導航:首頁 > 凈水問答 > 混合型陽離子交換反向吸附劑

混合型陽離子交換反向吸附劑

發布時間:2024-11-19 02:35:20

㈠ 王教授你好,我想問一下關於三聚氰胺的檢測方法,都有哪些謝謝你的幫助。

三聚氰胺(melamine)簡稱三胺, 學名三氨三嗪, 別名蜜胺、氰尿醯胺、三聚醯胺,分子式:C3N6H6、 C3N3(NH2)3 。分子量:126.12,是一種重要的氮雜環有機化工原料〔2〕。三聚氰胺顯弱鹼性,能夠與各種酸反應生成三聚氰胺鹽。在強酸或強鹼液中,三聚氰胺發生水解,胺基逐步被羥基取代,生成三聚氰酸二醯胺、三聚氰酸一醯胺和三聚氰酸。三聚氰胺與醛類反應生成加成化合物。三聚氰胺與醛反應製成樹脂,三聚氰胺樹脂是一種多種用途的材料,防火耐熱且有很高的穩定性,用於生產塑料、廚房用具、防火纖維、商業濾膜、膠水和阻燃劑,部分亞洲國家,也被用來製造化肥。
2 材料與試劑
2.1 儀器與條件
Agilent 1100高效液相色譜儀(美國,Agilent公司);二極體陣列檢測器(DAD),檢測波長240nm,柱溫:40℃。
(1)Agela VenusilTM ASB C18( 4.6×250mm);緩沖液:10mM檸檬酸, 10mM庚烷磺酸鈉; 流動相:緩沖溶液:乙腈=85:15;流速:1.0mL/min。
(2)Agela VenusilTM ASB C8( 4.6×250mm);流動相:緩沖液:乙腈=85:15;緩沖液:10mM檸檬酸,10mM辛烷磺酸鈉,調pH為3.0;流速:1.0mL/min;
離子交換固相萃取柱Agela ClearnertTM PCX(北京艾傑爾科技有限公司)
2.2 試劑與樣品
寵物飼料樣品(農業部飼料供應中心提供);甲醇、乙腈為北京艾傑爾科技有限公司提供;氨水、乙酸鉛、三氯乙酸、均購於北京化學試劑公司;三聚氰胺標准品、檸檬酸、辛烷磺酸鈉(Sigma公司);甲醇為色譜純,其他均為化學純。
3 實驗方法
3.1樣品前處理方法
(1) 標准樣品配製:
取50mg三聚氰胺標准品,以20%甲醇溶解定容至50mL得到1000ppm的標准溶液,使用時,以提取液(0.1%三氯乙酸)稀釋至所要的濃度。

(2) 提取:
稱取飼料樣品5g,加入50ml 0.1%三氯乙酸提取液,充分混勻,加入2mL 2%乙酸鉛溶液,超聲20min。然後取部分溶液轉移至10mL離心管中,8000rpm/min離心10min,取上清液3mL過混合型陽離子交換小柱(PCX)。

(3) 凈化(PCX小柱,60mg/3mL) :
a) 活化及平衡:3mL甲醇,3mL水
b) 上樣:加入提取液3mL
c) 淋洗:3mL水;3mL 甲醇;棄去淋洗液並將小柱抽干。
d) 洗脫:5mL 5%氨化甲醇(v/v)洗脫。(5%氨化甲醇的配製:5mL氨水+95mL甲醇)。
e) 濃縮:50℃,氮氣吹乾,20%甲醇/水定容至2mL,HPLC分析或衍生後GC/MS分析。

3.2 HPLC檢測方法

3.2.1 三聚氰胺HPLC-UV檢測方法

三聚氰胺是強極性化合物,在傳統的反相C18柱上保留很差,需要用離子對試劑色譜方法才能有良好的保留與分離,按照美國食品葯品監督管理局(FDA)的三聚氰胺檢測方法和中國農業部公布的三聚氰胺檢測方法,採用艾傑爾(Agela) ASB系列親水色譜柱,可以得到良好的分離效果,分析色譜圖如下:

