導航:首頁 > 凈水問答 > 電控離子交換技術應用

電控離子交換技術應用

發布時間:2024-05-28 11:14:45

A. 電去離子的工業應用和市場需求

最近幾年電去離子在各個工業領域都越來越受重視,許多工業系統開始採用電去離子作為其水處理系統的更新換代技術,如電力工業、制葯工業、微電子工業、電鍍與金屬表面處理等。 雖然葯用水的特點是並不要求很高的去離子程度,但電去離子系統具有同時去鹽和控制微生物指標的特點,因此已有多家企業採用RO/EDI集成系統。據稱該類系統性能穩定,全流程計算機連續監控,全自動操作無人值守。
電去離子法(Electro deio?nization),簡稱EDI,是一種將電滲析與離子交換有機地結合在一起的膜分離脫鹽工藝,屬高科技綠色環保技術。它利用電滲析過程中的極化現象對離子交換填充床進行電化學再生,集中了電滲析和離子交換法的優點,克服了兩者的弊端。 EDI技術結合了兩種成熟的水處理技術-電滲析技術和離子交換技術,我國稱此為填充床電滲析或電去離子技術。它主要替代傳統的離子交換混床來生產高純水,環保特性好,操作使用簡便,愈來愈多地被人們所認可,也愈來愈多廣泛地在醫葯、電子、電力、化工等行業得到推廣,至今,國際上已有3千多套EDI裝置在運行,總容量已超過3萬m3/h。
連續電除鹽(EDI,Electro deio nization或CDI,continuous electrode ionization),是利用混和離子交換樹脂吸附給水中的陰陽離子,同時這些被吸附的離子又在直流電壓的作用下,分別透過陰陽離子交換膜而被除去的過程。這一過程離子交換樹脂是電連續再生的,因此不需要使用酸和鹼對之再生。這種新技術可以替代傳統的離子交換裝置,生產出高達18.2MΩ .cm(25℃)的超純水。EDI是利用陰、陽離子膜,採用對稱堆放的形式,在陰、陽離子膜中間夾著陰、陽離子樹脂,分別在直流電壓的作用下,進行陰、陽離子交換。而同時在電壓梯度的作用下,水會發生電解產生大量H+和OH-,這些H+和OH-對離子膜中間的陰、陽離子不斷地進行了再生。由於EDI不停進行交換--再生,使得純水度越來越高,所以,輕而易舉的產生了高純度的超純水。
EDI(電除鹽系統)工作原理
高純度水對許多工商業工程非常重要,比如:半導體製造業和制葯業。以前這些工業用的純凈水是用離子交換獲得的。然而,膜系統和膜處理過程作為預處理過程或離子交換系統的替代品越來越流行。如電除鹽過程(EDI)之類的膜系統可以很乾凈地去除礦物質並可以連續工作。而且,膜處理過程在機械上比離子交換系統簡單得多,並不需要酸、鹼再生及廢水中和。EDI處理過程是膜處理過程中增長最快的業務之一。EDI是帶有特殊水槽的非反向電滲析(ED),這個水槽里的液流通道中填充了混床離子交換樹脂。EDI主要用於把總固體溶解量(TDS)為1-20mg/L的水源製成8-17兆歐純凈水。
EDI系統裝置關於進水的注意事項:
進水必須符合反滲透直接透過水的水質,
·需要避免物理、化學和生物污染;
·物理污染PVC碎片、金屬碎屑;污垢,塵土;焊渣;樹脂顆粒等,
·化學污染、氧化劑,如氯氣;多價陽離子,如鐵、錳等;環氧樹脂及玻璃鋼容器製作過程中所用的硬化劑。
·污染物的來源:敞開式儲罐,脫氣塔;
沒有在EDI前配過濾器的軟化器等。
EDI系統裝置出水水質標准
採用RO裝置出水作為EDI給水,在一般情況下,EDI裝置的出水水質其電阻率都能達到16 MΩ·cm,有的甚至接近18 MΩ·cm。採取一些特殊的措施,還可使EDI裝置的出水電阻率接近於18.2 MΩ·cm的理論純水標准。然而,對EDI裝置出水電阻率指標的追求,應根據需要,要有經濟觀點,要從實際出發,不是愈高愈好。對於電子行業來說,用EDI裝置直接獲得18.2 MΩ·cm高純水,可不必再在EDI裝置後採用拋光混床處理,比較方便;對於發電行業,為用EDI裝置處理鍋爐補給水系統來說,只需獲得5 MΩ·cm的純水就可以了。從佔EDI裝置所處理的總水量的多少來看,像電子行業這種對水質要求高的用戶,只佔20% 左右;而對水質要求不高如發電行業作為鍋爐補充水來說,要佔60% 以上;對其它用戶,它們對水質要求也不高,大致與發電行業相仿,也佔20%。因此從滿足大多數的80% 用戶來考慮,只需EDI裝置出水在5 MΩ·cm以上就可以了。
國產的EDI裝置,可能由於製造技術和材料方面的原因,也可能由於用戶對EDI技術不熟悉或其他方面的種種原因,運行中的EDI裝置出水從15 MΩ·cm以上逐漸下降,直到出水不能滿足用戶要求,不能長期穩定在10 MΩ·cm,以上。針對國內離子交換膜的性能不如國外,對EDI工藝的掌握不如國外,以及對其他一些因素的考慮,提出新型結構的EDI裝置出水電阻率以穩定在10 MΩ.cm為宜:穩定在10 MΩ·cm為優質品,穩定在5 MΩ·cm為合格品。採用這樣的定位就可以滿足80% 絕大多數用戶的需求。 EDI裝置是應用在反滲透系統之後,取代傳統的混合離子交換技術(MB-DI)生產穩定的去離子水。EDI技術與混合離子交換技術相比有如下優點:
1、佔地空間小,省略了混床和再生裝置;
2.產水連續穩定,出水質量高,而混床在樹脂臨近失效時水質會變差;
EDI裝置是一個連續凈水過程,因此其產品水水質穩定,電阻率一般為15MΩ·cm,最高可達18MΩ·cm,達到超純水的指標。混床離子交換設施的凈水過程是間斷式的,在剛剛被再生後,其產品水水質較高,而在下次再生之前,其產品水水質較差。
3.運行費用低,再生只耗電,不用酸鹼,節省材料費用;
EDI裝置運行費用包括電耗、水耗、葯劑費及設備折舊等費用,省去了酸鹼消耗、再生用水、廢水處理和污水排放等費用。
在電耗方面,EDI裝置約0.5kWh/t水,混床工藝約0.35kWh/t水,電耗的成本在電廠來說是比較經濟的,可以用廠用電的價格核算。
在水耗方面,EDI裝置產水率高,不用再生用水,因此在此方面運行費用低於混床。
至於葯劑費和設備折舊費兩者相差不大。
總的來說,在運行費用中,EDI裝置噸水運行成本在2.4元左右,常規混床噸水運行成本在2.7元左右,高於EDI裝置。因此,EDI裝置多投資的費用在幾年內完全可以回收。
4.環保效益顯著,增加了操作的安全性;
EDI屬於環保型技術,離子交換樹脂不需酸、鹼化學再生,節約大量酸、鹼和清洗用水,大大降低了勞動強度。更重要的是無廢酸、廢鹼液排放,屬於非化學式的水處理系統,它無需酸、鹼的貯存、處理及無廢水的排放,因而它對新用戶具有特別的吸引力。
三、技術性能
EDI組件運行結果取決於各種各樣的運行條件。以下是保證EDI正常運行的最低條件。為了使系統運行效果更佳,系統設計時應適當提高這些條件。
EDI進水指標
為防止裝置出現污堵,減少其運行壽命,EDI對進水水質有一定的要求,一般採用RO的滲透水作為進水。

