子交換樹脂進行離子交換反應的性能,表現在它的「離子交換容量」,即每克干樹脂或每毫升濕樹脂所能交換的離子的毫克當量數,meq/g(干)或 meq/mL(濕);當離子為一價時,毫克當量數即是毫克分子數(對二價或多價離子,前者為後者乘離子價數)。它又有「總交換容量」、「工作交換容量」和「再生交換容量」等三種表示方式。
1、總交換容量,表示每單位數量(重量或體積)樹脂能進行離子交換反應的化學基團的總量。
2、工作交換容量,表示樹脂在某一定條件下的離子交換能力,它與樹脂種類和總交換容量,以及具體工作條件如溶液的組成、流速、溫度等因素有關。
3、再生交換容量,表示在一定的再生劑量條件下所取得的再生樹脂的交換容量,表明樹脂中原有化學基團再生復原的程度。
通常,再生交換容量為總交換容量的50~90%(一般控制70~80%),而工作交換容量為再生交換容量的30~90%(對再生樹脂而言),後一比率亦稱為樹脂的利用率。
在實際使用中,離子交換樹脂的交換容量包括了吸附容量,但後者所佔的比例因樹脂結構不同而異。現仍未能分別進行計算,在具體設計中,需憑經驗數據進行修正,並在實際運行時復核之。
離子樹脂交換容量的測定一般以無機離子進行。這些離子尺寸較小,能自由擴散到樹脂體內,與它內部的全部交換基團起反應。而在實際應用時,溶液中常含有高分子有機物,它們的尺寸較大,難以進入樹脂的顯微孔中,因而實際的交換容量會低於用無機離子測出的數值。這種情況與樹脂的類型、孔的結構尺寸及所處理的物質有關。
5、離子交換樹脂的吸附選擇性
離子交換樹脂對溶液中的不同離子有不同的親和力,對它們的吸附有選擇性。各種離子受樹脂交換吸附作用的強弱程度有一般的規律,但不同的樹脂可能略有差異。主要規律如下:
(1)  對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:
Fe3+  > Al3+  > Pb2+  > Ca2+  > Mg2+  > K+  > Na+  > H+
(2)  對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:
SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:
OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
(3)  對有色物的吸附
糖液脫色常使用強鹼性陰離子樹脂,它對擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物的吸附較強,而對焦糖色素的吸附較弱。這被認為是由於前兩者通常帶負電,而焦糖的電荷很弱。
通常,交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
6、離子交換樹脂的物理性質
離子交換樹脂的顆粒尺寸和有關的物理性質對它的工作和性能有很大影響。
(1)  樹脂顆粒尺寸
離子交換樹脂通常製成珠狀的小顆粒,它的尺寸也很重要。樹脂顆粒較細者,反應速度較大,但細顆粒對液體通過的阻力較大,需要較高的工作壓力;特別是濃糖液粘度高,這種影響更顯著。因此,樹脂顆粒的大小應選擇適當。如果樹脂粒徑在0.2mm(約為70目)以下,會明顯增大流體通過的阻力,降低流量和生產能力。
樹脂顆粒大小的測定通常用濕篩法,將樹脂在充分吸水膨脹後進行篩分,累計其在20、30、40、50……目篩網上的留存量,以90%粒子可以通過其相對應的篩孔直徑,稱為樹脂的「有效粒徑」。多數通用的樹脂產品的有效粒徑在0.4~0.6mm之間。
樹脂顆粒是否均勻以均勻系數表示。它是在測定樹脂的「有效粒徑」坐標圖上取累計留存量為40%粒子,相對應的篩孔直徑與有效粒徑的比例。如一種樹脂(IR-120)的有效粒徑為0.4~0.6mm,它在20目篩、30目篩及40目篩上留存粒子分別為:18.3%、41.1%、及31.3%,則計算得均勻系數為2.0。
(2)  樹脂的密度
樹脂在乾燥時的密度稱為真密度。濕樹脂每單位體積(連顆粒間空隙)的重量稱為視密度。樹脂的密度與它的交聯度和交換基團的性質有關。通常,交聯度高的樹脂的密度較高,強酸性或強鹼性樹脂的密度高於弱酸或弱鹼性者,而大孔型樹脂的密度則較低。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/mL,視密度為0.85g/mL;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/mL,視密度為0.75g/mL。
(3)  樹脂的溶解性
離子交換樹脂應為不溶性物質。但樹脂在合成過程中夾雜的聚合度較低的物質,及樹脂分解生成的物質,會在工作運行時溶解出來。交聯度較低和含活性基團多的樹脂,溶解傾向較大。
(4)  膨脹度
離子交換樹脂含有大量親水基團,與水接觸即吸水膨脹。當樹脂中的離子變換時,如陽離子樹脂由H+轉為Na+,陰樹脂由Cl-轉為OH-,都因離子直徑增大而發生膨脹,增大樹脂的體積。通常,交聯度低的樹脂的膨脹度較大。在設計離子交換裝置時,必須考慮樹脂的膨脹度,以適應生產運行時樹脂中的離子轉換發生的樹脂體積變化。
(5)  耐用性
樹脂顆粒使用時有轉移、磨擦、膨脹和收縮等變化,長期使用後會有少量損耗和破碎,故樹脂要有較高的機械強度和耐磨性。通常,交聯度低的樹脂較易碎裂,但樹脂的耐用性更主要地決定於交聯結構的均勻程度及其強度。如大孔樹脂,具有較高的交聯度者,結構穩定,能耐反復再生。
7、離子交換樹脂的品種
離子交換樹脂在國內外都有很多製造廠家和很多品種。國內製造廠有數十家,主要的有上海樹脂廠、南開大學化工廠、晨光化工研究院樹脂廠、南京樹脂廠等;國外較著名的如美國Rohm & Hass公司生產的Amberlite系列、Dow化學公司的Dowex系列、法國Duolite系列和Asmit系列、日本的Diaion系列,還有Ionac系列、Allassion系列等。樹脂的牌號多數由各製造廠或所在國自行規定。國外一些產品用字母C代表陽離子樹脂(C為cation的第一個字母),A代表陰離子樹脂(A為Anion的第一個字母),如Amberlite的IRC和IRA分別為陽樹脂和陰樹脂,亦分別代表陽樹脂和陰樹脂。我國化工部規定(HG2-884-76),離子交換樹脂的型號由三位阿拉伯數字組成。第一位數字代表產品的分類:0 代表強酸性,1代表弱酸性,2代表強鹼性,3代表弱鹼性,4代表螯合性,5代表兩性,6代表氧化還原。第二位數字代表不同的骨架結構:0代表苯乙烯系,1代表丙烯酸系,2代表酚醛系,3代表環氧系等。第三位數字為順序號,用以區別基體、交聯基等的差異。此外大孔型樹脂在數字前加字母D。因此,D001是大孔強酸性苯乙烯系樹脂。