圖2 Venusil ASB 色譜柱分離三聚氰胺的譜圖

(a) 色譜柱:Venusil ASB C8 4.6×250mm;標准:FDA方法;流動相:緩沖液:乙腈=85:15;緩沖液:10mM檸檬酸,10mM辛烷磺酸鈉,調pH為3.0;流速:1.0mL/min;柱溫:40 oC;波長:240nm
(b) 色譜柱:Venusil ASB-C18 4.6×250mm;標准:中國農業部頒標准方法;緩沖液:10mM檸檬酸, 10mM庚烷磺酸鈉; 流動相:緩沖溶液:乙腈=85:15;流速:1.0mL/min;柱溫:40℃;波長:240nm
空白加水平(mg/L) 回收率
0.01 116%
0.1 108%
0.5 92%
2 96%

由上表1可以看出:用PCX柱凈化樣品,可以得到滿意的回收率,此方法處理樣品,比FDA公布的前處理方法更加准確、可靠。

3.2.2 三聚氰胺LC-MS檢測方法

由於FDA公布的HPLC-UV方法中,流動相添加了離子對試劑,因此限制了液質聯用方法的使用;但不用離子對試劑色譜方法,三聚氰胺在傳統的C18柱上保留很差,不能得到較好的分離定量〔3〕。
基於此問題,艾傑爾科技公司自主開發了新的方法,採用艾傑爾(Agela) ASB系列親水色譜柱,不用離子對試劑也能得到有效的保留與分離。因此方法中流動相不含離子對試劑,可以用於質譜檢測。
與FDA 2007年4月公布的《Updated FCC Developmental Melamine Quantitation (HPLC-UV)》相比較,該方法大大降低了最低檢測限(MSD:0.5ppm;UV:2ppm),提高了檢測靈敏度。
以該方法分別在ASB-C8 4.6×250mm ASB-C18 4.6×250mm 得到的譜圖如下:

圖3 LC-MS方法檢測三聚氰胺的譜圖

緩沖液:10mM的NH4AC;流動相:Buffer::ACN=95:5;流速:1.0mL/min;進樣量:樣品先用70%ACN溶解成約1mg/mL,用ACN稀釋成0.1mg/mL,進10uL;柱溫:40℃;波長:240nm
4 結果與討論

4.1陽離子交換柱(PCX)

三聚氰胺呈弱鹼性(弱陽離子化合物),凈化過程一般應選擇陽離子交換柱。混合型的陽離子交換柱(PCX)通過將磺酸基團(-SO3H)鍵合在極性高聚物聚苯乙烯/二乙烯苯(PEP)吸附劑上,具有陽離子交換和反相吸附兩種機理,並具有以下優點:
a) 可通過兩種不同溶液的洗滌(水/一定pH值的緩沖溶液和有機溶劑),使樣品更干凈,提高檢測的靈敏度。
b) 批次重復性好。
c) 回收率高,重現性好,即使小柱跑干也可以得到較高回收率。

4.2 LC-MS方法優點:

(1)檢測過程簡便:無須添加離子對試劑,三聚氰胺就可得到良好的保留與分離,避免了配製離子對流動相的復雜過程。
(2)提高了檢測的靈敏度:無離子對試劑,可以用於質譜檢測器,大大降低了最低檢測限(MSD:0.5ppm;UV:2ppm)。
(3)降低了檢測成本:不用離子對試劑,就不再需要買價格較貴的離子對試劑了,從而降低了檢測成本。
(4)延長了色譜柱的使用壽命:避免了使用離子對試劑減少色譜柱壽命的影響。
(5)該方法所使用的色譜柱具有通用性:無論是用FDA方法、中國農業部部頒標准方法和本公司開發的LC-MS方法,使用艾傑爾(Agela) ASB系列親水色譜柱均能得到一個很好的檢測結果,從而給客戶提供了多種選擇空間。