B. edi姘村勭悊

闅忕潃縐戞妧鐨勪笉鏂鍙戝睍錛屾按澶勭悊鎶鏈涔熷湪涓嶆柇鍒涙柊銆傚叾涓錛孍DI姘村勭悊鎶鏈浠ュ叾楂樻晥銆佺幆淇濄佽妭鑳界瓑鐗圭偣錛屽彈鍒頒簡瓚婃潵瓚婂氫漢鐨勫叧娉ㄥ拰闈掔潗銆傞偅涔堬紝浠涔堟槸EDI姘村勭悊錛熷畠鍙堟槸濡備綍榪涜屾搷浣滅殑鍛錛

涓銆丒DI姘村勭悊鎶鏈浠嬬粛

EDI鍏ㄧО涓篍lectrodeionization錛屽嵆鐢墊瀬紱誨瓙浜ゆ崲鎶鏈銆傚畠鏄涓縐嶉珮鏁堛佺幆淇濄佽妭鑳界殑姘村勭悊鎶鏈錛岄氳繃鐢靛満浣滅敤鍜岀誨瓙浜ゆ崲浣滅敤錛屽幓闄ゆ按涓鐨勭誨瓙錛屼粠鑰岃揪鍒版彁楂樻按璐ㄧ殑鐩鐨勩備笌浼犵粺鐨勬按澶勭悊鎶鏈鐩告瘮錛孍DI姘村勭悊鎶鏈鍏鋒湁浠ヤ笅鍑犱釜浼樼偣錛

