㈠ 各種樹脂型號和用途!有多少種
樹脂按來源分有天然樹脂和合成樹脂兩種。
天然樹脂是指由自然界中動植物分泌物所得的無定形有機物質,如松香、琥珀、蟲膠等。主要用作塗料(見天然樹脂塗料),也可用於造紙、絕緣材料、膠粘劑、醫葯、香料等的生產過程。
合成樹脂是指由簡單有機物經化學合成或某些天然產物經化學反應而得到的樹脂產物,如酚醛樹脂、聚氯乙烯樹脂等,其中合成樹脂是塑料的主要成分。
(1)離子交換樹脂HP20擴展閱讀:
樹脂環保燙鑽主要的產品系列有: 樹脂環保燙鑽,樹脂,樹脂燙鑽,仿奧地利切面鑽中東切面鑽,仿奧鑽,異形鑽,光面鑽,水滴,心形,馬眼,桃心鑽,圓形等等各種樹脂燙鑽。
各種可燙樹脂鑽及仿奧地利切面鑽中東切面鑽,採用進口技術生產,種類齊全、品質一流。可生產切面樹脂鑽、光面樹脂和異形樹脂鑽等等各種形狀;產品具有精度高,亮度好,稜角清,不易磨損,不易刮傷,顏色豐富,形狀效果多樣,環保自然等優點。
㈡ 什麼東西可以去除水裡的雜質呢
從網上搜集的,共同學習吧,希望對你有所幫助。
一、水的來源及含雜質情況
水對很多物質都有良好的溶解能力,這就造成水中容易混入雜質的缺點。
從自然界得到的水中往往含有許多雜質,這些雜質或者溶解或者懸浮在水中。懸浮在水中的無機物包括少量砂土和煤灰;有機懸浮物包括有機物的殘渣及各種微生物。溶解在水中的氣體包括來自空氣中的氧氣、二氧化碳、氮氣和工業排放的氣體污染物如氨、硫氧化物、氮氧化物、硫化氫、氯氣等;溶解在水中的無機鹽類主要有碳酸鈣、碳酸氫鈣、硫酸鈣、氯化鈣以及相應的鎂鹽、鈉鹽、鉀鹽、鐵鹽、錳鹽和其他金屬離子的鹽,溶解的有機物,主要是動植物分解的產物。
由於天然水的來源不同,其中溶解的雜質也不盡相同。下面分別加以介紹。
(1)雨水 雨水是天空中水蒸氣凝聚而成,總的來說雨水中含雜質較少,是含鈣、鎂離子較少的軟水。但也溶解有一部分來自空氣的少量氧氣、二氧化碳和十定量的塵埃。還可能含有由雷電作用產生的含氮化合物。在城市上空受工業廢氣污染可能含有二氧化硫,這種雨水有酸性,俗稱酸雨,有較強的腐蝕性。
(2)江河水 河流是降水經過地面流動匯集而成的。它在發源地可能受高山冰雪或冰川的補給,沿途可能與地下水相互交流。由於江河流域面積十分廣闊,又是敞開流動的水體,所以江河水的水質成分與地區和氣候條件關系密切i而且受生物活動尋口人類社會活動的影響最大。
(3)湖泊水 湖泊是由河流及地下水補給而在低窪地帶形成的。湖泊的水質與它來源的水質有一定關系,但又不完全相同。日照及蒸發的強度也強烈影響湖泊的水質。如果蒸發強烈水中溶解物濃度就會逐漸增加,特別是水中含有的硝酸鹽、磷酸鹽的濃度增加時,會帶來水質富營養化的傾向,造成水生植物過度生長,水中含氧量降低,會使水腐敗變質。
(4)地下水 地下水是降水或地表水經過土壤地層滲流而形成的。十般地下水經過土壤地層的過濾,所含懸浮雜質較少,常為清澈透明;受地面污染蠖少因而含有機,物及細菌相對較少;但一般溶解的無機鹽含量較高,硬度和含礦物質高;有的地區地下水含可溶性二價鐵鹽異常高,由於二價鐵離子不穩定易氧化成三價鐵離子並生成不溶性三價鐵鹽或氫氧化鐵沉澱,所以在利用這種地下水之前,需要經過曝氣處理以分離去除所含的鐵離子。
(5)自來水 經過水廠處理得到的自來水,應該達到適合飲用水的標准,但其中仍有少量雜質。
表5—4 天然水中的雜質
來源
懸浮物
膠體
氣體
非離子固體
陽離子
陰離子
從礦物,土壤和岩石中來的
粘土、砂礫、
其他無機的土壤污物
粘土
SiO2
Fe2O3
Al2O2
MnO2
CO2
Ca2+、Mg2+
Na+、K+
Fe2+、Mn2+
Zn2+、Cu2+
HCO3-、Cl-
SO42-、NO3-
CO32-、HSiO3-
H2BO3-、HPO42-
H2PO4-、OH-、F-
從大氣中來
NH3、N2、
O2、CO2、
SO2
HCO3-、
SO42-
從有機物分解現時來
有機污物、有機廢水
蔬菜的色素物質,有機廢水
O2、NH3
CO2、N2
H2S、CH4
H2
蔬菜色素物質,有機廢水
Na+
NH4+
H+
Cl-
HCO3-
NO2-、NO3-
OH-、HS-
其他有機陰離子
活的微生物
魚、藻、微生物、硅藻
細菌、藻類、病毒、硅藻
從表5—4可看出,天然水中雜質主要分為兩大類,即懸浮雜質和溶解雜質。懸浮雜質包括懸浮物和膠體;溶解雜質包括氣體』、司巨電解質和電解質固.體,其中電解質雜質以離子狀態存
在於水中。天然水中雜質來自於四個方面:即從礦物、土壤和岩石中溶入的;從空氣中帶入的;有機物分解帶人的和活的微生物產生的。
二、雜質對水質的不良影響
1.水中溶解的氣體
水中熔解的氣體主要有氮氣、氧氣、二氧化碳、氨二氧化硫和硫化氫等。對水質影響較大的氧氣、二氧化碳、氨、二氧化硫和硫化氫;
(1)氧氣 水中溶解的氧氣常是造成工業生產中鍋爐等金屬設備腐蝕的原因d:溶解氧不僅可以引起金屬的化學腐蝕,而且由於水中氧濃度分布不均勻還會導致危害更大的電化學腐蝕。水中氧濃度分布不均的區域稱為氧濃差區域l氧濃度較高的區域稱為高氧區廣氧濃度較低的區域稱為貧氧區;由於氧濃度的不伺在金屬表面形成濃差電池發生電化學腐蝕時i牛富氧區是腐蝕電池的陰極,貧氧區是電池的陽極;由於氣體在水中擴散十分緩、慢十因此水的深度不同會產生氧濃差。離水面較深的區域,一旦氧氣被消耗不能及時得到補充成為貧氧區,而在水面附近與空氣接觸、易溶入氧氣形成富氧區;而在攪動邢流動的水中雖然象水的流動,氧的濃度比較均勻卜但在水中某些部位廠水流動受阻,會成為水的滯流區,因此也會形成貧氧區和濃度差而造成電化學腐蝕。
在化工生產的動力鍋爐用水中士溶解氧濃度是一項重要監測指標,鍋爐水中微量溶解氧存在時會使鋼鐵表面鈍化膜破裂而導致嚴重的點蝕或局部腐蝕主因此必須除去水中;的溶解氧,而且鍋爐壓力越高,÷允許殘留在水中的氧濃度就越低。通常的作法是先用蒸氣加熱的方法脫 氧再加入聯氨;亞硫酸鈉之類的還原劑:與氧反應使氧濃度進扒步下降,當含氧量小於0.005mg/L時,一般不會引起鍋爐腐蝕。
(2)二氧化碳 溶於水中二氧化碳一方面對水的pH值產生影響,含CO2多的水顯酸性,會導致金屬設備的腐蝕,為此工業生產中在水中加入環己胺或嗎福啉等揮發性鹼來調節水的pH值以防止二氧化碳腐蝕。
另一方面在水溶液中二氧化碳、碳酸氫根和碳酸根離子濃度之間存在一個平衡關系:溶於水的二氧化碳(H2CO:)在水中發生兩級電離,
一級電離為:
一級電離平衡常數 (5—2)
二級電離為:
二級電離平衡常數 (5—3)
計算表明,當pH<8.3即氫離子濃度cH+=4.7X10-9mol/L時,溶液中主要以H2CO3,和HCOi-3離子形式存在,COi2-3離子濃度低。而水中COi—離子和Ca2+離子濃度過高是造成水垢產生的原因,因此要把水溶液控制在一個近中性(pH=7)的合適范圍,既不引起金屬腐蝕,也防止碳酸鹽水垢的產生。
(3)氨氣 氨氣是易溶於水的鹼性物質,通常水中含氨量很少,不會對水質造成影響,但是當水中含蛋白質等含氮有機物較高時,在微生物作用下可分解產生氨。氨在潮濕空氣中或含氧水中會引起銅和銅合金腐蝕。氨與銅離子能形成穩定絡合物而降低了銅的氧化還原電極電位使銅易被氧化腐蝕,導致銅質工業設備損壞。
(4)硫化氫和二氧化硫 溶於水中的二氧化硫和硫化氫都使水顯酸性,其中硫化氫的危害更大些,這是因為硫離子有強烈的促進金屬腐蝕的作用。工業生產設備中與水接觸的碳鋼表面出現「鼓泡」等腐蝕現象,主要是硫化氫作用的結果。硫化氫有強還原性,會與水中的氧化性殺菌劑或鉻酸鹽等強氧化性緩蝕劑反應而使它們失效。另外許多金屬硫化物在水中溶解度很低,所以硫化氫是一種金屬離子沉澱劑,會使含鋅等金屬離子緩蝕劑形成硫化物沉澱而失效。因此要盡力減少水中硫化氫的含量。
2。水中溶解的無機鹽類
