硬水軟化,最簡單的方法就是煮沸。
家庭中最常用的就是煮沸。而實驗室中,則是採用離子交換法。
1.沉澱法:用石灰、純鹼處理,使水中Ca2+、Mg2+生成沉澱析出,過濾後即得軟水,其中的錳、鐵等離子也可除去。
2.軟水劑
(1)Na3PO4: 3CaSO4+2Na3PO4→Ca3(PO)4↓+3Na2SO4
(2)六偏磷酸鈉: Na4[Na2(P03)6]+Ca2+→Na4[Ca(P03)6]+2Na+
(3)胺的醋酸衍生物(EDTA):與Ca2+、Fe2+、Cu2+等離子生成螯合物。
3.離子交換法:
(1)原理:用無機or有機物組成一混合凝膠,形成交換劑核,四周包圍兩層不同。
電荷的雙電層,水通過後可發生離子交換。
陽離子交換劑:含H+、Na+固體與Ca+、Mg2+離子交換。
陰離子交換劑:含鹼性基因,能與水中陰離子交換。
(2)常用交換劑:
a.泡沸石:水化硅酸鈉鋁
Na2O·Z+Ca(HCO3)2=CaO·Z+2NaHCO3
Na2O·Z+CaSO4=CaO·Z+Na2SO4
b.磺化煤:
2Na(K)+CaSO4=Ca(K)2+Na2SO4
2H(K)+CaSO4=Ca(K)2+Na2SO4
c.離子交換樹脂
4.電滲析法:
用直流電源作動力,使水中的離子選擇性地透過樹脂交換膜而獲得軟水。
5.磁化法:
使水流過一個磁場,鈣、鎂鹽類分子間引力減小,不易產生堅硬水垢
㈡ 為什麼離子水化半徑越小,吸附劑的離子交換能力越強
離子水化半徑一般是指被交換的離子,而不是吸附劑的離子。
所以對方強,才能更好地吸附過來,綁得更緊。
然後靠高濃度將其除去,循環利用。
㈢ 硬水轉化軟水原理
軟水和硬水的原理是肥皂水的主要成份是硬脂酸鈉,硬水含鈣鎂離內子多,和肥皂水反容應生成硬脂酸鈣和硬脂酸鎂沉澱,而軟水含鈣鎂離子少,不會產生沉澱,所以能用肥皂水檢驗軟水、硬水。
取一杯熱水倒入肥皂水。水面上出現泡沫的為軟水,水面上出現浮渣的為硬水,浮渣越多,水的硬度越大。
也可以用燒杯加熱,在杯壁留下較多水垢的是硬水。因為硬水是含有較多的可溶性鈣,鎂物質的水,加熱後,這些可溶性的鈣鎂物質轉化成不可溶性的物質,沉澱雜質多的是硬水,雜質越多,水的硬度越大。
(3)水化規律的離子交換平衡原理擴展閱讀:
硬水變為軟水可以通過以下方法:
1、用石灰、純鹼等軟水劑處理,使水中Ca2+、Mg2+生成沉澱析出,過濾、沉澱法。
2、對硬水進行加熱的煮沸法。
3、使用泡沸石、水化硅酸鈉鋁進行的離子交換法。
4、電滲析法:用直流電源作動力,使水中的離子選擇性地透過離子交換膜而獲得軟水。
5、石灰—純鹼法:暫時硬度加入石灰就可以完全消除。
㈣ 離子交換的原理
有兩種理論可用於研究交換過程的選擇性:
① 多相化學反應理論假定離子A1與A2之間有如下的交換反應:
式中Z1和Z2分別為離子A1和A2的化合價;A1和A2表示存在於溶液相中的離子;凴1和凴2表示存在於樹脂相中的離子。以離子濃度C代替活度,依據質量作用定律,可得出離子交換平衡常數為: 式中C1、C2、叿1和叿2分別為A1、A2、凴1和凴2的離子濃度。此常數又稱選擇性系數。
②膜平衡理論認為樹脂表面相當於半透膜, 所交換的離子能自由通過;而連接在樹脂骨架上的離子不能通過。按照F.G.唐南膜平衡原理,可得出格雷戈爾公式:
式中R為摩爾氣體常數;T為絕對溫度;α1、α2、ā1和ā2分別為離子A1、A2、凴1和凴2的活度;π為滲透壓;堸為位於樹脂相的離子的偏摩爾體積。由上式可以看出,化合價較高、體積較小(即水化半徑較小)的離子,將優先與樹脂結合。因此,溶液中各種離子的化合價及體積相差越大,離子交換過程的選擇性越高。 離子交換是一種液固相反應過程,必然涉及物質在液相和固相中的擴散過程。在常溫下,交換反應的速度很快,不是控制因素。如果進行交換的離子在液相中的擴散速度較慢,稱為外擴散控制,如果在固相中的擴散較慢,則稱為內擴散控制。