1.楂樻晥錛欵DI姘村勭悊鎶鏈鍙浠ュ幓闄ゆ按涓鐨勭誨瓙錛屼粠鑰屾彁楂樻按璐ㄣ傚悓鏃訛紝EDI姘村勭悊鎶鏈涔熷彲浠ュ揩閫熷勭悊澶ч噺鐨勬按錛屾彁楂樻按澶勭悊鐨勬晥鐜囥

2.鐜淇濓細EDI姘村勭悊鎶鏈涓嶉渶瑕佷嬌鐢ㄥ寲瀛﹁嵂鍓傦紝涓嶄細浜х敓搴熸按鍜屽簾姘旓紝瀵圭幆澧冩病鏈夋薄鏌撱

3.鑺傝兘錛欵DI姘村勭悊鎶鏈浣跨敤鐢靛満浣滅敤鍜岀誨瓙浜ゆ崲浣滅敤錛屼笉闇瑕佷嬌鐢ㄥ寲瀛﹁嵂鍓傦紝浠庤岃妭鐪佷簡鑳芥簮鍜屾垚鏈銆

浜屻丒DI姘村勭悊鎶鏈鐨勬搷浣滄ラ

1.棰勫勭悊錛氬皢姘磋繘琛岄勫勭悊錛屽幓闄ゆ按涓鐨勬偓嫻鐗┿佹償娌欍佹湁鏈虹墿絳夋潅璐ㄣ傞勫勭悊鍙浠ラ噰鐢ㄨ繃婊ゃ佹矇娣銆佸惛闄勭瓑鏂規硶銆

2.EDI澶勭悊錛氬皢棰勫勭悊鍚庣殑姘撮氳繃EDI璁懼囪繘琛屽勭悊銆侲DI璁懼囩敱闃崇誨瓙浜ゆ崲鑶溿侀槾紱誨瓙浜ゆ崲鑶滃拰鐢墊瀬鏉跨粍鎴愩傛按閫氳繃闃崇誨瓙浜ゆ崲鑶滃拰闃寸誨瓙浜ゆ崲鑶滄椂錛岀誨瓙浼氳鍚擱檮鍦ㄨ啘涓娿傜劧鍚庯紝閫氳繃鐢墊瀬鏉跨殑鐢靛満浣滅敤錛屽皢紱誨瓙浠庤啘涓婄Щ闄ゃ傝繖鏍鳳紝灝卞彲浠ュ幓闄ゆ按涓鐨勭誨瓙錛屾彁楂樻按璐ㄣ

3.鍚庡勭悊錛氬皢EDI澶勭悊鍚庣殑姘磋繘琛屽悗澶勭悊銆傚悗澶勭悊鍙浠ラ噰鐢ㄦ秷姣掋佽嚟姘с佺傳澶栫嚎絳夋柟娉曪紝鏉鐏姘翠腑鐨勭粏鑿屽拰鐥呮瘨錛屼繚闅滄按璐ㄥ畨鍏ㄣ

涓夈丒DI姘村勭悊鎶鏈鐨勫簲鐢ㄩ嗗煙

EDI姘村勭悊鎶鏈騫挎硾搴旂敤浜庣數瀛愩佸寲宸ャ佸埗鑽銆侀熷搧銆侀ギ鏂欑瓑琛屼笟銆傚叾涓錛孍DI姘村勭悊鎶鏈鍦ㄧ數瀛愯屼笟鐨勫簲鐢ㄦ渶涓哄箍娉涖傜數瀛愯屼笟瀵規按璐ㄨ佹眰闈炲父楂橈紝EDI姘村勭悊鎶鏈鍙浠ュ幓闄ゆ按涓鐨勭誨瓙鍜屽井鐢熺墿錛屼繚闅滅數瀛愪駭鍝佺殑璐ㄩ噺鍜岀ǔ瀹氭с

鍥涖丒DI姘村勭悊鎶鏈鐨勬湭鏉ュ彂灞

闅忕潃浜轟滑瀵規按璐ㄨ佹眰鐨勪笉鏂鎻愰珮錛孍DI姘村勭悊鎶鏈鐨勫簲鐢ㄥ墠鏅闈炲父騫塊様銆傛湭鏉ワ紝EDI姘村勭悊鎶鏈灝嗕細鏇村姞鏅鴻兘鍖栧拰鑷鍔ㄥ寲錛屾彁楂樻按澶勭悊鐨勬晥鐜囧拰綺懼害銆傚悓鏃訛紝EDI姘村勭悊鎶鏈涔熷皢浼氭洿鍔犺妭鑳姐佺幆淇濓紝涓轟漢浠鎻愪緵鏇村姞鍋ュ悍銆佸畨鍏ㄧ殑楗鐢ㄦ按銆