(1)無機鹽在水中的溶解性規律 無機鹽在水中溶解度受溫度影響的變化規律分為三類:絕大多數鹽的溶解度都是隨溫度升高而增加的;有些鹽溶解度受溫度變化的影響不顯著(如食鹽);也有些鹽類溶解度是隨溫度升高而下降的,屬於這一類的有碳酸鈣、硫酸鈣、碳酸鎂等微溶和難溶鹽,因此在受熱過程中,這些鹽特別容易形成水垢。
(2)溶鹽含量的表示方法 常用mg/L(ppm)表示溶解鹽(或離子)的含量。如lm水中含有鈣離子40g相當於40mg/L(Ca2+),有時用mg/L(CaC03)表示,即摺合成每升水中含碳酸鈣多少毫克。由於Ca的相對原子質量為40,而CaCO3的相對分子質量為100,所以40mg/L(Ca2+)相當於100mg/L(CaC03)。目前通常用mg/L(CaC03)作為水硬度的單位, lmg/L(CaC02)叫1度。
(3)總溶固含量和電導率 總溶固含量(TDS)是水質控制的第一個重要指標。溶於水的總固體物質包括鹽類和可溶性有機物,但後者在水中含量一般很低:實際上總溶固量就是水中溶解鹽的數量,根據水中的總溶固量的不同而將水質分為淡水、鹹水、高鹽水三類。
測定水中總固含量需把水蒸至干,很費時間。由於水中溶解的鹽有導電能力,含鹽量高導電力強,因此直接測定溶液的導電率即可換算出總溶固含量。電導率是一定體積溶液的電導,是溶液電阻率的倒數。對於同一類型淡水,在pH=5~9范圍,電導率是與總溶固含量大 致成線性關系。電導率測定通常在25℃恆溫下進行,溫度變化l℃,電導率可有2%變化量鍋爐壓力越高,要求控制電導率越低,即總溶固含量越低。
(4)鈣鎂離子與硬度 一般從自然界得到的水都溶有一定的可溶性鈣鹽和鎂鹽,這種含可溶性鈣鹽、鎂鹽較多的水稱為硬水。又根據鈣鹽、鎂鹽具體種類的不同,又分為暫時硬水和永久硬水。含有碳酸氫鈣和碳酸氫鎂的硬水在煮沸過程中會變成碳酸鹽沉澱析出,所 以把這種硬水叫做暫時硬水;而把含鈣、鎂的硫酸鹽、氯化物的硬水稱為永久硬水,因為它們在煮沸時也不會析出。而把含鈣、鎂離子少的水稱為軟水。
水中含鈣;鎂離子這種雜質時對洗滌危害是較大的。鈣、鎂離子會使肥皂和一些合成洗滌劑的洗滌效力大為降低。肥皂中含有的高碳脂肪酸根(如硬脂肪酸根)會與鈣、鎂離子生成不溶性的硬脂酸鈣(俗稱鈣皂)或硬脂酸鎂,而使肥皂失去洗滌去污的作用。同時生成的鈣皂沉澱物會牢固地附著在洗滌對象的表面,不易去除,嚴重影響洗滌質量:
2C17H35COONa+Ca2+=====(C17H35COO)2Ca↓+2Na+
同樣,合成洗滌劑、烷基苯磺酸鈉雖有一定的耐硬水能力,但也會與鈣、鎂離子發生反應:
原來十二烷基苯磺酸鈉是易溶於水的,當形成十二烷基苯磺酸鈣之後則不易溶於水,只能在一定程度上分散在水中。因此洗滌時最好使用含鈣、鎂離子少的軟水。
水的硬度是反映水中含鈣、鎂鹽特性的一種質量指標。把水中含有的碳酸氫鈣、碳酸氫鎂的量叫碳酸鹽硬度。由於將水煮沸時,這些鹽可分解成碳酸鹽沉澱析出,故又稱之為暫時硬度。把水中含有的鈣、鎂硫酸鹽及氯化物的量叫非碳酸鹽硬度,因為用煮沸方法不能除掉這些鹽,故又稱為永久硬度。把上述兩類硬度的總和稱為總硬度。
世界各國雖都規定有自己的硬度單位標准,但通常把一百萬份水中含一份碳酸鈣作為硬度單位(即lkg水中含有lmg碳酸鈣)。
水的硬度與水質的關系如表5—5所示。
表5-5 水的硬度分級
水質
硬度/(CaCO3mg/kg)
水技
硬度/(CaCO3mg/kg
很軟的水
軟水
較軟的水
0~40
40~80
80~120
較硬功夫的水
硬水
很硬的水
120~180
180~300
300以上
[page]
硬水對肥皂的洗滌性能影響很大。有實驗結果表明,用硬脂酸鈉製成的肥皂,以硬度為、100的水配成質量分數為0.2%的溶液時,大約有1/4的硬脂酸鈉轉變成沒有滌滌作用硬脂酸鈣,而且它們會沾附在洗滌對象表面造成污染。假如用硬度為200的水配製上述溶液時,肥皂的起泡性和洗滌效果都受到很大影響,甚至用眼看,手摸都能感覺到鈣皂沉澱的存在。
硬水不僅不適合做洗滌用水,也不適合作鍋爐用水,它容易產生水垢,使鍋爐熱效率降低,甚至引起鍋爐爆炸。因此必須把硬水進行軟化處理。
(5)鐵離子的危害 水中含鐵量過高時,飲用時有發腥發澀的感覺,用於洗滌衣物和瓷器會染上黃色。水牛鐵離子包括Fe2+、Fe3+兩種形式。由於Fe(OH)3溶度積很小,所以在中性水中Fe3+都是以膠體狀態的氫氧化鐵形式懸浮於水中,會相互作用凝聚沉積在鍋爐房金屬表面形成難以去除的銹垢,並弓[發金屬進一步腐蝕。而溶在水中的FeZ+的危害作用在於它是水中鐵細菌的營養源,Fe2+含量過多會引起鐵細菌的滋生。Fe2+與磷酸根離子結合形成的磷酸亞鐵是粘著性很強的污垢。而且Fe2+能在碳酸鈣過飽和溶液中起到晶核作用,能加快碳酸鈣沉澱的結晶速度。因此在水中要嚴格控制含鐵量。
(6)銅離子的危害 雖然銅離子在水中含量一般不高,但它對金屬腐蝕有明顯影響。由於銅離子易被鐵、鋅、鋁等活潑金屬還原成金屬銅,而在金屬表面形成以銅為陰極的微電池,引發金屬電化學腐蝕,造成金屬的點蝕而穿孔,因此要嚴格控制水中含銅量。
(7)水中的陰離子與鹼度 水中含有的陰離子有OH-、C02-、PO3-4、Si02-3、C1-和SO24離子等,其中能引起金屬腐蝕是通常在水中含量較高的C1-離子。研究表明,C1-離子雖然並沒有直接參加電極反應,但能明顯加速腐蝕速度,這可能是與C1-離子容易變形發生離子極化,極化後的Cl-離子具有較高極性和穿透性有關。由於它的高極性和穿透性使Cl-離子易於吸附在金屬表面,並滲入到金屬表面氧化膜保護層內部,造成破壞而導致腐蝕發生。
鹼度是指水中能與H+發生反應的物質總量。水中能與H+發生反應的物質包括OH-、CO2-3、HCO-3、HP02-4、H2PO-4、HSi0-3等陰離子和NH3,測量鹼度時,加入酚酞指示劑,用強酸滴定到紅色褪去所消耗酸的數量叫酚酞鹼度。加入甲基橙指示劑用強酸滴定至溶液顯紅色所消耗的酸的總量叫甲基橙鹼度或總鹼度。甲基橙鹼度總是大於酚酞鹼度的。根據兩者的關系可判斷水中OH-、C02-3、HCO-3離子的相對含量。
滴至酚酞變色發生的反應是:
而進一步滴定至甲基橙變色發生的反應是:
由於將C02-3滴定至HCO-3,與將HCO-3滴定至H2CO3所消耗的酸量相等,而OH-與HC0-3不能同時共存於溶液,因此當酚酞鹼度等於甲基橙鹼度時,說明溶液中只有OH-,沒有HC0-3、CO2-3離子,當甲基橙鹼度等於酚酞鹼度二倍時,說明溶液中只有C02-3離子。而當甲基橙鹼度小於酚酞鹼度二倍時,說明溶液中有OH-、C02-3,沒有HCO-3(因為OH-與HCO-3不能同時存在於同一溶液中)。
由於OH-、C02-3、HC0-3離子與鈣鎂離子一樣都是成垢離子的來源,為了防止結垢就必須控制溶液的硬度和鹼度。因此鹼度也是水質控制的重要指標。
3.水中其他雜質的危害
(1)油污 水中含有油污,一方面它會粘附在金屬表面上影響金屬的傳熱效率,還會阻止緩蝕劑與金屬表面充分接觸,使金屬不能受到很好的保護而腐蝕。還會對水中各種污垢起粘結劑作用加速污垢的形成和聚積。油污還是微生物的營養源會加快微生物的滋生和形成微生物粘泥,因此水中含油量必須嚴格控制。
(2)二氧化硅 水中溶解少量以硅酸或可溶性硅酸鹽形式存在的二氧化硅對金屬的腐蝕有一定的緩蝕作用。但含量過高時會形成鈣鎂的硅酸鹽水垢或二氧化硅水垢。這種水垢熱阻大、難以去除對鍋爐危害特別大,因此要嚴格加以控制。
三、水的凈化與純化
1.硬水軟化
把硬水轉變成軟水的過程叫硬水軟化。軟化硬水的方法較多,有加熱法、化學沉澱法和離子交換法。目前廣泛採用的是離子交換法,即用離子交換劑來軟化硬水的方法。過去曾用過磺化煤、泡沸石來軟化硬水,目前普遍使用的離子交換劑是高分子離子交換樹月旨,它是有交換離子能力的高分子化合物。它是由不溶於水的交換劑本體及能在水中解離的活性交換基團兩個基本部分組成。根據可交換的離子是陽離子或陰離子而分別稱為陌離子交換樹脂和陰離子交換樹脂,如通常使用的苯乙烯型離子交換樹脂,它的交換劑本體是由苯乙烯與部分對苯二乙烯共聚而成的不溶性高聚物。當本體上連有磺酸基(一SO-3Na+)或季銨基[一N+ (CH3)3Cl-]後則分別具有交換陽離子或陰離子的能力。