早期的研究系從斐克定律(見分子擴散)出發,所導出的速率方程式只適用於同位素離子的交換。實際上,離子交換過程至少有兩種離子反向擴散。如果它們的擴散速率不等,就會產生電場,此電場必對離子的擴散產生影響。考慮到此電場的影響,F.G.赫爾弗里希導出相應的速率方程為:
式中N為物質通量;D為擴散系數;F為法拉第常數;φ為電極電位。
㈤ 陽離子交換
1.陽離子交換
按質量作用定律,陽離子交換反應可以表示為
水文地球化學基礎
式中:KA—B為陽離子交換平衡常數;A和B為水中的離子;AX和BX為吸附在固體顆粒表面的離子;方括弧指活度。
在海水入侵過程中,准確模擬陽離子交換作用是預測陽離子在含水層中運移的前提條件。按照質量作用定律可以用一個平衡常數把離子交換作為一種反應來描述。例如Na+、Ca2+的交換:
水文地球化學基礎
平衡常數為:
水文地球化學基礎
式(3—115)表明,交換反應是等當量的,是個可逆過程;兩個Na+交換一個Ca2+。如果水中的Na+與吸附在固體顆粒表面的Ca2+(即CaX)交換,則反應向右進行;反之,則向左進行。如果反應向右進行,Ca2+是解吸過程,而Na+是吸附過程。所以,陽離子交換實際上是一個吸附—解吸過程。Na+、Ca2+的交換是一種最廣泛的陽離子交換。當海水入侵淡水含水層時,由於海水中Na+遠高於淡水,而且淡水含水層顆粒表面可交換的陽離子主要是Ca2+,因此產生Na+、Ca2+之間的離子交換,Na+被吸附而Ca2+被解吸,方程(3—115)向右進行;當淡水滲入海相地層時,則Na+被解吸而Ca2+被吸附,反應向左進行。
2.質量作用方程
描述離子交換反應的方程式有多種,通常主要是通過對實驗數據的最佳擬合來決定選擇哪一種方程式,眾多的研究者很難達成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因為目前並沒有一個統一的理論來計算吸附劑上的離子活度,而前面提到的迪拜—休克爾方程、戴維斯方程都是適用於水溶液中的離子活度計算。
交換性陽離子活度有時用摩爾分數來計算,但更為常用的是當量分數作為交換位的數量分數或者作為交換性陽離子的數量分數。在一種理想的標准狀態下,交換劑只被一種離子完全占據,交換離子的活度等於1。對於等價交換使用哪一種方程式沒有區別,但是對於非等價交換影響十分顯著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函數形式:
水文地球化學基礎
即為交換位濃度(單位質量吸附劑的摩爾數)與無單位函數
海水入侵過程中的交換反應主要為Na+與Ca2+之間的交換,通常寫作:
水文地球化學基礎
X為—1價的表面交換位,交換位X的總濃度為
水文地球化學基礎
式中:S指每單位質量固體的總交換位濃度,mol/g。這種情況下S的量等於陽離子交換容量(只要單位換算統一即可)。
水文地球化學基礎
式(3—120)的書寫方式符合Gaines—Thomas方程式,Gaines(蓋恩斯)和Thomas(托馬斯)(1995)最先給出交換性陽離子熱動力學標准態的嚴格定義。它使用交換性陽離子的當量分數作為吸附離子的活度。若式(3—120)使用摩爾分數,則遵守Vanselow(1932)公式。
如果假定吸附陽離子的活度和被離子占據的交換位的數目成正比,反應式(3—115)則可寫成
水文地球化學基礎
式(3—122)符合Gapon(加彭)方程式。在Gapon方程式中,摩爾分數和當量分數是一樣的,都是電荷為—1的單一交換位。
還有一種交換形式為:
水文地球化學基礎
Y指交換位的電荷為—2,這種反應式同樣是交換反應的一種有效熱力學描述。它假定交換位Y的總濃度為
水文地球化學基礎
S則為陽離子交換容量的二分之一。Cernik(采爾尼克)等根據當量分數利用反應式(3—123),將交換系數表示為:
水文地球化學基礎
3.質量作用方程擬合
利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式對在砂樣中進行的試驗所獲得的數據進行擬合,根據擬合結果作出 Na+、Ca2+、Mg2+、K+吸附等溫線(劉茜,2007),如圖3—4~圖3—7所示。
圖3—4 Na+吸附等溫線和擬合數據
由吸附等溫線可以看出,砂樣對Na+、Mg2+、K+的吸附量均隨著溶液中離子濃度的增加而逐漸增加,而Ca2+發生解吸。圖3—4中,砂樣對Na+的吸附量隨溶液中離子濃度的增加而緩慢增加。圖3—5中,在Ca2+濃度較低時,解吸量迅速增大,當Ca2+濃度較高時,隨濃度增加解吸量增加緩慢,逐漸趨於平穩狀態。
圖3—6中Mg2+濃度較低時,吸附量增加較慢,在較高濃度時增加較快,但並沒有出現Ca2+的解吸等溫線中的平穩狀態,依然為直線型,且直線的斜率大於低濃度狀態時的斜率,說明Na+、Mg2+的吸附速率在低濃度(海水含量為20%左右)時較小,在高濃度時,吸附速率變大;Ca2+的解吸在高濃度時基本達到平衡,而Na+、Mg2+還有增長趨勢,也較好證明了試驗所用砂樣的交換位主要為Ca2+所佔據。圖3—7中K+實測值的吸附等溫線則沒有出現Ca2+、Na+、Mg2+的規律,雖然整體上隨著溶液離子濃度的增加,吸附量也是增長趨勢,但並沒有出現直線規律。究其原因,主要是陽離子交換吸附作用不大,主要是化學吸附,因為K+的水化膜較薄,所以有較強的結合力,K+被吸附後,大多被牢固吸附在黏土礦物晶格中。
圖3—5 Ca2+吸附等溫線和擬合數據
圖3—6 Mg2+吸附等溫線和擬合數據
圖3—7 K+吸附等溫式和擬合數據
由吸附等溫線模擬圖(圖3—4~圖3—7)及公式與試驗數據擬合的相關系數(表3—17)看出,GT方程式擬合效果較好,能夠很好地預測離子交換趨勢。因此,在多組分離子交換模擬計算中採用Gaines—Thomas方程,為陽離子交換的定量研究提供了依據。
表3—17 GT、GP、VS方程式擬合的相關系數
所以根據Gaines—Thomas方程式(3—126)~式(3—131)計算離子交換系數(表3—18)。由於 9 種配比濃度的離子強度不同,所以各自的交換系數也有所差別。對比
水文地球化學基礎
表3—18 試驗土樣不同濃度下的交換系數
㈥ 陽離子交換質量作用方程
(一)陽離子吸附親合力
就特定的固相物質而言,陽離子吸附親合力是不同的。影響陽離子吸附親合力的因素主要是;(1)同價離子,其吸附親合力隨離子半徑及離子水化程度而差異,一般來說,它隨離子半徑的增加而增加,隨水化程度的增加而降低;離子半徑越小,水化程度越高。例如Na+、K+、NH4+的離子半徑分別為0.98、1.33和1.43Å,其水化半徑分別為7.9、5.37和5.32Å;他們的親合力順序為NH4+>K+>Na+。(2)一般來說,高價離子的吸附親合力高於低價離子的吸附親合力。
按各元素吸附親合力的排序如下:
水文地球化學基礎
上述排序中,H+是一個例外,它雖然是一價陽離子,但它具有兩價或三價陽離子一樣的吸附親合力。
值得注意的是,上述排序並不是絕對的,因為陽離子交換服從質量作用定律,所以吸附親合力很弱的離子,只要濃度足夠大,也可以交換吸附親合力很強而濃度較小的離子。
(二)陽離子交換質量作用方程
按質量作用定律,陽離子交換反應可表示為:
水文地球化學基礎
式中,KA-B為陽離子交換平衡常數,A和B為水中的離子,Ax和Bx為吸附在固體顆表面的離子,方括弧表示活度。
以Na-Ca交換為例,其交換反應方程為:
水文地球化學基礎