⑵ 請問離子交換的作用是什麼啊

您問的太籠統了啊。
(1)按骨架材料分類
按合成離子交換樹脂骨架材料的不同,離子交換樹脂可分為苯乙烯系、丙烯酸系、酚醛系、環氧系等。
(2)按交換基團的性質分類
根據交換基團的性質不同,離子交換樹脂可分為兩大類:凡與溶液中陽離子進行交換反應的樹脂,稱為陽離子交換樹脂,陽離子交換樹脂可電離的反離子是氫離子及金屬離子;凡與溶液中的陰離子進行交換反應的樹脂,稱為陰離子交換樹脂,陰離子交換樹脂可電離的反離子是氫氧根離子和酸根離子。
離子交換樹脂同低分子酸鹼一樣,根據它們的電離度不同又可將陽離子交換樹脂分為強酸性陽樹脂和弱酸性陽樹脂;可將陰離子交換樹脂分為強鹼性陰樹脂和弱鹼性陰樹脂。表1中歸納了離子交換樹脂的類別。
表1 離子交換樹脂的類別
樹脂名稱
交換基團
酸鹼性
化學式
名稱
陽離子交換樹脂
—SO3-H+
磺酸基
強酸性
—COO-H+
羧酸基
弱酸性
陰離子交換樹脂
—N+OH-
季銨基
強鹼性
—NH+OH-
—NH2+OH-
—NH3+OH-
叔胺基
仲胺基
伯胺基
弱鹼性