用離子交換樹脂軟化硬水分為兩步:處理工程和再生工程。
當硬水通過陽離子交換樹脂時,水中的鈣、鎂離子與陽離子交換樹脂上的活性基團鈉離 —B子發生交換並被吸附,使水軟化:
口一(S03Na)2+Ca2+——>口一(SO3)2·Ca+2Na+ (處理工程)
當陽離子交換樹脂上的鈉離子幾乎全部被鈣、鎂離子所交換時就失去了交換離子的能力;必須通過再生恢復它的交換能力。通常使用食鹽為再生劑,再生過程中先用清水洗滌離子交換樹脂,然後通人質量分數為10%的食鹽水浸泡而使離子交換樹脂吸附的鈣、鎂離子解吸下來,然後隨廢液排出。
口一(S03)2Ca+2Na+——>口一(S03Na)2+a2+ (再生工程)
在離子交換過程中,不僅鈣、鎂離子會被交換,水中含有的鐵、錳、鋁等金屬離子也可同舊寸被交換去除。當硬水先後通過陽、陰離子交換樹脂後;水中的電解質陽、陰離子基本均可被去除,這種方法得到的軟水叫去離子水。見圖5—3。
圖5—3 離子交換樹脂軟化硬水示意圖
一般鍋爐中使用的軟水,精密工業清洗領域使用的洗滌及沖洗用水,大都是採用離子交換樹脂法製得的。這種方法簡便、成本低,水中的離子性雜質基本被去除,在許多場合去離子水被用來代替成本較高的蒸餾水使用。
目前中國大型工礦軟化水大都仍採用石灰法。其他軟化方法成本較高只適用於少量水系統。用石灰可以去除水中的二氧化碳和碳酸氫鈣、碳酸氫鎂。
Ca(OH)2+C02====CaCO3↓+H20
Ca(HCO3)2+Ca(OH)2====2CaCO3↓+2H20
Mg(HCO3)2+2Ca(OH)2====Mg(OH)2↓+2CaCO3↓+2H20
有時為了去除非碳酸鹽硬度(如CaSO+,CaCl。等)要配合加入適量Na2CO汁
CaSO4+Na2C03=CaCO3+Na2S04
MgSO4+Na2CO3+Ca(OH)2====Mg(OH)2+CaCO↓+Na2SO4
2.混凝劑去除懸浮膠體
為了去除水中懸浮粘土和膠體要加入混凝劑。分散很細的粘土膠體,單靠重力沉降很難從水中分離。混凝劑的作用在於通過吸附作用使細小粘土顆粒聚集在一起首先形成直徑在1μm的聚集體,再通過化學粘結、共同沉澱等作用使聚集體進一步聚集成羊毛絨狀的絮狀體。絮狀體在重力作用下可以發生沉降而被去除。
工業上常用的無機混凝劑有硫酸鋁[A12(SO4)·18H20l鋁銨礬[Al2(SO4)·(NH4)2SO4·24H20]孔氯化鋁(A1C13);—鋁鉀礬[A12(SO4)3·K2SO4· 24H20]三氯化鐵(FeCl3),綠礬(FeSO4·H20),硫酸高鐵等。
有機絮凝劑有聚丙烯醯胺等。
無機混凝劑的作用機理是鋁、鐵離子在水中發生水解,形成單核或多核的羥基絡離子:
這些永解產物有混凝作用,它們可以把表面帶負電荷的粘土顆粒的雙電層壓縮,使所節凈負電荷減少。當鋁、鐵離子形成氫氧化鐵或氫氧化鋁等絮狀沉澱物時會把粘土顆粒卷掃攜同沉澱。它們也可以通過吸附架橋作用把粘土顆粒連在一起形成聚集體。
聚丙烯醯胺等有機高分子絮凝劑主要通過架橋作用使粘土顆粒絮凝沉澱,當聚合物分子與膠體粒子接觸時,聚合物分子的一些基團吸附到膠體粒子表面,而聚合物分子的剩餘部分仍留在溶液中。一個聚合物分子有多個位置可與膠體粒子發生吸附,當聚合物分子同時與多個膠體粒子發生吸附作用時就會發生架橋作用,把膠體粒子聚集在一起,並在重力作用下形成沉澱,如圖5—4所示。
經過混凝處理之後的水再通過細砂、活性炭組成的過濾池就可把水中懸浮顆粒基本去除。
3.純水和超純水
由於現代工業技術的發展,對水質提出日益嚴格的要求,因而直接採用批水作原料、工藝用水或生產過程用水的部門逐漸增多,製造純水的技術也相應得到迅速發展。
所謂純水並非指化學純的水,而是指在千定程度上去除了各種雜質的水。用離子交換法主要去除的是水的硬度(Ca2+、Mg2+),而並沒有把水中包括非硬度鹽在內的所有強電解質者陸除,而且水中還存在硅酸等弱電解質以及氣體、膠體、有機物、細菌等雜質,根據這些雜質的去除程度把純水又分為除鹽水、純水和超純水幾個等級。
按生產工藝的實際需要,許多部門都提出了對純水的。要求。如在醫葯、精.製糖、高級紙製造、合成纖維、電影膠片、電子工業、高壓鍋爐用水以及其他部門都要求使用除鹽水或純水。而在超高壓鍋爐、高絕緣材料、精密電子元件、原子能工業等則要求使用超純水。在精密工業清洗的許多領域,水中含有微量雜質都會影響製品的精度,如屬於最先進的精密工業的光學儀器、電子機械、半導體元件等領域,洗滌後沖洗用水中存在的微量雜質在乾燥之後會在被洗物表面形成污點或斑跡,這是造成元件表面覆蓋膜會存在氣孔的原因,也是造成其導電性變差,機械性能變壞的原因。電子工業中一些精密元件的製造和清洗都要求使用高純水心口果電子管陰極塗面混入雜質則會影響電子發射;在電視攝像管和電視機熒光屏製造過程中混入微量銅、鐵等金屬就會使畫面變色。在半導體晶體管製造、集成電路蝕刻過程中對水質要求更高。
測量水的純度有多種指標,而電·阻率是通常衡量水純度的重要指標。水的電阻率早與水中含有的離子性雜質多少直接有關的。因為水中溶解的各種鹽都是以離子狀態存在而具有導電能力的。水的導電能力越強<電阻率越低)說胡含有離子性雜質越多,而電阻率越高則說明水越純。理論上不含離子性雜質的純水可達到電阻率的極限為18.3M∏·cm(25℃)。只有經過蒸餾的純水的電阻率才能達到這個標准。讀者可根據表5—6了解各種水的電阻率與所含離子性雜質的關系。
下面列出天然水經處理後其中含鹽量。
除鹽水是指水中包括非硬度鹽類的各種電解質都去除到一定程度的水,其含鹽量在1~5mg/L范圍。
純水又稱深度除鹽水,其中不僅除去了強電解質,而且大部分硅酸和二氧化碳等弱電解質也已除去,含鹽量降至1.0mg兒以下。
超純水要求把水中的氣體、膠體、有機物、…細菌等各種雜質都去除到最低限度,達到工業上可達到的最高純度,此時水中的含鹽量降低到0.tmg/i以下。見表5—?。
表5-7 超純水水質標准(電子工業甲)
項目
ASTM①
SEMI②
項目
ASTM①
SEMI②
電陰率/M∏·cm(25℃)
微粒數/(個/cm3)
細菌數/(個/L)
SiO2(μg/L)
TOC(總有機碳)/(μg/L)
18
2(粒徑<
1μm)
10
75
200
17
1000(粒徑<
0.8μm)
2(菌族)
5(膠體)
75
銅/(μg/L)
氯離子/(μg/L)
鉀郭子/(μg/L)
鈉離子/(μg/L)
鋅/(μg/L)
TDS③/(μg/L)
2
10
2
2
10
10
2
20
1
1
1
15
①ASTM:美國材料試驗標准。
②SEMI:電子材料工業標准。
⑧TDS:可溶性固體總含量·
超純水的製造系統通常由以下幾個步驟組成。
(1)前處理 目的為減少後續處理步驟的負荷,包括凝聚沉澱、精密過濾、活性炭吸附層過濾等步驟,使水中含有的較粗大顆粒雜質得以去除。
(2)離子交換處理 通過離子交換樹脂脫除各種可溶的離子性雜質,為了去除鈣、鎂離子以外的其他非硬度強電解質離子;·有時要增加高性能的離子交換裝置;
(3)超濾膜處理 目的在於去除懸浮在水中的各種微小雜質(包括細菌、有機物殘渣)。
(4)反滲透處理 將超濾膜無法去除的更微小的可溶性雜質(如可溶性蛋白質)加以去除。應詞注意,反滲透處理工藝使用的半透膜耐壓壽命較短+應當盡量減少此種半透膜的負荷:
(5)紫外燈處理 利用紫外線的殺菌作用對水牛微生物進行殺滅。
其整個處理流程如圖5—5所示。
圖5—5 超純水制連流程圖
製造超純水時,應考慮到不銹鋼和玻璃器材雖然耐水腐蝕性很好,但仍會在水中溶解邱微量離子性雜質.,因此製造超純水生產路線的管道以及各種反應容器應該使用對水更加穩定