C. 離子交換的水處理中的應用

EDI(Electro-de-ionization)是一種將離子交換技術、離子交換膜技術和離子電遷移技術(電滲析技術)相結合的純水製造技術。該技術利用離子交換能深度脫鹽來克服電滲析極化而脫鹽不徹底,又利用電滲析極化而發生水電離產生H和OH離子實現樹脂自再生來克服樹脂失效後通過化學葯劑再生的缺陷,是20世紀80年代以來逐漸興起的新技術。經過十幾年的發展,EDI技術已經在北美及歐洲占據了相當部分的超純水市場。
EDI裝置包括陰/陽離子交換膜、離子交換樹脂、直流電源等設備。其中陰離子交換膜只允許陰離子透過,不允許陽離子通過,而陽離子交換膜只允許陽離子透過,不允許陰離子通過。離子交換樹脂充夾在陰陽離子交換膜之間形成單個處理單元,並構成淡水室。單元與單元之間用網狀物隔開,形成濃水室。在單元組兩端的直流電源陰陽電極形成電場。來水水流流經淡水室,水中的陰陽離子在電場作用下通過陰陽離子交換膜被清除,進入濃水室。在離子交換膜之間充填的離子交換樹脂大大地提高了離子被清除的速度。同時,水分子在電場作用下產生氫離子和氫氧根離子,這些離子對離子交換樹脂進行連續再生,以使離子交換樹脂保持最佳狀態。EDI裝置將給水分成三股獨立的水流:純水、濃水、和極水。純水(90%-95%)為最終得到水,濃水(5%-10%)可以再循環處理,極水(1%)排放掉。圖2表示了EDI的凈水基本過程。
EDI裝置屬於精處理水系統,一般多與反滲透(RO)配合使用,組成預處理、反滲透、EDI裝置的超純水處理系統,取代了傳統水處理工藝的混合離子交換設備。EDI裝置進水要求為電阻率為0.025-0.5MΩ·cm,反滲透裝置完全可以滿足要求。EDI裝置可生產電阻率高達15MΩ·cm以上的超純水。 EDI裝置不需要化學再生,可連續運行,進而不需要傳統水處理工藝的混合離子交換設備再生所需的酸鹼液,以及再生所排放的廢水。其主要特點如下:
EDI的凈水基本過程
·連續運行,產品水水質穩定
·容易實現全自動控制
·無須用酸鹼再生
·不會因再生而停機
·節省了再生用水及再生污水處理設施
·產水率高(可達95%)
·無須酸鹼儲備和酸鹼稀釋運送設施
·佔地面積小
·使用安全可靠,避免工人接觸酸鹼
·降低運行及維護成本
·設備單元模塊化,可靈活的組合各種流量的凈水設施
·安裝簡單、費用低廉
·設備初投資大 EDI裝置與混床離子交換設備屬於水處理系統中的精處理設備,下面將兩種設備在產水水質、投資量及運行成本方面進行比較,來說明EDI裝置在水處理中應用的優越性。
(1)產品水水質比較
EDI裝置是一個連續凈水過程,因此其產品水水質穩定,電阻率一般為15MΩ·cm,最高可達18MΩ·cm,達到超純水的指標。混床離子交換設施的凈水過程是間斷式的,在剛剛被再生後,其產品水水質較高,而在下次再生之前,其產品水水質較差。
(2)投資量比較
與混床離子交換設施相比EDI裝置投資量要高約20%左右,但從混床需要酸鹼儲存、酸鹼添加和廢水處理設施及後期維護、樹脂更換來看,兩者費用相差在10%左右。隨著技術的提高與批量生產,EDI裝置所需的投資量會大大的降低。另外,EDI裝置設備小巧,所需廠房遠遠小於混床。
(3)運行成本比較
EDI裝置運行費用包括電耗、水耗、葯劑費及設備折舊等費用,省去了酸鹼消耗、再生用水、廢水處理和污水排放等費用。
在電耗方面,EDI裝置約0.5kWh/t水,混床工藝約0.35kWh/t水,電耗的成本在電廠來說是比較經濟的,可以用廠用電的價格核算。
在水耗方面,EDI裝置產水率高,不用再生用水,因此在此方面運行費用低於混床。
至於葯劑費和設備折舊費兩者相差不大。
總的來說,在運行費用中,EDI裝置噸水運行成本在2.4元左右,常規混床噸水運行成本在2.7元左右,高於EDI裝置。因此,EDI裝置多投資的費用在幾年內完全可以回收。 EDI裝置屬於水精處理設備, 具有連續產水、水質高、易控制、佔地少、不需酸鹼、利於環保等優點, 具有廣泛的應用前景。隨著設備改進與技術完善以及針對不同行業進行優化, 初投資費用會大大降低。可以相信在不久的將來會完全取代傳統的水處理工藝中的混合 。
控制氮含量的方法(4種):生物硝化-反硝化(無機氮延時曝氣氧化成硝酸鹽,再厭氧反硝化轉化成氮氣);折點氯化(二級出水投加氯,到殘余的全部溶解性氯達到最低點,水中氨氮全部氧化);選擇性離子交換;氨的氣提(二級出水pH提高到11以上,使銨離子轉化為氨,對出水激烈曝氣,以氣體方式將氨從水中去除,再調節pH到合適值)。每種方法氮的去除率均可超過90%。