此外,還可以根據交換基團中反離子的不同,將離子交換樹脂冠以相應的名稱,例如:氫型陽樹脂、鈉型陽樹脂、氫氧型陰樹脂、氯型陰樹脂等。離子交換樹脂由鈉型轉變為氫型或由氯型轉變為氫氧型稱為樹脂的轉型。
(3)按離子交換樹脂的微孔型態分類
由於製造工藝的不同,離子交換樹脂內部形成不同的孔型結構。常見的產品有凝膠型樹脂和大孔型樹脂。
a)凝膠型樹脂。這種樹脂是均相高分子凝膠結構,所以統稱凝膠型離子交換樹脂。在它所形成的球體內部,由單體聚合成的鏈狀大分子在交聯劑的鏈接下,組成了空間結構。這種結構像排布錯亂的蜂巢,存在著縱橫交錯的「巷道」,離子交換基團就分布在巷道的各個部位。由巷道所構成的空隙,並非我們想像的毛細孔,而是化學結構中的空隙,所以稱為化學孔或凝膠孔。其孔徑的大小與樹脂的交聯度和膨脹程度有關,交聯度越大,孔徑就越小。當樹脂處於水合狀態時,水分子鏈舒伸,鏈間距離增大,凝膠孔就擴大;樹脂乾燥失水時,凝膠孔就縮小。反離子的性質、溶液的濃度及pH值的變化都會引起凝膠孔徑的改變。
凝膠孔的特點是孔徑極小,平均孔徑約1~2nm,而且大小不一,形狀不規則。它只能通過直徑很小的離子,直徑較大的分子通過時,則容易堵塞孔道而影響樹脂的交換能力。凝膠型樹脂的缺點是抗氧化性和機械強度較差,特別是陰樹脂易受有機物的污染。
b)大孔型樹脂。這種樹脂在製造過程中,由於加入了致孔劑,因而形成大量的毛細孔道,所以稱為大孔樹脂。在大孔樹脂的球體中,高分子的凝膠骨架被毛細孔道分割成非均相凝膠結構,它同時存在著凝膠孔和毛細孔。其中毛細孔的體積一般為0.5mL(孔)/g(樹脂)左右,孔徑在20~200nm以上,比表面積從幾m2/g到幾百m2/g。由於這樣的結構,大孔型樹脂可以使直徑較大的分子通行無阻,所以用它去除水中高分子有機物具有良好的效果。
大孔型樹脂由於孔隙占據一定的空間,骨架的實體部分就相對減少,離子交換基團含量也相應減少,所以交換能力比凝膠型樹脂低。大孔型樹脂的吸附能力強,與交換的離子結合較牢固,不容易充分恢復其交換能力。但大孔樹脂的抗氧化性能比較好,因為它的交聯度較大,大分子不易降解。再者,大孔樹脂具有較好的抗有機物污染性能,因為被樹脂截留的有機物,易於在再生操作中,從樹脂的孔眼中清除出去。
離子交換原理
應用離子交換樹脂進行水處理時,離子交換樹脂可以將其本身所具有的某種離子和水中同符號電荷的離子相互交換而達到凈化水的目的。
如H型陽離子交換樹脂遇到含有Ca2+、Na+的水時,發生如下反應:
2RH + Ca2+ R2Ca + 2H+
RH + Na+ RNa + H+
當OH型陰離子交換樹脂遇到含有Cl-、SO42-的水時,其反應為:
ROH + Cl- RCl + OH-
2ROH + SO42- R2SO4 +2OH-
反應的結果是水中的雜質離子(Ca2+、Na+、Cl-、SO42-等)分別被吸著在樹脂上,樹脂由H型和OH型變為Ca型、Na型和Cl型SO4型,而樹脂上的H+、OH-則進入水中,相互結合成為水,從而除去水中的雜質離子,製得純水
H+ + OH- H2O