的氟樹脂和其他塑料來製造。 同時在保存、使用超純水的過程中,會因種種原因使水的純度降低,比如由於靜電弓I力而附著在容器上的污垢落入水中,微量的食鹽或其他電解質溶解到水中,二氧化碳氣體溶解到水中,都會使純水的純度下降導:電性增加,所以在保存過程中要十分小心。
㈢ 釤-釹法同位素年齡分析流程
方法提要
氫氟酸+高氯酸溶樣。化學分離分兩步進行,首先在陽離子樹脂交換柱上分離總稀土元素,然後採用離子交換法或萃取色層法從總稀土元素中分出釹、釤。熱電離質譜計(TIMS)上測出試樣的143Nd/144Nd比值,同位素稀釋法測定釤、釹含量(目的是測147Sm/144Nd比值),最小二乘擬合計算等時線年齡,同時給出釹同位素初始比值,或僅計算單個試樣的釹模式年齡。高精度的同位素分析和測定等時線年齡時合理選擇試樣,是測定工作成敗的關鍵。
本方法對測定精度要求,147Sm/144Nd比值相對誤差0.5%~1%,143Nd/144Nd比值相對誤差1×10-5~3×10-5,等時線年齡在100~1000Ma內,95%置信度,相對誤差小於2%~5%。
儀器裝置和器皿
熱電離質譜計MAT260、MAT261、MAT262、VG354、TRITON等相當類型。
點焊機質譜計的配套設備。
質譜計燈絲預熱裝置質譜計的配套設備。
聚四氟乙烯燒杯10mL與30mL。
氟塑料(F46)試劑瓶500mL、1000mL與2000mL。
聚乙烯塑料洗瓶250mL、500mL、1000mL。
氟塑料(F46)滴瓶30mL。
氟塑料(F46)燒杯30mL、50mL與250mL。
氟塑料(F46)對口雙瓶亞沸蒸餾器1000mL。
石英試劑瓶2000mL。
石英亞沸蒸餾器。
石英減壓亞沸蒸餾器。
石英交換柱內 徑6mm,高300mm,上部接內徑20mm高110mm敞口容器,尾端內嵌石英篩板,要求上面的樹脂不泄漏,溶液滴速適當,樹脂床直徑6mm,高100mm,13或16支為一組,用於總稀土元素分離。
石英交換柱 內徑2mm,高350mm,上部接內徑16mm高50mm小口容器,尾端內嵌氟塑料篩板,要求上面的樹脂不泄漏,溶液滴速適當,樹脂床直徑2mm,高300mm,13或16支為一組,用於α-HIBA離子交換分離。
石英交換柱 內徑8mm,高180mm,上部接內徑20mm高60mm敞口容器,尾端內嵌石英篩板,要求上面的樹脂不泄漏,溶液滴速適當,樹脂床直徑8mm,高100mm,13或16支為一組,用於萃取色層法釹、釤分離。
石英交換柱 內徑30mm,高400mm,上接敞口容器,下端塞聚四氟乙烯纖維,用於陽離子樹脂的預處理。
氟塑料(PFA)密封溶樣器 15mL。
高壓釜 包括30mL聚四氟乙烯悶罐、熱縮套、不銹鋼外套。
石英滴管。
石英量筒(杯)10mL、50mL。
硬脂玻璃量筒1000mL。
三角玻璃瓶250mL。
玻璃燒杯3000mL。
水純化系統。
分析天平感量0.00001mg。
酸度計測量精度pH±0.02。
磁力攪拌機。
電熱板(溫度可控)。
超聲波清洗器。
不銹鋼恆溫烘箱<300℃。
高速離心機。
聚乙烯或石英離心管。
乾燥器。
微量取樣器10μL與50μL。
器皿清洗
所有使用的氟塑料與石英器皿,用(1+1)優級純鹽酸和優級純硝酸先後在電爐上於亞沸狀態下各煮2h,去離子水沖洗後又用去離子水煮沸1h,再用超純水一隻只沖洗,超凈工作櫃中電熱板上烤乾。第一次使用的新器皿在用酸煮沸前,需先用洗滌劑擦洗。
試劑與材料
去離子水二次蒸餾水再經Milli-Q水純化系統純化。
超純水去離子水經石英蒸餾器蒸餾。
超純鹽酸用(1+1)優級純鹽酸經石英蒸餾器亞沸蒸餾純化,實際濃度用氫氧化鈉標准溶液標定。進一步用超純水配製為需求濃度。
超純硝酸用(1+1)優級純硝酸經石英蒸餾器亞沸蒸餾純化,實際濃度用氫氧化鈉標准溶液標定。進一步用超純水配製為需求濃度。
超純氫氟酸用優級純氫氟酸經對口氟塑料(F46)雙瓶亞沸蒸餾器制備。
超純高氯酸用優級純高氯酸經石英蒸餾器減壓亞沸蒸餾制備。
丙酮優級純。
無水乙醇分析純。
超純氫氧化銨用高純氫氧化銨在密封乾燥器中平衡法制備。
200~400目AG50×8或Dowex50×8強酸性陽離子交換樹脂,或其他性能相似、性能更好的樹脂。
α-羥基異丁酸(α-HIBA)分析純。
二-2-乙基己基正膦酸(HDEHP,P204)分析純。
P204(HDEHP)萃淋樹脂。
P507(HEHEHP)萃淋樹脂。
聚四氟乙烯粉末。
200~400目AG1×8或Dowex1×8強鹼性陰離子交換樹脂。
鈾試劑Ⅲ(偶氮胂Ⅲ)溶液(wB=0.08%)用分析純固體鈾試劑Ⅲ與超純水配製。
145Nd或146Nd稀釋劑富集145Nd或146Nd同位素的固體氧化釹(Nd2O3)。
149Sm或147Sm稀釋劑富集149Sm或147Sm同位素的固體氧化釤(Sm2O3)。
145Nd(或146Nd)+149Sm(或147Sm)混合稀釋劑溶液溶液配製與濃度標定見附錄86.3A。
普通氧化釹(Nd2O3)光譜純基準物質,保存在乾燥器中。
普通氧化釤(Sm2O3)光譜純,基準物質,保存在乾燥器中。
GBW04419全岩,釤-釹法國家一級標准物質。
實驗室專用薄膜(Parafilm)。
超純硝酸c(HNO3)=3.5mol/L用高濃度超純硝酸和超純水配製。
錸帶規格18mm×0.03mm×0.8mm
試樣分解
操作程序分兩種情況:①釤、釹含量的稀釋法測定(ID)和釹同位素組成(IC)測定,分別稱樣、溶樣。②一次稱樣、溶樣,但是在試樣完全分解後將溶液分成ID和IC兩個分樣。前者適用於均勻性好的試樣,後者多用於均勻性差的試樣。
1)當分別溶樣時,ID測定是在PFA密封溶樣器中稱取0.05g(精確至0.00001g)粉末樣,按最佳稀釋度要求加0.1~0.15g145Nd+149Sm混合稀釋劑溶液(精確至0.00001g),輕微晃動使試樣充分散開,加5mL左右超純氫氟酸和幾滴超純高氯酸;IC測定是在PFA密封溶樣器中稱取0.1~0.2g粉末樣,加5~8mL超純氫氟酸和幾滴超純高氯酸,在大量酸加入前先加入少量,同樣輕微地晃動使試樣充分散開。緊密蓋上溶樣器蓋子,置於電熱板上於150℃溫度下加熱分解,在加熱過程中也需要經常輕微搖動溶樣器,加速試樣分解。當試樣完全分解後打開蓋子蒸干溶液,升高電熱板溫度(180℃左右)趕盡多餘氫氟酸和高氯酸,用2mL6mol/L超純鹽酸淋洗溶樣器內壁,蒸干,再用5mL2.5mol/L超純鹽酸溶解乾涸物,此時溶液很清亮,准備上柱。如果溶液出現渾濁或殘渣需進行離心分離,取上部清液上柱。
2)當ID、IC測定採用一次溶樣時,先稱取0.2g(精確至0.00001g)粉末樣,以後的試樣分解過程與前面程序相同。在試樣完全分解、被處理成5mL左右的清液後,在天平上大致按1∶2的比例將溶液分成ID和IC兩個分樣,分別稱量(精確至0.00001g),再在ID分樣中大約加入0.1g~0.15g145Nd+149Sm混合稀釋劑溶液(精確至0.00001g),輕微晃動放置過夜,准備上柱(IC分樣不加稀釋劑)。
根據岩石化學特徵,當預計試樣中的稀土元素含量較高時(如鹼性岩)可以酌情減少試樣量。超鎂鐵質岩的稀土元素含量一般很低,特別是地幔橄欖岩,釤、釹含量常常在10-7~10-8級。對於這一類試樣的溶樣問題推薦以下程序:採用30mL高壓釜將試樣稱量增大至2~4g,氫氟酸+高氯酸溶樣,蒸干,1mol/L鹽酸溶解乾涸物,加氫氧化銨使稀土元素與氫氧化鐵共沉澱,離心分離除去溶液留下沉澱物,2.5mol/LHCl溶解沉澱物,溶液待上柱。這一程序可以在離子交換分離之前將試樣溶液的體積減小1/10,而釤、釹含量增加了10~20倍(達到10-6級),同時本底沒有明顯增加。
Sm-Nd化學分離
釤、釹化學分離分兩步進行,第一步分離總稀土元素,第二步分離釤和釹。
1)總稀土元素分離。