(1.146)式表明,交換反應是等當量交換,是個可逆過程;兩個鈉離子交換一個鈣離子。如果水中的Na+交換已被吸附在固體顆粒表面的Ca2+(即Cax),則反應向右進行;反之,則向左進行。如反應向右進行,那麼,就鈣離子而言,是個解吸過程;就鈉離子而言,是個吸附過程。所以,陽離子交換反應,實際上是一個吸附-解吸過程。
在地下水系統中,Na-Ca交換是一種進行得最廣泛的陽離子交換。例如,當海水入侵到淡水含水層時,由於海水Na+遠高於淡水,而且淡水含水層顆粒表面可交換性的陽離子主要是Ca2+,因此產生海水中的Na+與顆粒表面的Ca2+產生交換,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右進行。又如,如果在某個地質歷史里,淡水滲入海相地層,按上述類似的機理判斷,則產生Na+被解吸Ca2+被吸附的過程,方程(1.146)向左進行。
Na-Ca交換反應方向的判斷,以及對地下水化學成分的影響,仍至對土壤環境的影響,是水文地球化學及土壤學中一個很重要的問題,後面將作更詳細的介紹。
上述(1.145)式中都使用活度,水中的A和B離子活度可以按第一節所提供的方法求得,但如何求得被吸附的陽離子(Ax和Bx)的活度,目前還沒有太滿意的解決辦法。萬賽羅(Vanselow,1932)〔7〕提出,規定被吸附離子的摩爾分數等於其活度。
摩爾分數的定義為:某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下
水文地球化學基礎
式中,xB為B組分的摩爾分數,無量綱;mA為溶劑的摩爾數(mol/L);mB、mC、mD、……為溶質B、C、D……的摩爾數(mol/L)。就水溶液而言,溶劑是水,1mol H2O=18g,lL H2O=1000g,所以l升溶劑(H2O)的摩爾數=1000/18=55.56mol/L。
按照上述摩爾分數的定義,Ax和Bx的摩爾分數的數學表達式為:
水文地球化學基礎
式中,NA和NB分別為被吸附離子A和B的摩爾分數;(Ax)和(Bx)分別為被吸附離子A和B的摩爾數(mol/kg)。
以摩爾分數代替被吸附離子A和B的活度。則(2.145)的交換平衡表達式可寫成:
水文地球化學基礎
式中,
從理論上講,
在研究陽離子交換反應時,人們關心的問題是,在地下水滲流過程中,從補給區流到排泄區,由於陽離子交換反應,地下水中的陽離子濃度將會產生何種變化?為了簡化問題起見,假定其他反應對陽離子濃度的變化都可忽略,那麼從理論上講,地下水從原來的地段進入一個具有明顯交換能力的新地段後,必然會破壞其原有的陽離子交換平衡,而調整到一個新的交換平衡條件。達到新的平衡後,其陽離子濃度的變化主要取決於:(1)新地段固體顆粒表面各種交換性陽離子的濃度,以及它們互相間的比值;(2)進入新地段地下水的原有化學成分,特別是陽離子濃度。隨著地下水的不斷向前流動,陽離子交換平衡不斷被打破,又不斷地建立新的平衡。其結果是,不但水的陽離子濃度變化了,含水層固體顆粒表面有關的交換性陽離子濃度也改變了。為了定量地說明上述理論上的判斷,特列舉下列例題的計算。
例題1.8
在某一地下水流動系統中,有一段具有明顯陽離子交換能力且含有大量粘土礦物的地段,試利用陽離子交換質量平衡方程(2.150),計算地下水達到新的交換平衡後,水中Ca2+和Mg2+濃度的變化,含水層粘土礦物顆粒表面交換性陽離子(被吸附的陽離子)濃度的變化。
假定:(1)含粘土礦物地段的陽離子交換容量為100meq/100g,交換性陽離子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)進入該地段前,地下水中的Ca2+和Mg2+濃度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)該含水層地段的有關參數:孔隙度n=0.33;固體顆粒密度ρ=2.65g/cm3;(4)地下水與該地段粘土礦物顆粒相互作用後,達到平衡時,選擇系數