㈡ 離子交替吸附作用

離子交替吸附作用主要發生在具有固定電荷的固體礦物表面,無論是陽離子還是陰離子,均可發生交替吸附作用,但目前研究得較多的是陽離子交替吸附作用。離子交替吸附作用的一個重要特點就是,伴隨著一定量的一種離子的吸附,必然有等當量的另一種同號離子的解吸(圖2-5-4)。離子交替吸附作用之所以具有這樣的特點,主要是由於吸附劑通常都具有一定的離子交換容量,因此這里首先對離子交換容量予以討論。

圖2-5-3 有機質表面的負電荷

圖2-5-4 陽離子交替吸附作用圖解

2.5.2.1 離子交換容量

離子交換容量包括陽離子交換容量(CEC—Cation Exchange Capacity)和陰離子交換容量(AEC—Anion Exchange Capacity),我們主要討論陽離子交換容量,它被定義為每100 g干吸附劑可吸附陽離子的毫克當量數。例如,在蒙脫石的結晶格架中,鋁八面體中的三價鋁可被二價鎂所置換,根據測定,每摩爾蒙脫石中鎂的含量為0.67 mol,即蒙脫石的分子式為:Si8Al3.33Mg0.67O20(OH)4。已知蒙脫石的分子量是734 g,因此這種蒙脫石的陽離子交換容量為:

水文地球化學

在實際中,通常都是通過實驗來測定吸附劑的陽離子交換容量。尤其是對於野外所採取的土樣或岩樣,由於其中含有多種吸附劑,實驗測定往往是唯一可行的方法。陽離子交換容量的實驗測定在多數情況下都是用pH為7的醋酸銨溶液與一定量固體樣品混合,使其全部吸附格位被所飽和,然後用其他溶液(例如NaCl溶液)把被吸附的全部交換出來,達到交換平衡後,測定溶液中Na+的減少量,據此便可計算樣品的陽離子交換容量。表252列出了一些粘土礦物及土壤的陽離子交換容量,由表可見,與土壤相比,礦物的陽離子交換容量有更大的變化范圍。

鬆散沉積物的陽離子交換容量受到了多種因素的影響,主要有:

(1)沉積物中吸附劑的種類與數量。例如,我國北方土壤中的粘土礦物以蒙脫石和伊利石為主,因此其CEC值較大,一般在20 meq/100 g以上,高者達50 meq/100 g以上;而南方的紅壤,由於其有機膠體含量少,同時所含的粘土礦物多為高嶺石及鐵、鋁的氫氧化物,故CEC較小,一般小於20 meq/100 g。

表2-5-2 一些粘土礦物及土壤的陽離子交換容量

(2)沉積物顆粒的大小。一般來說,沉積物的顆粒越小,其比表面積越大,CEC值越高。例如,根據一河流沉積物的粒徑及其CEC的實測結果,隨著沉積物的粒徑為從4.4μm增至1000μm,其CEC從14~65 meq/100 g變到4~20 meq/100 g,最終減小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般來說,隨著水溶液pH值的增加,土壤表面的可變負電荷量增多,其CEC相應增加;相反,隨著水溶液pH值的減小,土壤表面的可變負電荷量不斷減少,其CEC也隨之減小。

2.5.2.2 陽離子交換反應及平衡

陽離子交換反應的一般形式可寫為:

水文地球化學

式中:Am+、Bn+表示水溶液中的A、B離子;AX、BX表示吸附在固體表面的A、B離子。上述反應的平衡常數可寫為:

水文地球化學

式中:a標記溶液中組分的活度;{}表示表示吸附在固體表面上的離子的活度。對於水溶液中的離子,其活度可使用表2-1-1中的公式進行計算;但對於吸附在固體表面上的離子,其活度的計算至今還沒有滿意的方法。目前主要採用兩種替代的方法來處理這一問題,一種是Vanselow慣例,另一種是Gaines-Thomas慣例。Vanselow慣例是由Vanselow於1932年提出的,他建議使用摩爾分數來代替式(2-5-7)中的{AX}和{BX}。若固體表面僅吸附了A離子和B離子,在一定重量(100 g)的吸附劑表面A、B的含量(mmol)依次為qA和qB,則吸附劑表面A、B的摩爾分數分別為:

水文地球化學

顯然,xA+xB=1。這樣式(2-5-7)可改寫為:

水文地球化學

Gaines-Thomas慣例是由Gaines和Thomas於1953年提出的,他們建議採用當量百分數來代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分別表示吸附劑表面A、B的當量百分數,則有:

水文地球化學

同樣,yA+yB=1,這樣式(2-5-7)變為:

水文地球化學

目前,這兩種慣例都還在被有關的研究者所使用,各有優點,互為補充。事實上,離子交換反應的平衡常數並不是一個常數,它往往隨著水溶液的成分、pH值及固體表面成分的變化而變化,因此許多研究者認為將其稱為交換系數(Exchange Coefficient)或選擇系數(Selectivity Coefficient)更合適一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知兩種不同離子與同一種離子在某種吸附劑中發生交換反應的交換系數,則可計算出這兩種離子發生交換反應的交換系數。例如,若在某種吸附劑中下述反應:

水文地球化學

交換系數分別為KCa-Na和KK-Na,則在該吸附劑中反應:

水文地球化學

的交換系數為:

水文地球化學

這是因為(以Vanselow慣例為例):

水文地球化學

故有:

水文地球化學

表2-5-3列出了不同離子與Na+發生交換反應的交換系數(Vanselow慣例),據此便可按照上述的方法求得這些離子之間發生交換反應時的交換系數。

需要說明的是,在表2-5-3中,I離子與Na+之間交換反應的反應式為:

水文地球化學

表2-5-3 不同離子與Na+發生交換反應時的交換系數

其交換系數的定義式如下:

水文地球化學

【例】在某地下水系統中,有一段含有大量粘土礦物、因此具有明顯陽離子交換能力的地段,假定:

(1)該地段含水層的陽離子交換容量為100 meq/100 g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;

(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10-3 mol/L;

(3)含水層的孔隙度為n=0.33,固體顆粒的密度為ρ=2.65 g/cm3

(4)含水層中發生的陽離子交換反應為:

水文地球化學

不考慮活度系數的影響,其平衡常數(Vanselow慣例)為:

水文地球化學

試使用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。

【解】:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為x(mmol/L),則這時含水層顆粒中Mg2+的摩爾分數為1-y、水溶液中Mg2+的濃度為2-x(mmol/L),故有:

水文地球化學

整理得:

水文地球化學

已知含水層的CEC=100 meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50 mmol/100 g=0.5 mmol/g。若用z表示達到交換平衡後1 g含水層顆粒中Ca2+的含量,則有:

水文地球化學

以式(2-5-25)帶入式(2-5-24)得:

水文地球化學

為了計算上述變化,需要對1 L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1 L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:

水文地球化學

故吸附作用前後1 L水所對應的含水層中Ca2+的質量守恆關系為:

水文地球化學

式中的0.25為吸附作用前1 g含水層顆粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化學

以式(2-5-26)帶入式(2-5-28)並整理得:

水文地球化學

這是一個關於z的一元二次方程,求解該方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得達到新的交換平衡後含水層顆粒中Ca2+的摩爾分數為0.5001254,水溶液中Ca2+的濃度為0.75 mmol/L,故這時含水層顆粒中Mg2+的摩爾分數為0.4998746、水溶液中Mg2+的濃度為1.25 mmol/L。由此可見,地下水通過該粘性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1 mmol/L增加到了1.25 mmol/L,Ca2+則從原來的1 mmol/L減少到了0.75 mmol/L。

2.5.2.3 分配系數及離子的吸附親和力

除了交換系數,還有一個重要的參數需要介紹,這就是分配系數(Separation Factor)(Benefield,1982)。對於反應(2-5-6),它被定義為:

水文地球化學

式中cA和cB分別為水溶液中A、B離子的摩爾濃度。顯然,若不考慮活度系數的影響,對於同價離子間的交換反應,QA-B=KA-B。式(2-5-29)可改寫為:

水文地球化學

由式(2-5-30)可見,QA-B反映了溶液中B與A的含量之比與吸附劑表面B與A的含量之比之間的相對關系。當QA-B=1時,說明達到交換平衡時B與A在水溶液中的比例等於其在吸附劑表面的比例,因此對於該吸附劑,A和B具有相同的吸附親和力;當QA-B>1時,說明達到交換平衡時B與A在水溶液中的比例大於其在吸附劑表面的比例,因此A與B相比具有更大的吸附親和力;當QA-B<1時,說明達到交換平衡時B與A在水溶液中的比例小於其在吸附劑表面的比例,因此B與A相比具有更大的吸附親和力。

事實上,即使對於同一陽離子交換反應,其分配系數也會隨著水溶液性質的變化而變化(Stumm and Morgan,1996)。圖2-5-5給出了Na—Ca交換反應的分配系數隨Na+濃度的變化。沿著圖中的虛線,QNa-Ca=1,這時Na+和Ca2+具有相同的吸附親和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附劑中的比例要遠大於其在水溶液中的比例,因此在這種情況下Ca2+具有更強的吸附親和力。隨著Na+濃度的增大,Ca2+的吸附親和力逐漸減弱,Na+的吸附親和力則逐漸增強,當[Na+]=2 mol/L時,Na+已經變得比Ca2+具有更強的吸附親和力。Na—Ca交換反應分配系數的這種變化對於解釋一些實際現象具有重要的意義,根據這種變化,我們可以推斷淡水含水層中通常含有大量的可交換的Ca2+,而海水含水層中通常含有大量的可交換的Na+。這種變化關系也解釋了為什麼硬水軟化劑能夠選擇性地去除Ca2+,同時通過使用高Na+濃度的鹵水溶液進行沖刷而再生。

圖2-5-5 溶液中Ca2+的含量對吸附作用的影響

根據離子交換反應的分配系數,可以定量地評價離子的吸附親和力。一般來說,離子在土壤中的吸附親和力具有下述的規律:

(1)高價離子比低價離子具有更高的吸附親和力。例如,Al3+>Mg2+>Na+;>。這是因為離子交換反應從本質上說是一個靜電吸引過程,離子價越高,所受到的靜電吸引力就越大,它就越容易被吸附劑所吸附。

(2)同價離子的吸附親和力隨著離子水化半徑的減小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。這是因為離子的水化半徑越小,它越容易接近固體表面,從而也就越易於被固體所吸附。

Deutsch(1997)根據Appelo和Postma(1994)的資料,對二價陽離子的吸附親和力進行了研究,他所得到了吸附親和力順序如下:

水文地球化學

在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上。但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量在同一水平上,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。

綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):

水文地球化學

可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl-和最不易被吸附。

離子交換對地下水質產生重要影響的一種常見情況就是海水入侵到淡水含水層中。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl-。這樣入侵的海水將導致含水層中發生下述的陽離子交換反應:

水文地球化學

由於Cl-通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl-來說,該過程將使得Na+的遷移能力降低。

地下水系統中另一種常見的情況與上述過程相反,這就是Ca2+置換被吸附的Na+,反應式如下:

水文地球化學

人們在大西洋沿岸的砂岩含水層(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉積盆地中(Thorstenson等,1979;Henderson,1985)均發現了這種天然的軟化過程。該反應發生的前提條件是:含水層中含有碳酸鹽礦物,CO2的分壓較高,含水層顆粒中含有大量的可交換的Na+