a.陽離子樹脂交換柱准備。首次使用的200~400目AG50×8或Dowex50×8陽離子樹脂盛於石英燒杯中(約200g),無水乙醇浸泡24h,傾出乙醇晾乾後用去離子水漂洗,再用(1+1)優級純鹽酸浸泡24h,轉入30mm×400mm大型專用石英柱中,繼續用(1+1)優級純鹽酸淋洗直至無鐵離子[硫氰化銨(NH4CNS)檢驗,洗出液不再顯紅色],最後用超純水淋洗,轉入用於總稀土元素分離的(6mm×300mm)石英柱中,樹脂床高100mm,直徑6mm,待水淋干後依次加30mL6mol/L超純鹽酸淋洗,10mL2.5mol/L超純鹽酸平衡,待用。以後繼續使用時,依次用30mL超純水分多次淋洗交換柱內壁,30mL6mol/L超純鹽酸回洗,10mL2.5mol/L超純HCl平衡。
b.上柱分離。將分解完全的試樣溶液倒入備好的陽離子樹脂交換柱中,待溶液漏完先用5mL2.5mol/L超純鹽酸分多次淋洗管壁,然後加40mL2.5mol/L超純鹽酸淋洗鉀、鈉、鈣、鎂、鐵、鋁等干擾元素,最後用15mL6mol/L超純鹽酸洗脫總稀土元素,下用30mL聚四氟乙烯燒杯接收,電熱板上蒸干,待下步分離。
2)Sm-Nd分離。從總稀土元素中分離釹和釤有離子交換法和萃取色層法等多種方法。
a.α-HIBA離子交換法。本方法是個較老的方法,採用銨化陽離子樹脂,淋洗液為pH值~4.6、濃度為0.23mol/L左右的α-羥基異丁酸(α-HIBA)。
a)陽離子樹脂柱准備。選擇200目~400目AG50×8陽離子樹脂(約300g)於石英燒杯中(Dowex50×8樹脂在粒度均勻性與純度方面較AG50×8為差,如經過篩選也可用,兩者交換性能一樣),無水乙醇和(1+1)優級純鹽酸依次各浸泡24h,轉入大型專用石英柱中(同上),繼續用(1+1)優級純鹽酸淋洗,直至洗盡鐵離子[硫氰化銨(NH4CNS)檢驗,洗出液不再顯紅色],超純水淋洗至中性,完全除去Cl-離子[硝酸銀(AgNO3)檢測,洗出液不再呈現乳白色渾濁物],加稀的超純氫氧化銨淋洗,至洗出液呈鹼性(pH試紙檢驗),表明陽離子樹脂全部銨化。轉入500mL試劑瓶,保存在0.23mol/LpH=4.6左右的α-羥基異丁酸溶液中,供長期使用。
b)α-羥基異丁酸溶液配製與pH值調節。稱取70g固體分析純α-羥基異丁酸於250mL氟塑料燒杯中,加少量超純水微熱溶解,轉入3000mL石英試劑瓶中,超純水稀釋至刻度(3000mL),充分搖勻。此時α-HIBA的量濃度為0.23mol/L,pH值~2.6,通過加超純氫氧化銨,酸度計測量,將溶液酸度調節到pH值~4.6。由於平衡氫氧化銨的濃度難以控制,需要分多次加入,每加一次搖勻後測一次pH值,注意掌握pH遞增規律,最後是逐滴加入,必要時將氫氧化銨稀釋。每次測量pH值是將溶液倒在10mL小燒杯中,測量過的溶液棄去,不再回到大瓶中。將酸度調節好的α-HIBA溶液密封保存,供長期使用。
c)上柱分離。實驗證明在採用本方法時,樹脂粒度、均勻性以及α-HIBA溶液的濃度、pH值等條件變化對釤、釹洗出峰位置的影響十分明顯,而每次處理樹脂和配製α-羥基異丁酸溶液都不可能完全重復,因此當每處理一次樹脂和配製一次α-HIBA溶液後,都需要用標准溶液做一次分離實驗,用ICP或鈾試劑Ⅲ法檢測,得出修正後的新淋洗曲線。這種離子交換分離又分加壓和自然流速兩種,前者的穩定性優於後者。
下面以一個有效流程示例。用滴管從大瓶中吸入少量經過預處理的AG50×8樹脂加到2mm×350mm石英柱中,以自然沉降或加壓方式至樹脂床高320mm,直徑2mm,此時應注意樹脂柱結構的均勻性,不能有分層和氣泡。加5mL0.23mol/LpH4.6的α-HIBA溶液平衡,流干。用幾滴α-HIBA將經過第一次分離的試樣(僅有總稀土元素)溶解,用微量移液管逐滴上柱,流干,再加10mL0.23mol/LpH4.6的α-HIBA,通過光譜純氮氣加壓,控制滴速在1滴/55s±5s左右,液滴計數器計數。對於ID試樣,0~44滴棄去,45~56滴收集釤,57~150滴棄去,151~175滴收集釹;對於IC試樣,0~150滴棄去,151~175滴收集釹。收集液蒸干後不再進一步處理(破壞HIBA),直接進行質譜分析。有的實驗室在收集液蒸干後還要加幾滴高氯酸分解α-HIBA,或再經一次陽離子樹脂分離除去α-HIBA。
經ICP檢測該流程釤-釹分離度(Rs)達到5.00。
b.萃取色層分離。由於使用材料不同,本方法又分HDEHP+聚四氟乙烯粉末、P204萃淋樹脂和P507萃淋樹脂三種。HDEHP(P204)是二-2-乙基己基正膦酸,HEHEHP(P507)是2-乙基己基膦酸單2-乙基己基脂,都是稀土元素萃取劑。
a)HDEHP+聚四氟乙烯粉末。
(a)色層柱准備。將萃取劑HDEHP、聚四氟乙烯粉末、分析純丙酮按1∶10∶100比例置於500mL聚四氟乙烯燒杯中,用磁力攪拌器高速攪拌至丙酮近干,使HDEHP緊密附著在聚四氟乙烯粉末表面,加少量0.20mol/L超純鹽酸調成稀糊狀,轉入6mm×180mm石英柱中自然沉降、壓實,取色層柱高100mm,直徑8mm,上覆一層厚10mm的AG1×8樹脂幫助壓實聚四氟乙烯粉末,30mL6mol/L超純鹽酸淋洗消除本底,超純水淋洗至中性(pH試紙檢驗),5mL0.20mol/L超純鹽酸平衡,待用。
(b)上柱分離。用1mL0.20mol/L超純鹽酸將經過第一次分離的試樣(僅有總稀土元素)溶解,倒入色層柱,再用1mL0.20mol/L超純鹽酸涮洗燒杯後倒入。加8mL0.20mol/L超純鹽酸淋洗鈰,洗出液棄去,流干後加10mL0.20mol/L超純鹽酸洗脫釹,收集於10mL聚四氟乙烯燒杯中。對於IC試樣分離程序到此結束,ID試樣需要繼續加10mL0.20mol/L超純鹽酸淋洗,洗出液棄去,5mL2.5mol/L超純鹽酸洗脫釤,收集於10mL聚四氟乙烯燒杯中。收集液在電熱板上緩慢蒸干,待質譜分析。
(c)色層柱再生。在分離程序全部完成後用30mL6.0mol/L超純鹽酸分2次加入淋洗,再用超純水淋洗至中性。不用時將整個柱子浸在水中,防止色層柱因失水而斷裂。
b)P204萃淋樹脂。採用P204萃淋樹脂分離稀土元素是近30年發展起來的技術,萃淋樹脂實際上是一種含液態萃取劑的樹脂,而P204萃淋樹脂是稀土元素萃取劑HDEHP(P204)與陽離子樹脂的聚合,基於懸浮聚合原理用特殊方法製成。
(a)樹脂柱准備。取20g左右120~200目P204萃淋樹脂於6.0mol/L優級純鹽酸中浸泡24h,以稀糊狀倒入8mm×180mm石英柱中,緩慢沉降至樹脂床高100mm,直徑8mm,上面覆蓋一層10mm厚AG1×8樹脂幫助壓實樹脂床(此時應注意樹脂床中不能有氣泡,樹脂粒度應該均勻),30mL6.0mol/L超純鹽酸淋洗,超純水洗至中性(pH試紙檢驗),5mL0.36mol/L超純鹽酸平衡,待用。
(b)上柱分離。用1mL0.1mol/L超純鹽酸將經過第一次分離的試樣(僅有總稀土元素)溶解,倒入樹脂柱,再用3mL0.1mol/L超純鹽酸分2次涮洗燒杯後倒入。加7mL0.36mol/L超純鹽酸淋洗鈰,洗出液棄去,加10mL0.36mol/L超純鹽酸洗脫釹,收集於10mL聚四氟乙烯燒杯中。對於IC試樣分離程序到此結束,ID試樣需要繼續加10mL0.36mol/L超純鹽酸淋洗,洗出液棄去,5mL2.5mol/L超純鹽酸洗脫釤,收集於10mL聚四氟乙烯燒杯中。收集液在電熱板上緩慢蒸干,待質譜分析。
(c)樹脂柱再生。在分離程序全部完成後用30mL6.0mol/L超純鹽酸分2次加入淋洗,再用超純水淋洗至中性。不用時將整個柱子浸在水中,防止樹脂柱因失水而斷裂。
c)P507萃淋樹脂。P507萃淋樹脂與P204萃淋樹脂屬同一類型。
(a)樹脂柱准備。取20g左右120目~200目P507萃淋樹脂於6.0mol/L優級純鹽酸中浸泡24h,以稀糊狀倒入6mm×300mm石英柱中,緩慢沉降至樹脂床高200mm,直徑6mm,上面覆蓋一層10mm厚AG1×8樹脂幫助壓實樹脂床(此時注意樹脂床中不能有氣泡,樹脂粒度應該均勻),30mL6.0mol/L超純鹽酸分2次淋洗,超純水洗至中性(pH試紙檢驗),10mL0.10mol/L超純鹽酸平衡,待用。