計算步驟:
(1)求新的地下水進入該地段前的NCa和NMg
按題意所給,Cax=Mgx=50meq/100g。把它們換算為以mol/g表示,則Cax=Mgx=0.25×10-8mol/g;將此數據代入(1.149)式,則
NCa=NMg=0.5
(2)求新的地下水剛進入該地段時,起始狀態的
按質量作用定律,Ca-Mg交換方程為:
水文地球化學基礎
交換平衡後,雖然各自的摩爾分數有所增減,但其總數仍然不變,即NCa+NMg=1。
設達到新交換平衡時,NCa=Y,那麼,NMg=1-Y。
把上述假設代入(1.151)式,則
水文地球化學基礎
因達到新的交換平衡時,
水文地球化學基礎
因達到新交換平衡時,Cax和Mgx雖然有變化,那其總和仍然不變,即Cax+Mgx=0.5。設那時的Cax=Z,那麼:
水文地球化學基礎
把(1.154)式代入(1.153)式,得:
水文地球化學基礎
由於達到交換平衡前後,固相中的交換性鈣離子(Cax)和液相中的溶解鈣離子的總和不變。就一升水及其所接觸的岩土而論,達到交換平衡前,一升水的Ca2+為1mmol;岩土中的Cax=0.25mmol/g,-升水所佔據的岩土體積=5379.5g。達交換平衡後,一升水的Ca2+摩爾數為x,岩土中交換性鈣離子(Cax)濃度為Z。那麼,其均衡方程為:
水文地球化學基礎
式的左邊,為交換平衡前固液相中鈣離子總量(mmol);式的右邊,為交換平衡後固液相中鈣離子總量(mmol)。
整理(1.156)式,得:
水文地球化學基礎
把(1.157)式代入(1.155)式,整理後得:
水文地球化學基礎
解方程(1.158),得:
Z=0.250046,即交換平衡後,Cax=0.250046mmol/g
那麼,Mgx=0.5-0.250046=0.249954mmol/L
按上述計算摩爾分數的方法,得:
NCa=0.50009,NMg=0.49991
把所算得的Z值代入(1.157),得:
x=0.7525,即交換平衡後,〔Ca2+〕=0.7525mmol/L
那麼,〔Mg2+〕=2-0.7525=1.2475mmol/L
上述計算結果說明,當新的地下水通過交換地段,達到交換平衡時,吸附的陽離子(Ca2+和Mg2+)的濃度或摩爾分數的比值變化極小;相比之下,地下水中Ca2+和Mg2+的濃度變化很大,〔Mg2+〕/〔Ca2+〕從1約增至1.7。如果隨後進入該地段的地下水〔Mg2+〕/(Ca2+)仍然是1的話,地下水再次破壞了剛建立起來的交換平衡,交換反應又繼續進行,直至NMg/NCa=O.6為止。此時,新流入地下水的Ca2+和Mg2+的濃度才不會改變。然而,要達到此種狀態,必需通過無數個孔隙體積的水,甚至要幾百萬年時間才能完成。
上述計算還說明,陽離子的交換方向,從左向右進行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不斷被解吸。交換反應方向不僅取決於水中兩種離子的濃度比,同時也取決於吸附離子的摩爾分數比。如若交換的起始條件為NMg=0.375和NCa=0.625,流入的水,其鈣鎂活度比為1,那麼流過該地段的地下水,其Ca2+和Mg2+的濃度就沒有變化了。如若交換的起始條件為NMg/NCa<0.6,其交換方向則與上述相反,從右向左進行(2.151式)。
(三)地下水系統中的Na-Ca交換
地下水中Na-Ca交換在地下水化學成分形成和演變過程中,是一個很重要的陽離子交換過程,它無論在深層地下水形成和演變,或者在淺層潛水水化學成分的改變,特別是硬度升高等方面,都具有重要意義;在土壤科學中,它對鹽鹼土的形成,也有重要作用。
地下水系統中,固液相間的Na-Ca交換也服從質量作用定律,但其質量作用方程的表達形式不同。其交換反應如下:
水文地球化學基礎
