導航:首頁 > 凈水問答 > 酯類沉澱法去水銨離子

酯類沉澱法去水銨離子

發布時間:2024-07-22 20:07:15

㈠ 氨氮廢水處理方法有哪些

一、氨氮廢水現狀

氨氮廢水主要來源於化肥、焦化、石化、制葯、食品等行業廢水,氨氮廢水的處理方法通常有物理法、化學法、物理化學以及生化法等。


(1)生物法

傳統的生化法主要用於低濃度氨氮廢水處理,它是利用微生物的硝化及反硝化作用使氨氮轉變為氮氣;

(2)蒸汽汽提法

蒸汽汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,其處理機理與吹脫法基本相同,也是一個氣液傳質過程,即在高pH值時,使廢水與蒸汽密切接觸,從而降低廢水中氨濃度的過程;

(3)離子交換

離子交換法適用於氨離子濃度在10~100mg/L的廢水,其原理是選用陽離子交換樹脂,將水中的銨離子與樹脂上的鈉離子交換,從而達到去除銨的目的;

(4)化學沉澱法

化學沉澱法是通過向水中投加化學葯劑,使氨反應生成不溶於水的沉澱,從而達到廢水脫氨的目的;

(5)膜分離法

採用膜分離技術處理氨氮廢水是近幾年來研究比較多的廢水脫氨技術之一,膜分離技術處理氨氮廢水的處理效果比較好,條件溫和,由於氨氮廢水中往往有較多的固體懸浮物及易於結垢的鹽類,考慮到膜的阻塞及再生問題,膜分離技術對水質的要求較高;

(6)反滲透法和電滲析法

反滲透法和電滲析法的投資和運行費用都比較高,而且,電滲析的預處理要求高,反滲透膜的使用壽命短,目前在國內應用極少。


二、定製特種吸附處理工藝

海普公司研究的特種吸附材料能針對性地吸附廢水中的氨氮物質,對氨氮物質能做到高效吸附且脫附徹底,脫附後的廢水氨氮含量可達到排放標准。

採用海普的吸附工藝處理氨氮廢水時,將廢水預先過濾去除其中的懸浮和顆粒物質,然後進入吸附塔吸附,吸附塔中填充的特種吸附材料能將廢水中的氨氮吸附在材料表面,出水氨氮可達標排放。

吸附飽和後,再利用特定的脫附劑對吸附材料進行脫附處理,使吸附材料得以再生,如此不斷循環進行。


三、案例介紹

本新建氨氮廢水吸附處理設施,總設計廢水處理規模為300m3/d,氨氮廢水氨氮含量高,生化後氨氮含量超標,達不到排放標准,影響企業的穩定生產。海普對該廢水進行了定製化的工藝設計,廢水設計指標如下表。

㈡ 鍧囧寑娌夋穩娉曞簲鐢

鍦ㄥ埗澶囨哀鍖栫墿綰崇背綺変綋鐨勮繃紼嬩腑錛屽翱緔犳槸涓縐嶅父鐢ㄧ殑娌夋穩鍓傦紝鍏舵按婧舵恫鍦ㄧ害70鈩冩椂浼氬彂鐢熷垎瑙e弽搴旓紝鐢熸垚姘ㄦ按(NH4OH)錛岃繖涓鍙嶅簲鍙浠ヨ〃紺轟負:

(NH2)2CO + 3H2O = 2NH4OH + CO2

閫氳繃寮哄埗姘磋В鎶鏈錛屽彲浠ュ疄鐜板潎鐩告矇娣錛岃繖縐嶆柟娉曠殑浼樺娍鍦ㄤ簬浜х墿棰楃矑鍧囧寑涓旇嚧瀵嗭紝渚誇簬鍚庣畫鐨勮繃婊ゅ拰媧楁釘錛屽洜姝ゅ湪宸ヤ笟鍖栫敓浜т腑澶囧彈闈掔潗銆

鐒惰岋紝灝界″潎鍖娌夋穩娉曟湁鍏朵紭鐐癸紝浣嗕粛瀛樺湪鍚庢矇娣鍜屾販鏅跺叡娌夋穩鐨勯棶棰樸傚湪鍧囧寑娌夋穩榪囩▼涓錛屽備嬌鐢(C2O4)2-銆(PO4)3-銆丼2-絳夌誨瓙錛屽彲浠ラ氳繃鐩稿簲鐨勬湁鏈洪叝綾誨寲鍚堢墿鎴栧叾浠栧寲鍚堢墿鐨勬按瑙f潵鑾峰彇銆