(b)上柱分離。用1mL0.10mol/L超純鹽酸將經過第一次分離的試樣(僅有總稀土元素)溶解,倒入樹脂柱,再用1mL0.10mol/L超純鹽酸涮洗燒杯後倒入。加10mL0.10mol/L超純鹽酸淋洗鈰,洗出液棄去,加10mL0.10mol/L超純鹽酸洗脫釹,收集於10mL聚四氟乙烯燒杯中。對於IC試樣分離程序到此結束,ID試樣需要繼續加20mL0.10mol/L超純鹽酸淋洗,洗出液棄去,5mL2.5mol/L超純鹽酸洗脫釤,收集於10mL聚四氟乙烯燒杯中。收集液在電熱板上緩慢蒸干,待質譜分析。
(c)樹脂柱再生。在分離程序全部完成後用50mL6.0mol/L超純鹽酸分2次加入淋洗,再用超純水淋洗至中性。不用時將整個柱子浸在水中,防止樹脂柱因失水而斷裂。
上述方法分離釤、釹都十分穩定而有效,但是α-HIBA離子交換法流程較復雜,HDEHP+聚四氟乙烯粉末法中萃取劑較容易脫落,P507萃淋樹脂由於比重小裝柱比較困難,因此目前用得較多的是P204萃淋樹脂,該方法釤-釹分離度高,穩定性強,裝好一次柱可以長時間使用而效果不變。由於樹脂床內徑、高度互有不同,不同時間、不同廠家和批次的萃淋樹脂在性能上也會有差異,因此每當處理一次樹脂裝好一批柱子時都需做淋洗曲線,具體確定最佳分離條件。
Sm、Nd同位素分析
Sm、Nd同位素分析操作以雙帶源MAT261為例,其他型號質譜計類同。
1)裝樣。燈絲錸帶預處理,將錸帶用無水乙醇清洗,點焊機將錸帶點焊在燈絲支架上,將已點好錸帶的支架依次插在離子源轉盤上,整體放進燈絲預熱裝置中,待真空抽至n×10-5Pa後,按預設程序給錸帶通電,在4~6A電流和1800℃溫度下,每組帶預燒15min,以除去錸帶上雜質。
將離子源轉盤上已燒好的錸帶初步整形,依次取下電離帶。兩小滴3.5mol/L超純硝酸將試樣溶解,用微量取樣器將溶液逐滴加在蒸發帶中央,給蒸發帶通電流,強度1A左右,使試樣緩慢蒸干,以後逐步加大電流至帶上白煙散盡,進一步升溫至錸帶顯暗紅後迅速將電流調至零,轉到加下一個樣。當試樣全部裝好後按原位置插上電離帶,進一步給錸帶整形,要求蒸法帶與電離帶兩者彼此平行靠近,但又絕不能碰到一起,兩帶間距離以0.7mm為宜。裝上屏蔽罩,送入質譜計離子源中,抽真空。
2)Sm、Nd同位素分析。
a.未加稀釋劑試樣的143Nd/144Nd比值(IC)測定。測定對象為金屬離子流Nd+。當離子源真空達到5×10-6Pa時打開分析室隔離閥,電離帶與蒸發帶通電流緩慢升溫,注意在加大電流過程中試樣排氣和真空下降情況,避免真空下降過快。在真空達到2×10-6Pa以上,電離帶電流在4~6A,蒸發帶電流2.5A左右,燈絲溫度達到1700℃~1800℃時,將測量系統處於手動狀態,調出引導峰146Nd(或142Nd、145Nd),小心調節峰中心和帶電流,使Nd+離子流強度達到n×10-11A(高壓10kV,高阻1011Ω)並保持穩定。採用多接收器自動採集同位素比值143Nd/144Nd、145Nd/144Nd、146Nd/144Nd和147Sm/144Nd等數據,均取6位有效數字,其中147Sm/144Nd監測釤-釹分離情況,145Nd/144Nd監測測定值准確性,146Nd/144Nd用於質量分餾效應校正。每個試樣至少採集10組(block)數據,每組數據由8~10次掃描組成,最後取143Nd/144Nd比值的加權平均值並給出標准偏差,必要時增加採集數據流程。
b.試樣+稀釋劑混合物的Sm、Nd同位素比值(ID)測定。分兩種情況:
a)ID分樣經過二次分離,此時釤、釹完全分開,它們的同位素比值是分別裝樣、分別測定的。系統抽真空、通帶電流升溫、調出引導峰使離子流強度達到最大等操作程序同未加稀釋劑試樣,僅僅在測釤同位素時離子源溫度稍低。採用多接收器,當使用145Nd+149Sm混合稀釋劑時,釹、釤分別採集143Nd/145Nd、146Nd/145Nd和147Sm/149Sm、154Sm/149Sm兩組數據(根據多接收系統中法拉第杯的配置情況可以做相應調整,此外如果使用146Nd、147Sm等稀釋劑取值也應做相應改變),均取6位有效數字。由於釤、釹都有多個同位素,因此應同時採集兩組以上比值用於質量分餾效應校正,這樣可以將濃度(147Sm/144Nd)的測定精度提高1~2個數量級。具體辦法有多種:①與數據採集同步,根據現場測出的兩組以上比值及時計算濃度,當兩個結果在誤差范圍內一致時為最佳測定值。②聯立方程法(見下節)。③迭代法,該方法適用於平行測定較多的情況。
b)ID分樣僅進行一次總稀土元素分離,釤、釹未單獨分開。通過一次裝樣、測定,同時完成釤、釹同位素分析。該方法利用了145Nd、146Nd和147Sm、149Sm分別是釹、釤的特型同位素,不存在同質異位素干擾的特性。系統抽真空、通帶電流升溫、調出引導峰使離子流強度達到最大等操作程序同未加稀釋劑試樣。採用多接收器採集146Nd/145Nd與147Sm/149Sm2組數據。該方法優點是節省工作量,縮短了流程,缺點是混合物的單個同位素比值不能進行質量分餾效應校正,此外雜質元素增多也影響離子流的發射和穩定性,總體上測定精度沒有釤、釹經過二次分離的高。
㈣ Hilco濾芯
美國希里阿德公司(Hilliard)
值得信賴的品牌-- HILCO--代表高質量,專業GE的OEM生產商
自1925年起,Hilliard公司與通用電氣公司(GE)合作,成為GE的OEM生產廠,是GE過濾設備最主要的供應商。
Hilliard公司提供了GE產品所需過濾設備的60%。GE所產燃氣輪機,蒸汽輪機,水輪機,發電機,空氣壓縮機
等所配套的各式油,水,汽,燃料過濾,分離設備,油處理裝置,油煙凈化器等,我公司都生產。這些過濾設備同樣適用
其它廠家的發電設備。
HILCO過濾機符合美國機械工程師協會(ASME)標准,同時符合世界其他主要國家地區標准。
GE, 三菱進口中國的機組絕大部分都配有HILCO的油凈化設備。
HILCO(希爾科)磷酸脂抗燃油處理技術及產品介紹
磷酸脂抗燃油的抗燃特性和高溫穩定性使其應用越來越廣泛。但使用中會產生酸性物質、水解和顆粒等,均需使用專門過濾凈化設備處理。當今世界己發展生產了的4種處理介質,現介紹如下:
普通硅藻土(FULLER'S EARTH): 價格低廉,酸吸收效率是0.59克分子酸/升,效率低。普通硅藻土含有大量的游離金屬離子,會催化抗燃油分解縮短使用壽命,也會造成磷酸脂抗燃油系統的電阻率下降。游離金屬離子和磷酸脂抗燃油發生化學反應產生多聚磷酸脂及復雜的磷酸鹽衍生物,此衍生物以凝膠狀析出造成侍服閥卡塞和濾器堵塞,還會使磷酸脂抗燃油各項泡沫性能劣化。是早期產品。
活性氧化鋁(ACTIVATED ALUMINA): 酸吸收效率是1.17 克分子酸/升,高於普通硅藻土200%。所含游離鈉離子(3%)溶出會導致磷酸脂抗燃油的電阻率下降及各項泡沫性能劣化。活性氧化鋁的顆粒十分細小而且硬度極高,一但瀉漏將會導致EHC系統所有的閥和泵等損壞。其為第二代產品。
改性活性氧化鋁(SELEXSORB GT) : 酸吸收效率是1.17 克分子酸/升。是由阿克蘇諾貝爾公司和美國鋁業公司聯合研製的專利產品,專門用於磷酸脂抗燃油的再生脫酸。有效成份相對穩定,不釋放游離納離子和氧化鋁顆粒。活性氧化鋁的顆粒十分細小而且硬度極高,經過專利手段固化。現在是國際上比較通用的技術產品。也是當前GE採用的標准配置。
離子交換樹脂(Ion Charge Bonding): 酸吸收效率是3.71克分子酸/升,高
於硅土濾芯的約500%。是近幾年新發展出的技術。離子交換樹脂濾芯不釋放
出金屬離子。這種新的介質又有兩種。
一種稱為濕式,在除酸的過程中會放出水分。吸收1克分子的酸,同時會
放出1克分子的水,產生膠狀物。因此需要一台真空除水機同時工作。