(2.159)反應最常用的質量作用方程是Gappn方程:
水文地球化學基礎
在Gapon方程的基礎上,又有許多學者提出類似於此方程的各種表達式。例如,美國鹽實驗室〔17〕在研究灌溉水與土壤間的Na-Ca交換時,提出類似於Gapon方程的表達式:
水文地球化學基礎
式中,Nax為達到交換平衡時土壤的交換性鈉量(meq/100g);CEC為土壤的陽離子交換容量(meq/100g);Na+、Ca2+和Mg2+是達交換平衡時水中這些離子的濃度(meq/L);K為平衡常數。
(1.161)式左邊項表示為:
水文地球化學基礎
式中的ESR稱為「交換性鈉比」。
(1.16l)式右邊項表示為:
水文地球化學基礎
式中的「SAR」稱為鈉吸附比,它是Na-Ca交換中一個很重要的參數。(1.161)式可改寫成:
水文地球化學基礎
(1.164)式說明,ESR與SAR線性相關,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。許多學者通過岩土的Na-Ca交換試驗,得出了有關回歸方程,列於表1.20。
表1.20Na-Ca交換的回歸方程
表1.20中的Na-Ca交換方程是實驗方程,應用起來當然有其局限性。其中,美國鹽實驗室的回歸方程是用美國西部12個土壤剖面59個土樣試驗得出的,所以其代表性較好。盡管有其局限性,但是,應用此類方程判斷Na-Ca交換的方向,定量化計算其交換量,還是比較有效的。表1.21的數據充分說明這一推斷。
表1.21Na-Ca試驗中某些參數的變化〔2〕
表1.21中是一組Na-Ca交換試驗數據,其中包括實測值與計算值的對比。表中的數據可說明以下幾點;
(1)Na-Ca交換反應方向取決於水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分別為0.73和9.81的水淋濾ESR值為0.046的同一種土壤時,淋濾後,前者的(Cax+Mgx)從8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固體顆粒表面的交換性Na+解吸到水中,按(1.159)式,其交換反應方向朝左進行;相反,後者的(Cax+Mgx)從8.56減至7.52meq/100g,水中的Na+被吸附,而固體顆粒表面的交換性Ca2+和Mg2+解吸進入水中,按(1.159)式,其交換反應向右進行。如果起始條件已知,即水中的SAR值及岩土中的ESR值已知,也可判斷其反應方向。例如,把表1.21中的SAR值0.73和9.81分別代入表1.20中的3號方程,ESR值的計算值分別為0.038和0.1379。前者的ESR計算值(0.038)小於土壤的起始ESR值(0.046,見表1.21),反應按(1.159)式向左進行;後者的SER計算值(0.1379)明顯大於土壤的起始ESR值(0.046),反應按(1.159)式向右進行。也就是說;如果ESR計算值小於岩土的ESR值,反應向左進行;反之,則相反。當然,如果土壤的起始ESR值為0.038,與S4R值為0.73的水相互作用時,Na-Ca交換處於平衡狀態,水中的Na+、Ca2+和Mg2+濃度不會改變。表1.22是現場試驗結果,結果說明,SAR值越高,固體表面解吸出來的Ca2+和Mg2+就越多,水的硬度增加就越大。這些數據充分證明了上述理論。
表1.22SAR值不同的污水現場試驗結果〔2〕
註:硬度以CaCO3計(mg/L)。
(2)把Na-Ca交換方程應用於實際是比較可靠的。表1.21中(Cax+Mgx)的實測值及計算值相差很小,說明了這一點。其計算方法如下:以計算SAR=0.73的水為例,將0.73代入表1.20中的方程3,求得ESR=0.038;將此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;將CEC值減去Nax值,即為(Cax+Mgx)值(因為土中吸附的陽離子主要是Na+、Ca2+和Mg2+),其值為8.63meq/100g。