離子交換樹脂的離子與水中的離子之間所以能進行交換,是在於離子交換樹脂有可交換的活動離子。而且因為離子交換樹脂是多孔的,即在樹脂顆粒中存在著許多水能滲入其內的微小網孔,這樣使樹脂和水有很大的接觸面,不僅能在樹脂顆粒的外表面進行交換,而且在與水接觸的網孔內也可以進行這一交換。
如前所述,合成的離子交換樹脂是一種帶有交聯劑的高分子化合物,有許多水能滲入的網孔,交換劑的內部是一個立體的網狀結構作為骨架,這些網組成了無數的四通八達的孔隙,孔隙裡面充滿了水。在孔隙的一定部位上有一個可以自由活動的交換離子。當離子交換樹脂和水溶液接觸時,水溶液即通過這些網狀結構的孔滲入其內,離子交換樹脂進行離解,結果是一定數量的離子(H型離子交換樹脂為氫離子,OH型離子交換樹脂為氫氧根離子)進入圍繞離子交換樹脂顆粒四周的水溶液中,形成離子霧。
離子交換樹脂與水溶液中離子的交換過程,實際上就是離子霧中的離子與水溶液中的離子的相互交換過程,其機理可以用雙電層理論進行解釋。
這種理論是將離子交換樹脂看作具有膠體型結構的物質,即在離子交換樹脂的高分子表面上有和膠體表面相似的雙電層。也就是說,在離子交換樹脂的高分子表面有兩層離子,緊挨著高分子表面的一層離子(如強酸性陽樹脂中的—SO3-),稱為內層離子,在其外面的是一層符號相反的離子層(如強酸性陽樹脂中的H+)。和內層離子符號相同的離子稱為同離子,符號相反的稱為反離子。
根據膠體結構的概念,雙電層中的離子按其活動性的大小,可劃分為吸附層和擴散層。那些活動性較差,緊緊地被吸附在高分子表面的離子層,稱為吸附層,它包括內層離子和部分反離子;在吸附層外側,那些活動性較大,向溶液中逐漸擴散的離子,稱為擴散層。
內層離子依靠化學鍵結合在高分子的骨架上,吸附層中的反離子依靠異電荷的吸引力被固定著。而在擴散層中的反離子,由於受到異電荷的吸引力較小,熱運動比較顯著,所以這些反離子有向水溶液中漸漸擴散的現象。
當離子交換樹脂遇到含有電解質的水溶液時,電解質對其雙電層有以下的作用:
(1)交換作用
擴散層中的離子與膠核距離大,受膠核電荷吸引力小,在溶液中活動較自由,離子交換作用主要是由擴散層中的反離子和溶液中其它離子互換位置所致。
在H型陽離子交換樹脂與溶液中Na+的交換中,樹脂內部網孔間的水中有很多從樹脂上離解下來的H+,形成了很大的H+濃度,但在流動的水中H+濃度卻很小;相反在流動的水中,Na+濃度很大,而樹脂內部網孔水溶液中原來沒有Na+。濃度大的地方的離子要向濃度小的地方運動,這就是擴散。所以水溶液中的Na+要擴散到樹脂顆粒內部去,而H+要從樹脂顆粒內部擴散到水溶液中去。這就是離子交換的過程。
上述的交換過程並不局限於擴散層。溶液中也有一些反離子先交換至擴散層,然後再與吸附層中的反離子互換位置;吸附層中的反離子,也會先與擴散層的反離子互換位置後,再完成上述的交換過程。
(2)壓縮作用
當水溶液中鹽類濃度增大時,可以使擴散層受到壓縮,從而使原來處於擴散層中的部分反離子變成吸附層中的反離子,以及使擴散層的活動范圍變小。這使擴散層中的反離子活性減弱,不利於進行離子交換。這也可以說明為什麼當再生溶液的濃度太大時,不僅不能提高再生效果,有時反使效果降低。
上述將離子交換樹脂看作具有膠體型結構的物質,用擴散理論對其交換過程進行解釋,適合與水處理工藝的離子交換過程。但關於離子交換過程的機理,有多種說法,現尚還不能統一。