D. 請問離子交換技術和色譜分離技術是什麼,在果汁加工中的應用

離子交換技術:nbsp;nbsp;Sobernbsp;和nbsp;Peterson於1956年首次將離子交換基團結合到纖維素上,製成了離子交換纖維素,成功地應用於蛋白質的分離。從此使生物大分子的分級分離方法取得了迅速的發展。離子交換基團不但可結合到纖維上,nbsp;還可結合到交聯葡聚糖(S-ephadex)和瓊脂糖凝膠(Sepharose)上。nbsp;近年來離子交換色譜技術已經廣泛應用於蛋白質、酶、核酸、肽、寡核苷酸、病毒、噬菌體和多糖的分離和純化。它們的優點是:⑴具有開放性支持骨架,大分子可以自由進入和迅速擴散,故吸附容量大。⑵具有親水性,對大分子的吸附不大牢固,用溫和條件使可以洗脫,不致引起蛋白質變性或酶的失活。⑶多孔性,表面積大、交換容量大,回收率高,可用於分離和制備。一、基本理論nbsp;nbsp;離子交換劑通常是一種不溶性高分子化合物,如樹脂,纖維素,葡聚糖,醇脂糖等,它的分子中含有可解離的基團,這些基因在水溶液中能與溶液中的其它陽離子或陰離子起交換作用。雖然交換反應都是平衡反應,但在層析柱上進行時,由於連續添加新的交換溶液,平衡不斷按正方向進行,直至完全。因此可以把離子交換劑上的原子離子全部洗脫下來,同理,當一定量的溶液通過交換柱時,由於溶液中的離子不斷被交換而波度逐減少,因此也可以全部被交換並吸附在樹脂上。如果有兩種以上的成分被交換吸著在離子交換劑上,用洗脫液洗脫時,在被洗脫的能力則決定於各自洗反應的平衡常數。蛋白質的離子交換過程有兩個階段——吸附和解吸附。吸附在離子交換劑上的蛋白質可以通過改變pH使吸附的蛋白質失去電荷而達到解離但更多的是通過增加離子強度,使加入的離子與蛋白質競爭離子交換劑上的電荷位置,使吸附的蛋白質與離子交換劑解開。不同蛋白質與離子交換劑之間形成電鍵數目不同,即親和力大小有差異nbsp;,因此只要選擇適當的洗脫條件便可將混合物中的組分逐個洗脫下來,達到分離純化的目的。二、離子交換的分類及常見種類(一)分類離子交換劑分為兩大類,即陽離子交換劑和陰離子交換劑。各類交換劑根據其解離性大小,還可分為強、弱兩種,即nbsp;強酸劑nbsp;陽離子交換劑nbsp;nbsp;弱酸劑nbsp;強鹼型nbsp;陰離子交換劑nbsp;弱鹼型nbsp;。1.陽離子交換劑nbsp;nbsp;陽離子交換劑中的可解離基因是磺酸(-SO3H)、磷酸(-PO3H2)、nbsp;羧酸(COOH)和酚羥基(-OH)等酸性基。某些交換劑在交換時反應如下:強酸性:R-SO3nbsp;-H+nbsp;+nbsp;Na+nbsp;R-SO3-nbsp;Na+H+弱酸性:R-COOH+Na+nbsp;R-COONanbsp;+H+國產樹脂中強酸1×7(上海樹脂#732)和國外產品Dowexnbsp;50、Zerolitnbsp;225等都於強酸型離子交換劑。2.陰離子交換劑nbsp;nbsp;陰離子交換劑中的可解離基因是伯胺、(-NH2)、仲胺(-NHCH3)、叔胺[N-(CH3)2]和季胺[-N(CH3)2]等鹼性基團。某些交換反應如下:強鹼性:R-N+(CH3)2nbsp;H·OH-nbsp;+Clnbsp;R-N+(CH3)2nbsp;Cl+OH-弱鹼性:R-N+(CH3)2nbsp;H·OH-nbsp;+Clnbsp;R-N+(CH3)2nbsp;HCl+OH-強鹼性#201號國產樹脂和國外Dowex1、Dowex2、ZerolitFF等都屬於強鹼型陰離子交換劑。(二)種類1.纖維素離子交換劑:陽離子交換劑有羥甲基纖維素(CM-纖維素),nbsp;陰離子交換劑有氯代三乙胺纖維紗(DESE-纖維素)。2.交聯葡聚糖離子交換劑:是將交換基因連接到交聯葡聚糖上製成的一類交換劑,因而既具有離子交換作用,又具有分子篩效應,是一類廣泛應用的色譜分離物質。常用的Sephadex離子交換劑也有陰離子和陽離子交換劑兩類。陰離子交換劑有DEAE-Sephadexnbsp;A-25,A-50和QAE-nbsp;Sephadexnbsp;A25nbsp;,nbsp;A50nbsp;;nbsp;陽離子交換劑有CM-Sephaetxnbsp;C-50,C-50和Sephadexnbsp;C-25,C-50。陰離子交換劑用英文字頭A,陽離子交換劑的英文字頭是C。英文字後面的數字表示Sephadex型號。3.瓊脂糖離子離交換劑:是將DESE-或CM-基團附著在Sepharosenbsp;CL-6Bnbsp;上形成,DEAE-Sephades(陰離子)和CM-Sepharose(陽離子),具有硬度大,nbsp;性質穩定,凝膠後的流速好,分離能力強等優點。三、實驗操作(一)交換劑的處理,再生與轉型nbsp;nbsp;新出廠的樹脂是