㈢ 9月14日以後生產的液態奶未發現三聚氰胺。

有有

㈣ 儀器分析論文

三聚氰胺檢測方法匯總
檢測方法
GC-MS法測定動物食品中的三聚氰胺
Spectra-Quad實現三聚氰胺含量在線檢測
超高效液相色譜_電噴霧串聯質譜法測定飼料中殘留的三聚氰胺
反相高效液相色譜法測定飼料中三聚氰胺的含量
高效液相色譜-二極體陣列法測定高蛋白食品中的三聚氰胺
高效液相色譜法(HPLC)測定飼料中三聚氰胺的含量
高效液相色譜-四極桿質譜聯用測定飼料中三聚氰胺含量
固相萃取與高效液相色譜聯用測定寵物食品中三聚氰胺
液相色譜串聯質譜法(LC-MSMS)分析寵物食品中三聚氰胺
液相色譜-串聯質譜法測定飼料中三聚氰胺殘留
GC-MS法測定動物食品中的三聚氰胺
附:三聚氰胺檢測方法示例
儀器與條件
高效液相色譜儀;二極體陣列檢測器(DAD),檢測波長240nm,柱溫:40℃。
(1)AgelaVenusilTMASBC18(4.6×250mm);緩沖液:10mM檸檬酸,10mM庚烷磺酸鈉;流動相:緩沖溶液:乙腈=85:15;流速:1.0mL/min。
(2)AgelaVenusilTMASBC8(4.6×250mm);流動相:緩沖液:乙腈=85:15;緩沖液:10mM檸檬酸,10mM辛烷磺酸鈉,調pH為3.0;流速:1.0mL/min;
離子交換固相萃取柱AgelaClearnertTMPCX
試劑與樣品
寵物飼料樣品(農業部飼料供應中心提供);甲醇、乙腈為北京艾傑爾科技有限公司提供;氨水、乙酸鉛、三氯乙酸、均購於北京化學試劑公司;三聚氰胺標准品、檸檬酸、辛烷磺酸鈉(Sigma公司);甲醇為色譜純,其他均為化學純。
實驗方法
1、樣品前處理方法
(1)標准樣品配製:
取50mg三聚氰胺標准品,以20%甲醇溶解定容至50mL得到1000ppm的標准溶液,使用時,以提取液(0.1%三氯乙酸)稀釋至所要的濃度。
(2)提取:
稱取飼料樣品5g,加入50ml0.1%三氯乙酸提取液,充分混勻,加入2mL2%乙酸鉛溶液,超聲20min。
然後取部分溶液轉移至10mL離心管中,8000rpm/min離心10min,取上清液3mL過混合型陽離子交換小柱(PCX)。
(3)凈化(PCX小柱,60mg/3mL):
a)活化及平衡:3mL甲醇,3mL水
b)上樣:加入提取液3mL
c)淋洗:3mL水;3mL甲醇;棄去淋洗液並將小柱抽干。
d)洗脫:5mL5%氨化甲醇(v/v)洗脫。(5%氨化甲醇的配製:5mL氨水+95mL甲醇)。
e)濃縮:50℃,氮氣吹乾,20%甲醇/水定容至2mL,HPLC分析或衍生後GC/MS分析。
2、三聚氰胺被立案
2.1三聚氰胺HPLC-UV檢測方法
三聚氰胺是強極性化合物,在傳統的反相C18柱上保留很差,需要用離子對試劑色譜方法才能有良好的保留與分離,按照美國食品葯品監督管理局(FDA)的三聚氰胺檢測方法和中國農業部公布的三聚氰胺檢測方法,採用艾傑爾(Agela)ASB系列親水色譜柱,可以得到良好的分離效果:
(a)色譜柱:VenusilASBC84.6×250mm;標准:FDA方法;流動相:緩沖液:乙腈=85:15;緩沖液:10mM檸檬酸,10mM辛烷磺酸鈉,調pH為3.0;流速:1.0mL/min;柱溫:40oC;波長:240nm
(b)色譜柱:VenusilASB-C184.6×250mm;標准:中國農業部頒標准方法;緩沖液:10mM檸檬酸,10mM庚烷磺酸鈉;流動相:緩沖溶液:乙腈=85:15;流速:1.0mL/min;柱溫:40℃;波長:240nm
空白加水平(mg/L)回收率0.01116%0.1108%0.592%296%
2.2三聚氰胺LC-MS檢測方法
由於FDA公布的HPLC-UV方法中,流動相添加了離子對試劑,因此限制了液質聯用方法的使用;但不用離子對試劑色譜方法,三聚氰胺在傳統的C18柱上保留很差,不能得到較好的分離定量〔3〕。
基於此問題,艾傑爾科技公司自主開發了新的方法,採用艾傑爾(Agela)ASB系列親水色譜柱,不用離子對試劑也能得到有效的保留與分離。因此方法中流動相不含離子對試劑,可以用於質譜檢測。
與FDA2007年4月公布的《(HPLC-UV)》相比較,該方法大大降低了最低檢測限(MSD:0.5ppm;UV:2ppm),提高了檢測靈敏度。
以該方法分別在ASB-C84.6×250mmASB-C184.6×250mm得到很好的譜圖。
緩沖液:10mM的NH4AC;流動相:Buffer::ACN=95:5;流速:1.0mL/min;進樣量:樣品先用70%ACN溶解成約1mg/mL,用ACN稀釋成0.1mg/mL,進10uL;柱溫:40℃;波長:240nm
結果與討論
1、陽離子交換柱(PCX)
三聚氰胺呈弱鹼性(弱陽離子化合物),凈化過程一般應選擇陽離子交換柱。混合型的陽離子交換柱(PCX)通過將磺酸基團(-SO3H)鍵合在極性高聚物聚苯乙烯/二乙烯苯(PEP)吸附劑上,具有陽離子交換和反相吸附兩種機理,並具有以下優點:
a)可通過兩種不同溶液的洗滌(水/一定pH值的緩沖溶液和有機溶劑),使樣品更干凈,提高檢測的靈敏度。
b)批次重復性好。
c)回收率高,重現性好,即使小柱跑干也可以得到較高回收率。
2、LC-MS方法優點:
(1)檢測過程簡便:無須添加離子對試劑,三聚氰胺就可得到良好的保留與分離,避免了配製離子對流動相的復雜過程。
(2)提高了檢測的靈敏度:無離子對試劑,可以用於質譜檢測器,大大降低了最低檢測限(MSD:0.5ppm;UV:2ppm)。
(3)降低了檢測成本:不用離子對試劑,就不再需要買價格較貴的離子對試劑了,從而降低了檢測成本。
(4)延長了色譜柱的使用壽命:避免了使用離子對試劑減少色譜柱壽命的影響。
(5)該方法所使用的色譜柱具有通用性:無論是用FDA方法、中國農業部部頒標准方法和本公司開發的LC-MS方法,使用艾傑爾(Agela)ASB系列親水色譜柱均能得到一個很好的檢測結果,從而給客戶提供了多種選擇空間。
國家食品質量監督檢測中心有關人士說,在現有的國家標准奶粉檢測中,主要進行蛋白質、脂肪、細菌等檢測。三聚氰胺屬於化工原料,是不允許添加到食品中的,所以現有標准不會包含相應內容。也就是說,三聚氰胺不屬於常規檢測項目,正常情況下,很少有人會想到去檢測它。