⑶ 離子交換樹脂的介紹

離子交換樹脂是帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性版的高分子化合物。通權常是球形顆粒物。rightleder

離子交換樹脂的全名稱由分類名稱、骨架(或基因)名稱、基本名稱組成。孔隙結構分凝膠型和大孔型兩種,凡具有物理孔結構的稱大孔型樹脂,在全名稱前加「大孔」。分類屬酸性的應在名稱前加「陽」,分類屬鹼性的,在名稱前加「陰」。如:大孔強酸性苯乙烯系陽離子交換樹脂。

⑷ 什麼叫離子交換樹脂

什麼是離子交換樹脂?

離子交換是一種可逆的化學反應,其中從溶液中除去溶解的離子並用相同或類似電荷的其他離子替換。離子交換樹脂本身不是化學反應物,而是促進離子交換反應的物理介質。樹脂本身由形成烴網路的有機聚合物組成。整個聚合物基質是離子交換位點,其中帶正電離子(陽離子)或帶負電離子(陰離子)的所謂「官能團」固定在聚合物網路上。這些官能團容易吸引相反電荷的離子。


離子交換樹脂基質通過在稱為聚合的過程中使烴鏈彼此交聯而形成。交聯使樹脂聚合物具有更強,更有彈性的結構和更大的容量(按體積計)。雖然大多數IX樹脂的化學組成是聚苯乙烯,但某些類型是由丙烯酸(丙烯腈或丙烯酸甲酯)製造的。然後樹脂聚合物經歷一種或多種化學處理以將官能團結合到位於整個基質中的離子交換位點。這些官能團賦予離子交換樹脂其分離能力,並且從一種樹脂到下一種樹脂會有很大差異。最常見的成分包括:

1.強酸陽離子交換樹脂

由聚苯乙烯基質和磺酸鹽(SO 3 -)官能團組成,其中帶有鈉離子(Na 2+)用於軟化應用,或氫離子(H +)用於脫礦質

2.弱酸陽離子交換樹脂

樹脂由丙烯酸聚合物組成,該聚合物已用硫酸或苛性鈉水解以產生羧酸官能團。由於它們對氫離子(H +)的高親和力,弱酸陽離子交換樹脂通常用於選擇性地除去與鹼度相關的陽離子。

3.強鹼陰離子交換樹脂

通常由經過氯甲基化和胺化的聚苯乙烯基質組成,以將陰離子固定到交換位點。1型強鹼陰離子交換樹脂是通過應用三甲胺生產的,其產生氯離子(Cl -),而2型強鹼陰離子交換樹脂通過應用二甲基乙醇胺生產,其產生氫氧根離子(OH -)。