E. 鍏ㄦ槸騫茶揣涓ㄧ誨瓙浜ゆ崲鑹茶氨錛圛EC錛夊師鐞嗐佹搷浣滆佺偣鍙婂簲鐢

紱誨瓙浜ゆ崲鑹茶氨錛圛EC錛夛紝榪欎釜寮哄ぇ鐨勫垎紱繪妧鏈錛屼互鍏剁嫭鐗圭殑鍘熺悊鍜屽箍娉涘簲鐢ㄥ惛寮曠潃縐戝﹀朵滑鐨勭洰鍏夈傚叾鏍稿績鍦ㄤ簬鍒╃敤紱誨瓙浜ゆ崲鍓傜殑紱誨瓙浜ゆ崲鐗規э紝閫氳繃紱誨瓙闂寸殑鐢佃嵎浣滅敤鍔涘樊寮傝繘琛岄珮鏁堝垎紱匯傜誨瓙浜ゆ崲鍓傜敱鍩鴻川銆佺數鑽峰熀鍥㈠拰鍙嶇誨瓙鏋勬垚錛屽垎涓洪槼紱誨瓙鍜岄槾紱誨瓙涓ょ嶇被鍨嬶紝姣忎釜縐嶇被鐨勯夋嫨鎬ч兘鐢卞鉤琛″父鏁癒鍜屼翰鍜屽姏鍙傛暟濡傜誨瓙鐢佃嵎銆佺數浠峰拰鍘熷瓙搴忔暟鍐沖畾銆

紱誨瓙浜ゆ崲榪囩▼鏄涓涓鍙閫嗙殑鍔ㄦ佽繃紼嬶紝鍏剁粨鍚堝姏鍙楀埌pK鍊煎拰絳夌數鐐圭殑褰卞搷銆傚湪錏嬬櫧璐ㄥ垎紱諱腑錛岀瓑鐢電偣鍘熺悊涓庣洂姊搴︽垨pH姊搴︾粨鍚堬紝浣垮緱媧楄劚鎴愪負鍏抽敭姝ラゃ傜誨瓙浜ゆ崲鏍戣剛鐨勫瓟鐘剁粨鏋勶紝鏃犺烘槸鐤忔按鎬ф爲鑴傦紙濡傚己閰-寮遍吀-寮辯⒈鏍戣剛錛夎繕鏄浜叉按鎬ф爲鑴傦紙濡傜氦緇寸礌鍜屼氦鑱旇憽鑱氱硸錛夛紝閮戒負紱誨瓙榪佺Щ鎻愪緵浜嗘湁鍒╂潯浠訛紝浣嗛夋嫨鏃墮渶閽堝規牱鍝佺壒鎬ф潵鍐沖畾銆

鍦ㄥ疄闄呮搷浣滀腑錛岀誨瓙浜ゆ崲鍓傜殑閫夋嫨鑷沖叧閲嶈侊紝濡傞槼紱誨瓙浜ゆ崲鍓傞拡瀵規g數鑽風墿璐錛岄槾紱誨瓙浜ゆ崲鍓傞拡瀵硅礋鐢佃嵎錛屾垨鑰呴拡瀵逛袱鎬х誨瓙鐨勭壒瀹歱H鑼冨洿銆傚己鍨嬩氦鎹㈠墏閫傜敤浜庡箍娉涚殑pH鑼冨洿錛岃屽急鍨嬪垯鍦ㄤ腑鎬pH鏉′歡涓嬩繚鎸侀珮浜ゆ崲瀹歸噺銆傚己閰告爲鑴傚逛簬紕辨ц泲鐧借川灝ゅ叾鏈夋晥錛屽弽紱誨瓙鐨勯夋嫨鍒欏彇鍐充簬緇撳悎鍔涳紝寮洪吀鍨嬮夋嫨H鍨嬶紝寮遍吀鍨嬮夋嫨Na鍨嬨