緇滃悎鐗╁垎瑙e弽搴斿拰姘у寲榪樺師鍙嶅簲涔熸槸瀹炵幇鍧囧寑娌夋穩鐨勬湁鏁堟墜孌點備緥濡傦紝鐢ㄧ粶鍚堢墿鍒嗚В娉曟矇娣紜閰告牴紱誨瓙(SO4)2-鏃訛紝棣栧厛灝咵DTA涓嶣a2+褰㈡垚緇滃悎鐗╋紝鎺ョ潃娣誨姞姘у寲鍓傜牬鍧廍DTA錛屼嬌緇滃悎鐗╁垎瑙o紝Ba2+閲婃斁騫跺潎鍖鍦板艦鎴怋aSO4娌夋穩銆

鍒╃敤姘у寲榪樺師鍙嶅簲鐨勪緥瀛愭槸錛岄氳繃鍦錛圓sO3錛3-鍜岋紙ZrO錛2+鐨勭~閰告憾娑蹭腑鍔犲叆錛圢O3錛-錛屽皢錛圓sO3錛3-姘у寲涓猴紙AsO4錛3-錛屼績浣匡紙ZrO錛3錛圓sO4錛2褰㈡垚鍧囧寑鐨勬矇娣錛岃繖瀵逛簬嫻嬪畾錛圸rO錛2+鍚閲忛潪甯告湁鐢ㄣ