再一種稱為乾式。在除酸的過程中不會放出水分,不產生酸性凝膠狀多聚
磷酸鹽。這是當今世界上可用於工業領域最新的產品。該濾芯是HILCO當前
要推廣的產品(見右圖)。
下圖為四種除酸介質吸酸能力比較圖。
GE、三菱、哈汽等多家發電設備生產廠,隨著抗燃油處理技術的發展,在不同時期使用上述HILCO四種過濾處理技術。
用於EHC磷酸脂抗燃油處理的HILCO過濾設備。
移動式輕便濾機:
用於合成潤滑、液壓油保質處理。包括合成的磷酸脂抗燃油(EHC油)。
用718系列濾芯可除顆粒達1微米精度,除水和顆粒可用除水濾芯。
用於這種油的濾機對密封和內襯要求很高。
電機與泵組合為一體,在換密封圈與維修齒輪後沒有兩軸校直問題。
容積式齒輪泵,內置60PSI壓力溢流閥,O型密封圈,放氣旋塞, 排
放閥。碳鋼外殼,環氧漆保護,適用對磷酸脂油的處理。
NEMA-1電機起動裝置,帶過熱保護。
選項: 傳送閥 (使液體不經過濾而流過); 帶閥或不帶閥可快速裝卸軟管
Y-漏筐,以保護泵; 導線盤
型號 泵流量
升/分 電機
HP 入出管口徑 凈重
Kg 長x寬x高
英寸
10718-0100-1B01 13 1/3 1/2〃 59 23 x 15 x 42
10718-0100-1B02 34 3/4 3/4〃 73 30 x 15 x 55
EHC油處理器:
右圖系統的前兩濾柱裝有4隻改性活性氧化鋁濾芯(ST718-00-03ZXCO)
除酸、提高油液電阻。後一個濾柱裝有除顆粒濾芯,或除水濾芯,去水
濾微粒。達1微米。最大工作壓力100PSI。最大工作溫度121°C
這種系統也可安硅藻土和活性氧化鋁濾芯。同樣可安裝離子交換濾芯。
型號 泵流量
升/分 去酸濾芯
個數 含去酸介質量 長x寬x高
米
26718-530401110 3.8 2 29磅 0.76 x 0.4 x 1.5
36718-530401109 3.8 4 58磅 1.067 x 0.4 x 1.5
46718-530401107 3.8 6 87磅
EHC-1 Hilco 1119濾芯處理器:
1119濾芯含有量大的處理介質,每個可含有36磅,是718尺寸濾芯的4倍。
這意味著減少換濾芯次數,價格便宜。
右圖裝置可放入二個1119濾芯,含72磅改進活性氧化鋁介質。
真空過濾機(Reclaimer):
加熱,抽真空,汽化的方法除去水和其它雜質液體。
加上前端的初濾及後端的精濾,使油液處理如新。
是EHC系統常配置的設備。尤其是在含水量常出問題的工廠。
型號 處理量
L / H 操作壓力 加熱器功率 耗水量
L / M 進出管
口徑
02R050 190 28-29 6 KW 6 1/2〃
02R100 380 28-29 12 KW 6 1/2〃
HILCO抗燃處理設備與某款國外品牌同類設備比較
希爾科HILCO xxx 注
型號 EHC處理器 Hxx020/Hyy
外型照片 xxx系統是由二台設備聯合使用。
處理介質 可選:
1. 乾式離子交換樹脂
(Dry Resin)
2.改性活性氧化鋁
(SELEXSORB GT)
至今是GE的標准配置。 濕式離子交換樹脂(Wet Resin) SELEXSORB GT是由阿克蘇諾貝爾公司和美國鋁業公司聯合研製的專利產品。是專門用於磷酸脂抗燃油的再生脫酸著名品牌產品。
功效 除酸介質除酸;除水濾芯除水;精濾芯去顆粒,精度選用3微米濾芯。 除酸介質除酸,但同時生出副產品水;再加一台真空濾機除水,濾顆粒。精度選用3微米濾芯。
使用方式 單台使用,完成所有任務 除酸機與除水機兩機捆綁使用
除酸模塊流量 3.8升/分 (0.228米³ / 小時) 1.4升/分 (0.084米³ / 小時)
除水流量 無需 20升/分 (1.2米³ / 小時)
能耗 低能耗 因大流量真空除水,高能耗
干/濕式離子交換樹脂使用比較 乾式離子交換樹脂(Dry Resin)在吸酸過程中不會往油中放出水。
濕式離子交換樹脂(Wet Resin)
吸1克分子水酸,往油中放出1克分子水。
對系統油質影響 在吸酸過程中,不會對油有負面影響。 水是油的污染物。水會影響油中有用的填加劑(如抗氧化劑,防腐劑,抗磨劑等)或與其作用產生有寄害物質。
會產生膠狀物。
為去水,而增加的20升/分真空去水機,且是一種低效去水機(multi - pass),使油反復處理,加速了油的老化過程。
對油箱中油的影響 無任何負面影響。 循環流量20升/分的除水/酸過程,使油箱的油進油出,每小時達1200升。再加上用於控制迴路油的進出。油箱的進出油量每小時會大於油箱的體積(如1200升的油箱),使回油在油箱中呆的時間小於規定,不利於水分雜質的沉降。
去油凈化裝置的油來自油箱底部的臟油。油凈化裝置的除水率不高,回油中的含水率就大,客觀上形成油箱油的循環攪拌。 回油管在油箱上部。油進入油箱,據循環倍率要求,要在油箱中呆一定時間。以便破乳及油中的水分、雜質以正常沉降速率,沉降到油箱底。去油凈化裝置的出油管在油箱底部。
去控制迴路的出油管在油箱中下部。
真空濾油設備比較
希爾科HILCO xxx 注
外型照片 如果系統中水的存在成為較大的問題,需要一台真空除水裝置,HILCO也提供優秀的真空油再生設備。
處理方式 單程處理 (One pass)
一次處理,除水量大,高效除水。 多程處理 (Multi-pass)
流量大,每次處理的除水量小,除水效率低,要反復處理。 HILCO機處理一次的除水量, xxx機要處理6-8次。過多的處理,加速了油的老化。
除自由水 100% 100%
除溶解水 90% 80% HILCO機比xxx機要高10%
真空度 與標准大氣壓之差:
29 英寸 Hg柱 與標准大氣壓之差:
15-22英寸Hg柱 標准大氣壓為29.92 英寸Hg柱
磷酸脂抗燃油再生凈化裝置的循環流量與實際處理效率分析
含有酸的油,經過凈化裝置,要與除酸的介質充分接觸,其中的酸才能被除掉。其處理效率與除酸介質的量及其與油接觸的面積,相對速度有關。流速過快,油沒有足夠的時間與除酸的介質接觸,不能充分發揮除酸模塊功能,油雖經過濾機一趟,但除酸量小,流量雖大,效率較低。流速過慢,雖然油中的酸能除去較多,充分發揮除酸模塊功能,但流量小,效率還是低。HILCO除酸設備的處理流量一般在3.8升/分,設計合理。在市面上,是一種較高效率的處理設備。
下面是市場上某款國外品牌同類產品的技術說明書:
上圖指明該裝置 」循環流量: 20L/min」,電機功率為3.7 KW。
但在該圖第四條中介紹了其離子交換模塊和除水過濾模塊串聯布置,採用的泵的流量為1.4L/min。這明確說明了通過有除酸功能的離子交換模塊的實際處理的油流量是為1.4升/分。不能用整個系統的循環流量來代替除酸模塊的工作流量。兩者不能混而一淡。之所以出現這種問題,是因為該機是使用濕式離子交換樹脂技術,在除酸的同時會往油中放入水。所以必須除水。是用近20L/min循環流量來除水。
HILCO的客戶
希里阿德(Hilliard)為GE提供60%過濾設備, 其品牌HILCO代表高質量,專業。電工領域是GE公司發展的根基,它生產的10萬千瓦以上燃氣輪機佔世界擁有量的一半,生產的大型汽輪發電機組有950台以上。全美國一半的電力由GE公司製造的機組生產。其它發電設備生產廠,如ABB、西門子、三凌等,也多有配用HILCO過濾設備。
部分用戶:
台灣核電一廠
台灣核電二廠
台灣核電三廠
《使用希爾科(Hilco)的乾式離子交換樹脂濾芯韓國電廠:
Yonggwang電廠(Yonggwang Power)
Wolsong核電廠(Wolsong Nuclear Power Plant)
Ulchin聯合循環發電廠(Ulchin Combined Cycle Power Plant)
Inchon聯合循環發電廠(Inchon Combined Cycle Plant)
㈤ 求2011考研西醫綜合真題及標准答案,本人想對一下答案,急!謝謝!