棰勫勭悊鍜屽啀鐢熻漿鍨嬫槸緇存寔鏍戣剛鎬ц兘鐨勫叧閿鐜鑺傦紝鍙鑳藉寘鎷鏍戣剛嫻告場銆侀櫎鏉傝川錛堥吀紕卞勭悊錛変互鍙婂啀鐢熸ラゃ備翰姘存ф爲鑴傚彲鑳介渶瑕佷嬌鐢∟aOH/NaCl鎴朒Cl澶勭悊錛岃岀惣鑴傜硸鍒欏彲閫氳繃閰哥⒈嫻告場澶勭悊銆傝呮熅鏃訛紝鏌遍珮涓庣洿寰勭殑姣斾緥銆佺誨瓙寮哄害閮戒細褰卞搷鍒嗙繪晥鏋滐紝瑁呮熅闇鍧囧寑鍒嗗竷錛岄伩鍏嶆皵娉′駭鐢熴傛牱鍝佷笂鏌辨椂錛屽鉤琛$紦鍐叉恫鏄鍩虹錛岄殢鍚庡潎鍖鍔犲叆錛屾礂鑴卞垯闇瑕佺簿緇嗚捐★紝閫氳繃鍒嗘點佹搴︽垨澶嶅悎鏂規硶鎻愰珮鍒嗚鯨鐜囥

璐ㄥ勭悊鏃訛紝浜叉按鎬ф爲鑴傞噰鐢ㄤ箼閱囨垨涓欓叜錛岄吀紕卞勭悊鐢ㄤ簬鐞艱剛緋栥傛敹闆嗘礂鑴辨恫鏃訛紝搴旀帶鍒舵祦閫燂紝鍒嗘ユ敹闆嗕互紜淇濆崟涓鐗╄川鐨勭函搴︺傜『瀹氭礂鑴辨恫嫻侀熸椂錛岄氬父鍦5~8cm³/(cm²-h)鑼冨洿鍐呭疄楠岋紝鏀墮泦1%~2%鏌變綋縐鐨勬礂鑴辨恫錛岄氳繃鐩戞祴鍚稿厜搴︾粯鍒舵礂鑴辨洸綰褲傜誨瓙浜ゆ崲鑹茶氨鍦ㄨ泲鐧借川綰鍖栵紙濡傜豢璞嗗嚑涓佽川閰訛級鍜岀瓑鐢電偣嫻嬪畾錛堝傞キ璞囪眴鍑濋泦緔狅級絳夐嗗煙琛ㄧ幇鍑鴻壊錛屽嚟鍊熷叾楂樼伒鏁忓害鍜岄噸澶嶆э紝鎴愪負縐戝﹀朵滑鐨勫緱鍔涘伐鍏楓

鎬葷殑鏉ヨ達紝紱誨瓙浜ゆ崲鑹茶氨閫氳繃綺懼瘑鐨勬搷鎺у拰絳栫暐鎬у簲鐢錛屼負縐戝﹀朵滑鎻愪緵浜嗕竴縐嶅己澶х殑宸ュ叿錛岀敤浜庣簿緇嗗垎紱誨拰鍒嗘瀽澶嶆潅鐨勭敓鐗╁垎瀛愶紝鏄鐜頒唬鐢熺墿鍖栧﹀拰鍒嗗瓙鐢熺墿瀛﹀疄楠屽や腑鐨勫繀澶囨妧鏈銆

F. 離子交換法和反滲透技術的應用你了解多少呢

若採用自動控制,則控制點多、閥門要求高,投資很大。同時酸鹼耗量大,再生廢水也多。另外由於樹脂對非極性的大分子沒有去除能力,所以制水過程中可能會出現細菌殖生。反滲法流程簡介:原水經原水泵送到石英砂過濾器降低濁度,在活性炭過器中降低COD,膠體及有機大分子的含量。活性炭出水再送至保安過濾器進行最後的預處理,使原水SDI<5mg/l,滿足反滲透(RO)主機的進水要求。經保安過濾器後的合格水由高壓泵送至RO主機反滲透進行除鹽處理。反滲透膜截留下的有機物、膠體和鹽無機鹽由濃水側直接排掉,不會給環境造成污染。產品水由膜清水側送出至脫碳塔,除去滲透至清水的二氧化碳氣體。脫氣後的一級除鹽水送至混床進行最後的精除鹽。