4.弱鹼陰離子交換樹脂

通常由經過氯甲基化的聚苯乙烯基質組成,然後用二甲胺胺化。弱鹼陰離子交換樹脂

的獨特之處在於它們不具有可交換的離子,因此用作酸吸收劑以除去與強無機酸相關的陰離子。

5.螯合樹脂

螯合樹脂是最常見的特種樹脂類型,用於選擇性去除某些金屬和其他物質。在大多數情況下,樹脂基質由聚苯乙烯組成,盡管多種物質用於官能團,包括硫醇,三乙基銨和氨基膦等。

詳情點擊:網頁鏈接

⑸ 軟化水設備中離子交換樹脂的分類及再生方法

①離子交換樹脂根來據其自基體的種類可分為:苯乙烯系樹脂和丙烯酸系樹脂。樹脂中的化學活
性基團的種類決定了樹脂的主要性質和類別。首先區分為陽離子樹脂和陰離子樹脂兩大類,
它們可分別與溶液中的陽離子和陰離子進行離子交換。陽離子樹脂又分為強酸性和弱酸性兩
類,陰離子樹脂又分為強鹼性和弱鹼性兩類 (或再分出中qiang酸和中qiang鹼性類)。②
離子交換樹脂的再生方法再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較
低的酸、鹼或鹽。1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃
度洗脫,再用2~3BV的稀酸、稀鹼溶…

⑹ 簡述離子交換樹脂的結構組成按活性基團不同可分為哪幾大類

離子交換樹脂的分類
(1)按骨架材料分類
按合成離子交換樹脂骨架材料的不同,離子交換樹脂可分為苯乙烯系、丙烯酸系、酚醛系、環氧系等。
(2)按交換基團的性質分類
根據交換基團的性質不同,離子交換樹脂可分為兩大類:凡與溶液中陽離子進行交換反應的樹脂,稱為陽離子交換樹脂,陽離子交換樹脂可電離的反離子是氫離子及金屬離子;凡與溶液中的陰離子進行交換反應的樹脂,稱為陰離子交換樹脂,陰離子交換樹脂可電離的反離子是氫氧根離子和酸根離子。
離子交換樹脂同低分子酸鹼一樣,根據它們的電離度不同又可將陽離子交換樹脂分為強酸性陽樹脂和弱酸性陽樹脂;可將陰離子交換樹脂分為強鹼性陰樹脂和弱鹼性陰樹脂。

⑺ 離子交換樹脂命名方式

離子交換樹脂的命名方式是通過三位阿拉伯數字來表示的。第一位數字表示產品的分類,第二位表示骨架的差異,第三位數字用作順序號以區分基因、交聯劑等的差異。其中,第一、第二位表示濕離子交換樹脂數字的意義,具體見表8-1。



表8-1中,樹脂型號的一、二位數字代表不同的分類和骨架。例如,0代表強酸性,1代表弱酸性,2代表強鹼性,3代表弱鹼性,4代表螯合性,5代表兩性,6代表氧化還原性。骨架名稱方面,0代表苯乙烯系,1代表丙烯酸系,2代表醋酸系,3代表環氧系,4代表乙烯吡啶系,5代表脲醛系,6代表氯乙烯系。



此外,對於大孔樹脂,在型號前會添加"D"以表示大孔特性。凝膠型樹脂的交聯度值可以在型號後用"×"號連接阿拉伯數字來表示,如"D011×7"表示大孔強酸性丙烯酸系陽離子交換樹脂,其交聯度為7。



值得注意的是,國外一些產品使用字母表示樹脂類型,C代表陽離子樹脂(C為cation的第一個字母),A代表陰離子樹脂(A為Anion的第一個字母)。例如,Amberlite的IRC和IRA分別代表陽樹脂和陰樹脂,同時也表示陽樹脂和陰樹脂。


(7)環氧系離子交換樹脂擴展閱讀

離子交換樹脂是帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性的高分子化合物。通常是球形顆粒物。

⑻ 離子交換樹脂的結構有什麼特點

離子交換樹脂是帶有可交換離子功能基團的具有三維網孔結構的高分子聚合物,其能夠與溶液中相應的陽離子或陰離子發生交換作用,達到吸附去除或富集提取的目的。

離子交換樹脂的結構由三部分組成:不溶性的三維空間網狀高分子骨架、連接在高分子骨架上的功能基團以及功能基團上所帶的可交換離子。

離子交換樹脂按照組成其分子骨架的物質不同,分為苯乙烯系、丙烯酸系、環氧系等;按照其可交換的離子性質分類,可分為陽離子交換樹脂和陰離子交換樹脂,而陽離子交換樹脂又可分為強酸陽離子交換樹脂與弱酸陽離子交換樹脂,陰離子交換樹脂又可分為強鹼陰離子交換樹脂與弱鹼陰離子交換樹脂;按照其內部孔道結構的不同,可分為大孔型離子交換樹脂與凝膠型離子交換樹脂。