㈢ 中學化學實驗室廢水處理

中學化學實驗室廢水處理
一、有機物類廢水
以中學化學實驗室現有的條件,較簡便的金屬回收方法是將金屬離子以氫氧化物的形式沉澱分離。各種金屬離子的排放形式:鉻(重鉻酸鉀,硫酸鉻);汞(氯化汞,氯化亞汞);鉛(EDTA合鉛(II));銅(EDTA合銅,硫酸銅),等等。其中,氯化汞和硫酸鉻屬於共同排放。總的來說,沉澱回收法的原理較為簡單,可操作性也很強,對污染的消除效果相當不錯。
酸或鹼:對於含酸或鹼類物質的廢液,如濃度較大時,可利用廢酸或廢鹼相互中和,再用pH試紙檢驗,若廢液的pH值在5.8—8.6之間,如此廢液中不含其它有害物質,則可加水稀釋至含鹽濃度在5% 以下排出。
鉻:含鉻廢液中加入還原劑,如硫酸亞鐵、亞硫酸鈉、鐵屑,在酸性條件下將六價鉻還原成三價鉻,然後加入鹼,如氫氧化鈉、氫氧化鈣碳酸鈉等,使三價格形成Or(OH),沉澱,清液可排放。沉澱乾燥後可用焙燒法處理,使其與煤渣一起焙燒,處理後可填埋。
汞:廢液中汞的最高容許排放濃度為0.05mg/L(以Hg計)。可以採用硫化物共沉澱法:先將含汞鹽的廢液的pH值調至8—1O,然後加入過量的Na2S,使其生成Hgs沉澱。再加入FeSO(共沉澱劑),與過量的S:一生成FeS沉澱,將懸浮在水中難以沉澱的HgS微粒吸附共沉澱.然後靜置、分離,再經離心、過濾濾液的含汞量可降至0.05mg/L以下。
氰化物:少量的含氰廢液可加入NaOH調至pH=10以上。再加入幾克高錳酸鉀使CN一氧化分解。量大的含氰廢液鹼液氯化法處理,先用鹼調至pH=10以上,再加人次氯酸鈉或漂白粉,使CN一氧化成氰酸鹽,並進一步分解為CO 和N 。放置24小時排放。或加入氫氧化鈉使呈礆性後再倒入硫酸亞鐵溶液中(按質量計算:1份硫酸亞鐵對1份氫氧化鈉),生成無毒的亞鐵氫化鈉再排人下水管道。含氰化物物質,也不得亂倒或與酸混合,生成揮發性氰化氫氣體有劇毒。
砷:在含砷廢液中加入FeCI~,使Fe/As達到5O,然後用消石灰將廢液的pH值控制在8一lO。利用新生氫氧化物和砷的化合物共沉澱的吸附作用,除去廢液中的砷。放置一夜,分離沉澱,達標後,排放廢液。
鎘:在含鎘的廢液中投加石灰,調節pH值至10.5以上,充分攪拌後放置,使鎘離子變為難溶的Cd(OH):沉澱.分離沉澱,將濾液中和至pH值約為7,然後排放。
鉛:在廢液中加入消石灰,調節至pH值大於11,使廢液中的鉛生成Pb(OH) 沉澱.然後加入 (s0 ),(凝聚劑),將pH值降至7—8,則Pb(OH):與^J(OH),共沉澱,分離沉澱,達標後,排放廢液。
重金屬離子:最有效和最經濟的方法是加鹼或加Na2S把重金屬離子變成難溶性的氫氧化物或硫化物而沉積下來,從而過濾分離,少量殘渣可埋於地下。混合廢液:互不作用的廢液可用鐵粉處理。調節廢液PH3— 4,加入鐵粉,攪拌半小時,用鹼調節PH 9左右,攪拌1O分鍾。加入高分子混凝劑(聚合氯化鋁和聚合氧化鐵)沉澱,清液可排放,沉澱物作為廢渣處理。廢酸鹼可中和處理。
二、有機物類廢水
對有機酸或元機酸的酯類,以及一部份有機磷化合物等容易發生水解的物質,可加入氫氧化鈉或氫氧化鈣,在室溫或加熱下進行水解。水解後,若廢液無毒害時,把它中和、稀釋後,即可排放。如果含有有害物質時,用吸附等適當的方法加以處理。如廢液包括:苯、已烷、二甲苯、甲苯、煤油、輕油、重油、潤滑油、切削油、機器油、動植物性油脂及液體和固體脂肪酸等物質的廢液。對其可燃性物質,用焚燒法處理。對其難於燃燒的物質及低濃度的廢液,則用溶劑萃取法或吸附法處理。
三氯甲烷:將三氯甲烷廢液一次用水、濃硫酸(三氯甲烷量的十分之一)、純水、鹽酸羥胺溶液(O.5% AR)洗滌。用重蒸餾水洗滌兩次,將洗好的三氯甲烷用污水氯化鈣脫水,放置幾天,過濾,蒸餾。蒸餾速度為每秒l~2滴,收集沸程為6o一62攝氏度的餾出液(標框下),保存於棕色試劑瓶中(不可用橡膠塞)。CC14:反應式:Na2SO3+I2+H2O=Na2SO『+2HI具體操作:在碘一CC1 溶液中加入Na2SO3,直至把I2轉化為I一離子(檢查:用澱粉試紙或澱粉溶液檢查是否還存在有I2,然後轉移到分液漏斗,加少量蒸餾水,振盪,分液(用AgN03,檢查水樣溶液是否有I2,若有黃色或白色沉澱,再用水洗滌ccl,溶液)。
酚:酚的處理主要有吸附法、萃取法、液膜分離法、扭捏及蒸餾氣提法、生物法等,但對於實驗室來說,以上的方法都不實用。低濃度含酚廢液可加入次氯酸鈉或漂白粉,使酚氧化水和二氧化碳。高濃度可使用丁酸乙脂萃取,在用少量氫氧化鈉溶液反復萃取。調解PH後,進行重蒸餾,提純後使用。或利用二氧化氯(C10:,強氧化消毒劑)水溶液進行苯酚廢水處理,不僅方便、安全,操作也十分簡單,直接將其按一定量加入廢水中,攪拌均勻,維持一定的處理時間,即可達到良好的處理效果,不存在二次污染。

