導航:首頁 > 凈水問答 > 聚碸超濾膜研究進展

聚碸超濾膜研究進展

發布時間:2023-10-19 23:37:17

超濾技術在工業廢水處理中的應用

超濾技術在工業廢水處理中的應用
簡介:超濾是迅速崛起的一門分離技術,它在環境保護的水處理中有著廣泛的應用。文章簡要介紹了超濾技術的發展現狀,並對超濾分離法在電泳漆、化學纖維、紡織、造紙、印鈔、釀造、製革、石油和食品工業廢水處理中的應用進行了綜述。
早在1861年Schmidt用牛心包膜截留阿拉伯膠,可作為世界上第一次超濾試驗,到1960年,在Loeb和Sourirajan試驗成功不對稱反滲透醋酸纖維素膜的影響下,1963年Michaels開發了不同孔徑的不對稱CA超濾膜。基於CA膜物化性質的限制,1965年開始,不斷有新品種的高聚物超濾膜問世,並很快商品化,1965-1975年是超濾工藝大發展的階段,膜材料從初期的不對稱CA膜擴大到現在的聚碸(PSF)、聚丙烯腈(PAN)、聚醚碸(PES)以及各種高分子合金膜等,膜組件有板式、卷式和中空纖維等,在不同的生產過程中都已成功的應用[1]。目前所用超濾膜較多由高分子材料製成,隨著工業上超濾技術的應用和發展,以金屬、陶瓷、多孔硅鋁等材料製成的無機膜,在20世紀80年代初期至90年代獲得了重要發展。如1980-1985年期間,美國UCC公司開發的載體為多孔炭、外塗一層陶瓷氧化鋯的無機膜可用作超濾膜管,美國Alcoa/SCT公司開發的商品名為Membralox的陶瓷膜管,能承受反沖,可採用錯流(CrossFlow)操作[2]。用無機膜進行超濾,比常規的分離技術更加經濟有效。目前工業所用的無機膜幾乎全部是多孔陶瓷膜或以多孔陶瓷為支撐體的復合膜。隨著粉末技術的發展,很多優質價廉的燒結金屬微孔管投入市場,它具有易於和金屬構件組合、加工等優點。近年來,國外還有人燒結不銹鋼微孔管內壁燒結孔徑為0.1納米的TiO2薄層,構成Scepter不銹鋼膜[3]。
近30年是超濾技術迅速發展的時期,超濾技術被廣泛地應用於飲用水制備、食品工業、制葯工業、工業廢水處理、金屬加工塗料、生物產品加工、石油加工等。
1 工業廢水處理中的應用
目前膜法水處理技術在環境過程中的應用,主要是超濾、反滲透、滲析和電滲析等方法用於處理各工業廢水。超濾技術因其操作壓力低、能耗低、通量大、分離效率高,可以回收和回用有用物質和水,特別是通量大的特點,使得超濾成為廢水處理工程採用的主要膜分離技術。
1.1 電泳漆廢水
國外超濾技術的較大規模應用開始於70年代,當時就是主要用於電泳塗漆工業。廢水中的漆料是使用漆料總量的10%~50%,採用超濾技術處理電泳漆廢水不僅可以減少漆的損失和回用廢水,而且可以使有害無機鹽透過超濾膜從而提高了電泳漆的比電阻,調節和控制、漆液的組成,保證電泳塗漆的正常運行。70 年代初期主要用CA膜管式超濾器處理陽極電泳漆廢水,70年代後期,改用框式、卷式、中空纖維式超濾器處理陰極電泳漆廢水。國內一些汽車廠、電泳漆行業也採用超濾技術,如長春汽車轎車廠從Aomicon公司引進中空纖維式陰極電泳漆專用超濾器,由30根直徑7.62cm的膜組件並聯而成,總膜面積約75 cm2,處理能力為1.5 t/h,裝有循環液定時自動換向系統,以減少膜污染,延長膜清洗周期。北京某汽車廠原排放電泳漆廢水量為200 m3/d,工件帶出漆液量19.13 L/h,經用超濾法處理後,保證了電泳槽漆液的電阻率大於500 Ω/cm,維持了電泳漆的固體含量穩定,對電泳漆的截留率為97%~98%,排水量降到5 m3/d,節省了大量補充的去離子水[4]。中國科學院生態環境研究中心研製出荷正離子的中空纖維膜組件,對比實驗表明結果良好,與進口膜性能相近,可以用於生產。無錫超濾設備廠對有關的超濾膜進行開發,以共聚丙烯腈為膜材料,二甲基乙醯胺為溶劑,添加適量致孔劑製取的荷正電荷超濾膜透液量大,性能穩定,油漆截留率高,抗污染性能好,也已用於生產。我國許多廠家引進國外超濾裝置,所以用性能優良的國產荷電超濾膜裝置取代進口裝置成為現在的新目標。
1.2 化纖、紡織工業廢水
化纖工業中有多種廢水可用超濾法處理與回收。如回收聚乙烯醇(PVA),國外不少工廠已用於生產。日本某工廠採用8 cm2的管式超濾器將PVA原液由0.1%濃縮到10~15倍,進口壓力為3.92×105 Pa,出口壓力為1.96×105 Pa,進料溫度55~66℃,膜的水通量為100~140 L/ (cm2·h),對PVA的分離率為98.2%,每天回收PVA 20 kg,運行良好[5]。