G. 離子交換原理

離子交換的基本原理 離子交換的選擇性定義為離子交換劑對於某些離子顯示優先活性的性質。離子交換樹脂吸附各種離子的能力不一,有些離子易被交換樹脂吸附,但吸著後要把它置換下來就比較困難;而另一些離子很難被吸著,但被置換下來卻比較容易,這種性能稱為離子交換的選擇性。離子交換樹脂對水中不同離子的選擇性與樹脂的交聯度、交換基團、可交換離子的性質、水中離子的濃度和水的溫度等因素有關。離子交換作用即溶液中的可交換離子與交換基團上的可交換離子發生交換。一般來說,離子交換樹脂對價數較高的離子的選擇性較大。對於同價離子,則對離子半徑較小的離子的選擇性較大。在同族同價的金屬離子中,原子序數較大的離子其水合半徑較小,陽離子交換樹脂對其的選擇性較大。對於丙烯酸系弱酸性陽離子交換樹脂來說,它對一些離子的選擇性順序為:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 離子交換反應是可逆反應,但是這種可逆反應並不是在均相溶液中進行的,而是在固態的樹脂和溶液的接觸界面間發生的。這種反應的可逆性使離子交換樹脂可以反復使用。以D113型離子交換樹脂制備硫酸鈣晶須為例說明: D113丙烯酸系弱酸性陽離子交換樹脂是一種大孔型離子交換樹脂,其內部的網狀結構中有無數四通八達的孔道,孔道裡面充滿了水分子,在孔道的一定部位上分布著可提供交換離子的交換基團。當硫酸鋅溶液中的Zn2+,S042-擴散到樹脂的孔道中時,由於該樹脂對Zn2+選擇性強於對Ca2+的選擇性,,所以Zn2+就與樹脂孔道中的交換基團Ca2+發生快速的交換反應,被交換下來的Ca2+遇到擴散進入孔道的S042-發生沉澱反應,生成硫酸鈣沉澱。其過程大致為:
(1)邊界水膜內的擴散 水中的Zn2+,S042-離子向樹脂顆粒表面遷移,並擴散通過樹脂表面的邊界水膜層,到達樹脂表面; (2)交聯網孔內的擴散(或稱孔道擴散) Zn2+,S042-離子進入樹脂顆粒內部的交聯網孔,並進行擴散,到達交換點;
(3)離子交換 Zn2+與樹脂基團上的可交換的Ca2+進行交換反應;
(4)交聯網孔內的擴散 被交換下來的Ca2+在樹脂內部交聯網孔中向樹脂表面擴散;部分交換下來的Ca2+在擴散過程中遇到由外部擴散進入孔徑的S042-發生沉澱反應,生成CaS04沉澱;
(5)邊界水膜內的擴散 沒有發生沉澱反應的部分Ca2+擴散通過樹脂顆粒表面的邊界水膜層,並進入水溶液中。 此外,由於離子交換以及沉澱反應的速度很快,硫酸鈣沉澱基本在樹脂的孔道里生成,因此樹脂的孔道就限制了沉澱的生長及形貌,對其具有一定的規整作用。通過調整攪拌速度、反應溫度等外界條件,可以使樹脂顆粒及其內部孔道發生相應的變化,這樣當沉澱在樹脂孔道中生成後,就得到了不同尺寸和形貌的硫酸鈣沉澱。

閱讀全文

與電控離子交換技術應用相關的資料

熱點內容
GE和bwt即熱凈水機哪個好 瀏覽:738
一個車間每天產生多少廢水 瀏覽:541
寶雞市十里鋪污水招標 瀏覽:740
飛利浦凈水器怎麼拆除 瀏覽:448
過濾管壁上的孔數計算 瀏覽:360
嘉定新城金茂府凈水器是什麼牌子 瀏覽:948
一米二魚缸底濾加裝雙重過濾 瀏覽:502
城市污水處理廠如何運行 瀏覽:43
生活污水處理後形成再生水 瀏覽:613
D一48乾燥濾芯怎麼安裝 瀏覽:876
反滲透運行論壇 瀏覽:704
處理廢水怎麼說的高大上 瀏覽:214
總結EDI應用文獻的思想中心 瀏覽:293
風景樹脂茶幾 瀏覽:698
污水不經過化糞池直接排入污水管 瀏覽:383
唐山佳尼特凈水器加盟哪個好 瀏覽:51
凈水器有茶滯怎麼回事 瀏覽:295
飲水機出水口鬆了怎麼修 瀏覽:103
凈水機儲水桶什麼壓力為好 瀏覽:994
焦作雙筒回油過濾器濾芯怎麼更換 瀏覽:32