㈣ 污水氨氮超標與投加消毒粉有關嗎

關系不大。氨氮是指以氨或銨離子形式存在的化合氮,即水中以游離氨(NH3)和銨離子(NH4+)形式存在的氮。
中文名
氨氮
外文名
ammonia nitrogen
測定方法
納氏比色法等四種
定義
以游離氨(NH3)和銨離子(NH4+)形式存在的氮
內容簡介
以游離氨(NH3)和銨離子(NH4+)形式存在的化合氮叫做氨氮。氨氮是水體中的營養素,可導致水富營養化現象產生,是水體中的主要耗氧污染物,對魚類及某些水生生物有毒害。[1]
測定方法
方法的選擇
氨氮檢測方法,通常有納氏比色法、苯酚-次氯酸鹽(或水楊酸-次氯酸鹽)比色法和電極法等。納氏試劑比色法具操作簡便、靈敏等特點,水中鈣、鎂和鐵等金屬離子、硫化物、醛和酮類、顏色,以及渾濁等干擾測定,需做相應的預處理,苯酚-次氯酸鹽比色法具靈敏、穩定等優點,干擾情況和消除方法同納氏試劑比色法。電極法通常不需要對水樣進行預處理和具測量范圍寬等優點。氨氮含量較高時,尚可採用蒸餾﹣酸滴定法。
水樣預處理
水樣帶色或渾濁以及含其它一些干擾物質,影響氨氮的測定。為此,在分析時需做適當的預處理。對較清潔的水,可採用絮凝沉澱法,對污染嚴重的水或工業廢水,則以蒸餾法使之消除干擾。
1、絮凝沉澱法
原理
加適量的硫酸鋅於水樣中,並加氫氧化鈉使呈鹼性,生成氫氧化鋅沉澱,再經過濾去除顏色和渾濁等。
儀 器
100mL具塞量筒或比色管。
試 劑
(1)10%硫酸鋅溶液:稱取10g硫酸鋅溶於水,稀釋至100mL。
(2)25%氫氧化鈉溶液:稱取25g氫氧化鈉溶於水,稀釋至100mL,貯於聚乙烯瓶中。
(3)98%硫酸密度ρ=1.84g/cm3。
步 驟
取100mL水樣於具塞量筒或比色管中,加入1mL 10%硫酸鋅溶液和0.1-0.2mL 25%氫氧化鈉溶液,調節pH至10.5左右,混勻。放置使沉澱,用經無氨水充分洗滌過的中速濾紙過濾,棄去初濾液20mL。
2、蒸餾法
概 述
調節水樣的pH使在6.0-7.4的范圍,加入適量氧化鎂使呈微鹼性(也可加入pH=9.5的Na4B4O7-NaOH緩沖溶液使呈弱鹼性進行蒸餾;pH過高能促使有機氮的水解,導致結果偏高),蒸餾釋出的氨,被吸收於硫酸或硼酸溶液中。採用納氏比色法或酸滴定法時,以硼酸溶液為吸收液;採用水楊酸-次氯酸比色法時,則以硫酸溶液為吸收液。
儀 器
帶氮球的定氮蒸餾裝置:500mL凱氏燒瓶、氮球、直形冷凝管和導管。
試 劑
水樣稀釋及試劑配製均用無氨水。
(1)無氨水制備:
①蒸餾法:每升蒸餾水中加0.1mL硫酸,在全玻璃蒸餾器中重蒸餾,棄去50mL初濾液,接取其餘餾出液於具塞磨口的玻瓶中,密塞保存。
②離子交換法:使蒸餾水通過強酸性陽離子交換樹脂柱。
(2)1mol/L鹽酸溶液。
(3)1mol/L氫氧化鈉溶液。
(4)輕質氧化鎂(MgO):將氧化鎂在500℃下加熱,以除去碳酸鹽。
(5)0.05%溴百里酚藍指示液(pH6.0-7.6)。
(6)防沫劑,如石蠟碎片。
(7)吸收液:①硼酸溶液:稱取20g硼酸溶於水稀釋至1L。②硫酸(H2SO4)溶液:0.01mol/L。
步 驟
(1)蒸餾裝置的預處理:加250mL水於凱氏燒瓶中,加0.25g輕質氧化鎂和數粒玻璃珠,加熱蒸餾,至餾出液不含氨為止,棄去瓶內殘渣。
(2)分取250mL水樣(如氨氮含量較高,可分取適量並加水至250mL,使氨氮含量不超過2.5mg),移入凱氏燒瓶中,加數滴溴百里酚藍指示液,用氫氧化鈉溶液或鹽酸溶液調至pH=7左右。加入0.25g輕質氧化鎂和數粒玻璃珠,立即連接氮球和冷凝管,導管下端插入吸收液液面下。加熱蒸餾至餾出液達200mL時,停止蒸餾。定容至250mL。
採用酸滴定法或納氏比色法時,以50mL硼酸溶液為吸收液,採用水楊酸-次氯酸鹽比色法時,改用50mL 0.01mol/L硫酸溶液為吸收液。