㈤ 硅膠的固相萃取小柱和自己裝填的硅膠凈化柱有什麼區別

大家千萬別買simon aldrich的固相萃取柱,根本沒這公司,國內小作坊冒充進口品牌的,質量很差。

閱讀全文

與混合型陽離子交換反向吸附劑相關的資料

熱點內容
上海醫院污水排放污染當量值 瀏覽:187
使用凈水器後怎麼處理 瀏覽:446
西安反滲透膜價格如何 瀏覽:117
樹脂淡奶勾兌火鍋湯 瀏覽:641
離子交換樹再生液用量 瀏覽:489
醋酸與鹽酸對水垢 瀏覽:850
純水機水質檢測軟硬度怎麼檢測 瀏覽:942
洗車污水回收設備價格 瀏覽:962
吉林污水提升裝置代理 瀏覽:818
生產硅烷偶聯劑的工廠生產廢水 瀏覽:616
前置過濾器的濾芯是什麼樣的 瀏覽:805
全球污水排放總量 瀏覽:12
污水泵的口徑怎麼算 瀏覽:250
反沖洗前置過濾器要排污嗎 瀏覽:276
污水處理廠處理污泥的工藝流程 瀏覽:860
在常溫下純水的密度是多少 瀏覽:12
循環水物理除垢優缺點 瀏覽:235
電瓶用蒸餾水哪裡買 瀏覽:38
朗詩德反滲透簡介 瀏覽:546
溫嶺污水怎麼處理的 瀏覽:562