(1)強酸陽離子交換樹脂

強酸陽離子交換樹脂分子骨架上帶有強酸性基團(如磺酸基-SO3H),在溶液中,強酸基團易離解出H+,故呈強酸性;而強酸功能基團上的負電基團(如-SO3—),能吸附結合溶液中的其他陽離子,使樹脂功能基團上解離的H+與溶液中的其他陽離子發生交換作用。強酸陽離子交換樹脂因其強酸功能基團解離能力強,因此,在酸性或鹼性溶液中功能基團均能發生解離並產生離子交換作用。

(2)弱酸陽離子交換樹脂

弱酸陽離子交換樹脂分子骨架上帶有弱酸性基團(如羧酸基-COOH),在溶液中,弱酸基團同樣可以解離出H+而呈酸性;而弱酸功能基團上的負電基團(如-COO—),能吸附結合溶液中的其他陽離子,使樹脂功能基團上解離的H+與溶液中的其他陽離子發生交換作用。但是因為弱酸陽離子交換樹脂所帶功能基團為弱酸基團,解離性較弱,低pH環境下不利於弱酸基團的解離,因此,弱酸陽離子交換樹脂適合在鹼性、中性或弱酸性溶液中(如pH:5~14)使用。

(3)強鹼陰離子交換樹脂

強鹼陰離子交換樹脂分子骨架上帶有強鹼性基團(如季胺基-NR3OH),強鹼基團能在溶液中離解出OH—而呈強鹼性;而強鹼基團上的正電基團(如-NR3+),能吸附結合溶液中的其他陰離子,使樹脂功能基團上解離的OH—與溶液中的其他陰離子發生交換作用。強鹼陰離子交換樹脂所帶強鹼基團具有很強的解離性能,在不同pH環境下均能正常使用。

(4)弱鹼陰離子交換樹脂

弱鹼陰離子交換樹脂分子骨架上帶有弱鹼基團(如伯胺基-NH2、仲胺基-NHR、叔胺基-NR2),弱鹼基團在溶液中也能解離出OH—而呈弱鹼性;弱鹼基團上的正電基團能吸附結合溶液中的其他陰離子,從而產生陰離子交換作用。因為弱鹼陰離子交換樹脂所帶弱鹼基團的解離性較弱,因此,其適合在中性或酸性條件下(如pH:1~9)下使用。

閱讀全文

與環氧系離子交換樹脂相關的資料

熱點內容
空氣凈化器有噪音怎麼辦 瀏覽:473
硅酸鹽水垢的成分特徵及生成部位 瀏覽:486
除異味用什麼濾芯好 瀏覽:824
物業污水提升站有什麼作用 瀏覽:286
蒸餾水可以泡麵膜嗎 瀏覽:311
污水泵類優點 瀏覽:983
第三方污水檢測報告標准答案 瀏覽:598
過濾桶排氣孔漏水 瀏覽:883
環保法對於污水處理的規定 瀏覽:978
純水加熱泡沫怎麼解決 瀏覽:915
污水處理工作對人傷害有哪些 瀏覽:291
提升機盤式制動器設計與模擬 瀏覽:124
斐訊空氣凈化器怎麼樣 瀏覽:560
凈化器為什麼老是叫 瀏覽:722
空氣凈化器濾網怎麼處理 瀏覽:867
凈水器廢水筆多少錢 瀏覽:479
為什麼燒烤凈化器沒反應 瀏覽:310
熱水瓶裡面的水垢怎樣清除 瀏覽:689
純水管道刷什麼顏色 瀏覽:371
半透膜的直徑 瀏覽:741