注意事項
(1)蒸餾時應避免發生暴沸,否則可造成餾出液溫度升高,氨吸收不完全。
一、污水廠處理氨氮的方法
目前,主要的降氨氮方法有生物硝化反硝化、折點加氯、氣提吹脫和離子交換法等。以上方法會因氨氮濃度、再生問題、處理成本等原因而使其應用受到限制。目前,大型污水廠還是採用傳統生物脫氮技術,主要包括A/O法和A2/O、氧化溝以及各種改進型SBR等生物處理法,在處理過程中,脫氮主要通過硝化、反硝化過程實現。
二、導致污水廠氨氮超標的因素
隨著環保的日益嚴格,污水處理廠的穩定運行尤為重要。目前,污水廠脫氮主要通過硝化、反硝化過程實現,硝化細菌多為自養菌,增殖緩慢,世代周期長,對外界因素敏感,易受水質、水量沖擊。一旦生化系統進水水質及水量發生大幅度變化,將對生物系統造成沖擊,硝化細菌大量消失,很難自然恢復。通常導致污水處理廠氨氮超標的因素包括以下幾個方面:
1. 進水濃度過高
高濃度進水COD、氨氮和有機氮均影響硝化系統氨氮處理效果。COD對硝化階段的影響主要體現在異養細菌與硝化細菌對氧的競爭。當COD高時,它有利於異氧細菌的生長,異養細菌佔主導地位,硝化細菌較少,導致硝化效果差。有機氮經過水解酸化後,可轉化為氨氮,間接導致進水氨氮升高。過量的氨氮負荷對活性污泥系統產生巨大影響。此外,過高的氨氮會導致游離氨濃度增加,進而導致亞硝酸鹽的積累。
2. COD與SS含量比例失調
受進水水質及系統設計的影響,初沉池沉澱不充分,無機質無法充分去除,致使活性污泥的有效成分偏低,實際有機污泥負荷偏高。SV30即使在正常范圍內,但是無機物含量高,MLSS含量高,MLVSS/MLSS偏低,這種情況計算負荷有偏差,排泥量過大。此外,無機顆粒沉降於好氧區,易堵塞曝氣頭,影響曝氣效果。
3. 溫度影響
低溫下,硝化細菌的繁殖速率降低,體內的酶活性被抑制,代謝速度緩慢。硝化速率一般低於15℃活性開始降低,當溫度低於12℃時硝化反應速率顯著下降,在污水溫度小於8℃時,微生物菌膠團的硝化、反硝化活動受到明顯抑制甚至停止。因此冬季容易造成氨氮處理能力下降。
4. 其它因素
此外,影響硝化作用的因素很多。例如,高pH值會影響微生物的正常生長,增加水中游離氨的濃度,抑制硝化細菌。硝化細菌對重金屬、酚類和氰化物等有毒物質也特別敏感。因此,硝化細菌對水樣的毒性試驗可用於確定廢水對硝化作用是否有抑製作用。
三、發現氨氮異常時的控制措施
如果出水氨氮呈上升趨勢,可以選擇以下應急措施以防止水質進一步惡化。
1. 降低進水氨氮負荷
降低氨氮的攝入量。當發現高濃度氨氮進入時,需要及時啟動緊急調節池,並增加對進水的取樣監測。從源頭控制氨氮濃度。減少水的攝入是促進硝化細菌恢復的有效手段,但在實際操作中,由於調節池的停留時間等限制,只能實現數小時。
2. 減少氧污泥排放量
由於硝化細菌的繁殖周期很長,適當延長SRT對硝化細菌的生長有利;其次,當硝化作用降低時,大量硝化細菌流失,排泥會加速硝化細菌的流失。
3. 增加生化系統內外迴流
一方面,這樣可以保持較高的污泥濃度,提高系統的抗沖擊性,另一方面,可以降低進入生化系統的氨氮濃度,從而降低高濃度氨氮或游離氨對硝化細菌的抑製作用。
4. 投加硝化細菌快速促進硝化系統恢復
硝化細菌是人工富集培養後的微生物菌劑,比常規的細菌具有更好的生物活性,解決了硝化細菌自然生長緩慢的問題。根據污水處理的微生物營養和生理學原理,投加後可以顯著提高系統中硝化細菌的生長繁殖速率,促進硝化系統的快速恢復。硝化細菌既可以用於系統恢復,也可以在不增加池容的情況下提高原有系統的氨氮處理能力。投加後可逐步提高負荷,增加進水氨氮,效果顯著。
尤其是近期,企業的消毒意識增強,含氯消毒劑使用量增加,可能導致進水余氯升高。消毒劑的殺菌作用對生化系統造成沖擊。外加菌劑,快速恢復生化系統的處理能力,是最佳的選擇。