SAR值不僅在研究Na-Ca交換反應中是重要的,而且它是灌溉水質的一個重要參數。前面談到,SAR高的水,在水岩作用過程中,引起水中的Na+被吸附到固相顆粒表面上,2個Na+交換一個Ca2+或Mg2+(等當量交換)。因為2個Na2+的大小比一個Ca2+或Mg2+大,因而引起土壤的透氣性減小,產生板結及鹽鹼化。有關SAR值的灌溉水質標准可參考有關文獻。本書不詳述。
㈦ 硬水軟化方法有幾種
一、水的處理:硬水的軟化
1.沉澱法:用石灰、純鹼處理,使水中Ca2+、Mg2+生成沉澱析出,過濾後即得軟水,其中的錳、鐵等離子也可除去。
拍困2.軟水劑
(1)Na3PO4: 3CaSO4+2Na3PO4→Ca3(PO)4↓+3Na2SO4
(2)六偏磷酸鈉: Na4[Na2(P03)6]+Ca2+→Na4[Ca(P03)6]+2Na+
(3)胺的醋酸衍生物(EDTA):與Ca2+、Fe2+、Cu2+等離子生成螯合物
3.離子交換法:
(1)原理:用無機or有機物組成一混合凝膠,形成交換劑核,四周包圍兩層姿賀洞不同
電荷的雙電層,水通過後可發生離子交換。
陽離子交換劑:含H+、Na+固體與Ca+、、、、、、、、Mg2+離子交換
陰離子交換劑:含鹼性基因,能與水中陰離子交換
(2)常用交換劑:
a.泡沸石:水化硅酸鈉鋁
Na2O·Z+Ca(HCO3)→CaO·Z+2NaHCO3
Na2O·Z+CaSO4→CaO·Z+Na2SO4
b.磺化煤:
2Na(K)+CaSO4→Ca(K)2+NaSO4
2H(K)+CaSO4→Ca(K)2+NaSO4
c.離子交換樹脂
4.電滲析法:
用直流電源作動力,使水中的離子選擇性地透過樹脂交換膜而獲得軟水。
5.磁化法:
使水流過一個磁場,鈣、鎂鹽類分子間引力減小,不易產生堅硬水垢
水的硬度是由什麼引起的:
水的硬度是由碳酸氫鈣或碳酸氫鎂引起的,這種硬度叫作暫時硬度。這種水經過煮沸以後,水裡所含的碳酸氫鈣就分解成不溶於水的碳酸鈣,水裡所含的碳酸氫鎂就生成難溶於水的碳酸鎂沉澱。這些沉澱物析出,水的硬度就可跡枯以降低,從而使硬度較高的水得到軟化。
水的硬度是由鈣和鎂的硫酸鹽或氯化物引起的,這種硬度就叫作永久硬度。永久硬度不能用加熱的方法軟化。天然水大多同時具有暫時硬度和永久硬度,因此,一般所說水的硬度是指上述兩種硬度的總和。
二、壺的處理:
使用 食醋 浸泡 一段時間後 白色沉澱會逐漸消失
地下水由於水中含有大量的鈣鎂離子,由於鈣鎂離子形成的鹽不溶於水或微溶於水的,所以在鍋里燒煮後,他不會隨著 水分蒸發,在水燒開的情況下,隨著水的翻滾,漂浮在鍋的邊緣,形成了白色的泡沫,如果將鍋內的水燒干,鈣鎂鹽會沉澱在鍋底,狀態時粉末或結塊,在日常生活中沒事情,如果是鍋爐內出現了鈣鎂離子鹽沉澱,不但會影響鍋爐的傳熱效果,浪費能源,更甚者會出現鍋爐的爆炸,所以,對鍋爐補給水,我們一定要進行軟化過濾和純化處理,除去水中的鈣鎂離子,防止鍋爐結垢或結塊。
防止鍋爐結垢,最簡單的辦法就是軟化,一般用在中低壓鍋爐,鍋爐軟化裝置又稱為鍋爐軟水器,主要是通過鈉離子交換樹脂交換水中的鈣鎂離子,將鈣鎂離子交換到樹脂上,如果樹脂飽和了,經過氯化鈉再生,然後將樹脂上鈣鎂離子交換下來排出,樹脂經過再生後,又可以進行軟化工作,鍋爐軟水器有全自動鍋爐軟水器和手動鍋爐軟水器,全自動軟化水設備一般在小型的軟化水設備,全自動軟化水設備分時間型和流量型軟水器,時間型主要定時進行反洗,再生,清洗。流量型是處理設定流量後進行反洗,再生,清洗。控制頭是全自軟化水設備的核心部分,控制頭有美國品牌的fleck和阿圖祖,國產的有潤新控制閥。然而大型的軟水器一般採用手動的。