做真題集,這里有一份最全的考研歷年真題資料分享給你
鏈接:
通過不斷研究和學習歷年真題,為考生沖刺階段復習提分指點迷津,做真題,做歷年真題集,對照考綱查缺補漏,提高實戰素養,制定做題策略,規劃方向;
若資源有問題歡迎追問!
㈥ 請介紹一下脫色樹脂以及用途
脫色樹脂一般復是大孔離子制交換樹脂,由於種類和用途都很多,被廣泛應用在食品 醫葯行業如:中草葯有效成分脫色、氨基酸和生物鹼類物質的脫色、糖液脫色、果酸脫色。不同的樹脂應用在不同領域和行業,具體情況可以咨詢你生產廠家或供應商。
㈦ 含磷廢水怎麼處理
一、生物法
20世紀70年代美國的Spector發現,微生物在好氧狀態下能攝取磷,而在有機物存在的厭氧狀態下放出磷。含磷廢水的生物處理方法便是在此基礎上逐步形成和完善起來的。
目前,國外常用的生物脫磷技術主要有3種:
1、向曝氣貯水池中添加混凝劑脫磷;
2、利用土壤處理,正磷酸根離子會與土壤中的Fe和Al的氧化物反應或與粘土中的OH-或SiO22-進行置換,生成難溶性磷酸化合物;
3、活性污泥法,這是目前國內外應用最為廣泛的一類生物脫磷技術。
生物除磷法具有良好的處理效果,沒有化學沉澱法污泥難處理的缺點,且不需投加沉澱劑。對於二級活性污泥法工藝,不需增加大量設備,只需改變運轉流程即可達到生物除磷的效果。
但要求管理較嚴格,為了形成VFA,要保證厭氧階段的厭氧條件。
二、化學沉澱法
通過投加化學沉澱劑與廢水中的磷酸鹽生成難溶沉澱物,可把磷分離出去,同時形成的絮凝體對磷也有吸附去除作用。
常用的混凝沉澱劑有石灰、明礬、氯化鐵,石灰與氯化鐵的混合物等。影響此類反應的主要因素是pH、濃度比、反應時間等。
三、生物強化除磷
生物強化除磷中的聚磷菌利用比較普遍,目前也是生物除磷的主要研究方向。
聚磷菌也叫做攝磷菌、除磷菌,是傳統活性污泥工藝中一類特殊的細菌,在好氧狀態下能超量地將污水中的磷吸入體內,使體內的含磷量超過一般細菌體內的含磷量的數倍,這類細菌被廣泛地用於生物除磷。
其原理為:在厭氧條件下,除磷菌能分解體內的聚磷酸鹽而產生ATP,並利用ATP將廢水中的有機物攝入細胞內,以聚b-羥基丁酸等有機顆粒的形式貯存於細胞內,同時還將分解聚磷酸鹽所產生的磷酸排出體外。
而好氧條件下,除磷菌利用廢水中的BOD5或體內貯存的聚b-羥基丁酸的氧化分解所釋放的能量來攝取廢水中的磷,一部分磷被用來合成ATP,另外絕大部分的磷則被合成為聚磷酸鹽而貯存在細胞體內。
四、吸附法
20世紀80年代,多孔隙物質作為吸附劑和離子交換劑就已應用在水的凈化和控制污染方面。黃巍等人以粉煤灰作為吸附劑,對含磷50~120mg/L模擬廢水脫磷的規律特徵進行了研究。
研究表明粉煤灰中含有較多的活性氧化鋁和氧化硅等,具有相當大的吸附作用,粉煤灰對無機磷酸根不是單純吸附,其中CaO、FeO、Al2O3等可以和磷酸根生成不溶或直溶性沉澱現象,因而在廢水處理方面具有廣闊的應用前景。
五、其他的除磷方法
鄒偉國等研究的新型雙污泥脫氮除磷工藝系統處理生活污水取得成功。傳統的脫氮除磷工藝多採用單污泥系統,因此存在著硝化和除磷泥齡之間的矛盾,將活性污泥法與生物膜法相結合,可解決這個問題。
實驗結果表明,該工藝對PO43-的去除率達到了90%,處理效果穩定,對水質的適應能力很強。
陳瀅等進行了低溶解氧SBR除磷工藝的研究。
該方法要注意的是污泥負荷對COD去除率和除磷效果的影響較大,因此要選擇合適的污泥負荷。污泥負荷過高時會導致非絲菌污泥膨脹。
方茜等利用SBR法處理低碳城市污水取得進展,解決了處理碳、氮、磷比例失調(碳量偏低)城市污水如何保證氮磷高效去除的難點。
結果表明,利用此法處理廣州地區低碳城市污水,出水有機物、氨氮及總磷均達標,且磷的釋放量越大則出水磷總濃度就越低。實踐證明,SBR法具有流程簡單,不需要污泥迴流,脫氮除磷效果好的特點。
㈧ 什麼是食品級樹脂
食品級樹脂是苯乙烯—二乙烯苯共聚上帶有磺酸基(-SO3H)的陽離子交換樹脂。經過特殊處理加工,本品具有交換容量高,交換速度快,機械強度好等特點。該樹脂廣泛用於食品行業。
樹脂相對分子量不確定但通常較高,常溫下呈固態、中固態、假固態,有時也可以是液態的有機物質。具有軟化或熔融溫度范圍,在外力作用下有流動傾向,破裂時常呈貝殼狀。
一般不溶於水,能溶於有機溶劑。按來源可分為天然樹脂和合成樹脂;按其加工行為不同的特點又有熱塑性樹脂和熱固性樹脂之分。
(8)離子交換樹脂HP20擴展閱讀
按性質:
1、熱固性樹脂(玻璃鋼一般用這類樹脂):不飽和聚酯/乙烯基酯/環氧/酚醛/雙馬來醯亞胺(BMI)/聚醯亞胺樹脂等。
2、熱塑性樹脂:聚丙烯(PP)/聚碳酸酯(PC)/尼龍(NYLON)/聚醚醚酮(PEEK)/聚醚碸(PES)等。
3、合成樹脂是由人工合成的一類高分子聚合物。合成樹脂最重要的應用是製造塑料。為便於加工和改善性能,常添加助劑,有時也直接用於加工成形,故常是塑料的同義語。合成樹脂還是製造合成纖維、塗料、膠粘劑、絕緣材料等的基礎原料。
合成樹脂種類繁多,其中聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚丙烯(PP)和ABS樹脂為五大通用樹脂,是應用最為廣泛的合成樹脂材料。
4、樹脂工藝品:這組工藝品的造型材質裡面都有用到樹脂材料,其線條流暢性和明亮的質感都充分利用了其材質的優點。