㈤ 如何去除水中氨氮

以下是去除水中氨氮的一些措施,供參考:

  1. 硝化和脫氮

氨(NH3)被亞硝化細菌氧化成亞硝酸,亞硝酸再被硝化細菌氧化成硝酸,稱為硝化作用,硝化作用需要消耗氧氣,當水中溶氧濃度低於1~2毫克/升時硝化作用速度明顯降低。在水中溶氧缺乏的情況下,反硝化細菌能將硝酸還原為亞硝酸、次硝酸、羥胺或氮時,這種過程稱為硝酸還原,當形成的氣態氮作為代謝物釋放並從系統中流失時,就稱之為脫氮作用。

㈥ 怎麼才能做到氨氮廢水處理零排放

工業廢水種類繁多,污染物龐雜,各有各的特點。其中比較容易的氨氮、硝酸鹽氮廢水和常見污染物導致的高COD廢水只要可生化降解程度好都是可以處理的。達到無害化是可能的。
然而,高磷、高抗生素、高生物毒性、高氰、高重金屬、高氟、高砷和高放射性廢水是比較難辦的。這幾類廢水很難做到徹底無害化。雖然這些廢水都有其可供選擇的治理方案,但治理成本往往是很高的。

另外,有人對零排放的定義是:「徹底沒有排放」,如果這樣定義的話,現代工業絕大多數都無法做到廢水的零排放。

如果將「零排放」定義為完全無害化排放,則是有可能實現的。

㈦ 污泥處理污水中如何去除氨氮

根據廢水中氨氮濃度的不同,可將廢水分為3類:

高濃度氨氮廢水(NH3-N>500mg/l);

中等濃度氨氮廢水(NH3-N:50-500mg/l);

低濃度氨氮廢水(NH3-N<50mg/l)。

然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。

去除氨氮的主要方法有:物理法、化學法、生物法。物理法有反滲透、蒸餾、土壤灌溉等處理技術;化學法有離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法有藻類養殖、生物硝化、固定化生物技術等處理技術。

目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。

1.折點氯化法除氨氮

折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。

折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:

Cl2+H2O→HOCl+H++Cl-

NH4++HOCl→NH2Cl+H++H2O

NHCl2+H2O→NOH+2H++2Cl-

NHCl2+NaOH→N2+HOCl+H++Cl-

折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。

2.選擇性離子交換化除氨氮

離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性,能成功地去除原水和二級出水中的氨氮。

沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。

3.空氣吹脫法與汽提法除氨氮

空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。

汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。

吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。

4.生物法除氨氮

生物法去除氨氮是指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。

硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:

亞硝化:2NH4++3O2→2NO2-+2H2O+4H+

硝化:2NO2-+O2→2NO3-

硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLS•d);泥齡在3~5天以上。

在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:

6NO3-+2CH3OH→6NO2-+2CO2+4H2O

6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-

反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。

常見的生物脫氮流程可以分為3類:

⑴多級污泥系統

多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;

⑵單級污泥系統

單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在缺氧池,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;

⑶生物膜系統

將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。

常規生物處理高濃度氨氮廢水是要存在以下條件:

為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;

硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。

5.化學沉澱法除氨氮

化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。

化學沉澱法處理NH3-N主要原理是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

閱讀全文

與酯類沉澱法去水銨離子相關的資料

熱點內容
咸寧市哪裡有反滲透殺菌劑價格 瀏覽:730
水處理工藝規程 瀏覽:765
樹脂跟abs什麼區別 瀏覽:355
反滲透能將酸性水脫鹽嗎 瀏覽:954
怎麼去除塑料噴頭水垢 瀏覽:152
野馬汽油濾芯用什麼牌子 瀏覽:460
美的ro膜凈水器價格 瀏覽:121
環氧樹脂承受的低溫 瀏覽:710
凈水反滲透設備長時間不開 瀏覽:70
生活污水直接排放和間接排放 瀏覽:115
飲水機排污口在什麼位置 瀏覽:805
污水處理調查方法有哪些 瀏覽:420
災區用什麼凈水器 瀏覽:554
ro膜屬於什麼類 瀏覽:756
地缸過濾系統怎麼做 瀏覽:553
魚缸加熱棒起水垢是什麼原因 瀏覽:34
缺氧怎麼給污水升溫 瀏覽:446
蒸餾適用於沸點差距 瀏覽:775
格力零耗材空氣凈化器怎麼樣 瀏覽:768
河南除垢葯劑哪家好 瀏覽:206