染料廢水種類繁多,組成復雜,主要包括含鹽、有機物的有色廢水;氯化及溴化廢水;含有微酸和微鹼的有機廢水;含有銅、鉛、鉻、錳、汞等陽離子的有色廢水;含硫的有機物廢水。廢水量大,濃度高,色度高,毒性大,是治理難度最大的工業廢水之一。上海印染廠最早採用醋酸纖維外壓管式超濾裝置處理還原染料廢水並回收染料獲得成功,中科院環境化學所也完成了用聚碸超濾膜管式和中空纖維式裝置處理染料廢水的現場實驗,脫色率為95%~98%,COD去除率60%~90%,濃縮液含染料15~20 g/L,並被印染廠引用於生產[6]。
洗毛廢水是紡織工業污染最嚴重的廢水之一,洗毛廢水中含有大量的懸浮物、油脂和合成洗滌劑,其中主要污染物是羊毛脂。羊毛脂是日用化工、醫葯工業的原料,也是很好的防腐劑和潤滑劑,具有較高的經濟價值。傳統回收羊毛脂的方法回收率較低,而採用超濾技術處理洗毛廢水取得了好的效果。國內的許多毛紡廠和洗毛廠採用超濾法處理洗毛廢水工藝,該工藝包括預處理、超濾濃縮、離心分離和水回用四個系統,比傳統的離心工藝羊毛脂回收率提高1~2倍。具體操作工藝條件為[7]:料液溫度50 ℃,操作壓力0.12~0.35 MPa,膜表面流速3 m/s,膜平均水通量40 L/(cm2·h),濃縮倍數為3~6倍,結果油脂截留率為98%~99%,COD截留率為90%~98%。
1.3 造紙工業廢水
造紙工業耗水量極大,造紙廢水主要來源於去皮、漿化、洗凈、漂白、抄紙等工序。用超濾技術處理造紙廢水既可以對廢水中某些有用成分進行濃縮回收,又可將透過水回用。開山屯化纖漿廠是國內制漿造紙行業中第一家引進了具有國際80年代先進水平的大型超濾設備,並成功地用於亞硫酸鹽制漿廢液的處理,在此基礎上又用自製聚碸膜代替進口膜而取得成功,實驗證明達到了DDS公司生產的FSN61PP超濾膜的水平。工藝為:將廢液預熱升溫到50~70℃,打開進料閥,廢液經過過濾器進入儲罐內,超濾始終控制入口壓力0.6 MPa,出口壓力0.3 MPa,膜的工作溫度60~65 ℃,膜工作面積2.25 cm2。結果成品的木質素磺酸濃度大於95%,還原物去除率大於85%,固形物的率大於30%,達到了對廢液中高分子木質素磺酸的有效分離、純化以及濃縮的目的。日本於1981年採用NTU-3508超濾組件建成了日處理4000 m3的管式膜裝置,是世界上最大規模的裝置。我國目前已具備生產此類超濾和反滲透膜組件的能力,並迅速推廣[8]。
1.4 印鈔廢水
我國印鈔業擦板廢液的處理一直是困擾印鈔行業的老大難問題。中科院上海原子核研究所與上海印鈔廠、南昌印鈔廠、西安印鈔廠等合作,從1993年開始進行了用板式超濾器處理擦板廢液的工作,並對原有的HPL-Ⅱ(A)型超濾器進行了改進,研製成功適用於處理印鈔擦板廢液的HPL-Ⅱ(B)型板式超濾器。經超濾處理後,透過膜的清液不含油墨,鹼的含量不變,對COD的去除率為99%以上,對固含量為3%的擦板廢液可濃縮至12%,廢液的回收率為75%,且比採用中和法處理廢液省力省大量資金。
1.5 釀造工業廢水
味精廢液是含大量菌體等有機物、氯化物的粘性液體,COD高達70 000 mg/L,廢液的排放對環境造成嚴重的污染,同時廢液中還含有一些價值很高的代謝副產物。味精廠用CA、PS、PVC等超濾膜對味精廢液進行處理,其操作條件為:操作壓力0.25MPa,操作溫度25℃,超濾濃縮倍數5~6倍,處理結果表明:透過液清澈透明,菌體去除率達98%以上。透過液經管道輸入醬油廠用來生產味精醬油;對濃縮液進行超濾可得到含蛋白質和脂肪及核酸的價值很高的代謝副產物;超濾谷氨酸發酵液,透過液清澈透明,用來提取谷氨酸可提高純度和提取率[9]。
1.6含油廢水的處理
乳化油廢水是一種常見的工業廢水,超濾法處理乳化油廢水應用已有20多年。在1979年,西德已有超過250個超濾設備被用於濃縮乳化油,所用膜組件為管式、卷式和板式,1989年膜生產單位提高為能處理乳化油廢水的系列膜設備。採用荷電中空纖維膜處理含有氫氧化鈉、磷酸鹽、碳酸鈉、硼酸鈉、亞硝酸鈉和非離子或陰離子表面活性劑的乳化油廢水時,在溫度50℃,進口壓力0.12 MPa,出口壓力0.10 MPa時,透過液通量達25~33 L/(cm2·h),透過液含油量僅十幾mg/L。對於含有氫氧化鈉、鹽等水溶液和部分表面活性劑的透過液稍加調整即可回用脫脂。濃縮液進入油-水分離器,分離出來的油品可回收形成無排放體系。目前,上海寶鋼採用Abcor公司管狀膜的大型超濾設備來處理乳化油廢水。中科院上海原子核研究所選用PSF100型超濾膜採用3塊HPM型隔板並聯成板式超濾器,在料液流速1.6 m/s,平均壓力0.3 MPa,自然升溫等運行條件下,先後進行2次連續濃縮運行,結果表明:油分截留率大於99%,COD的去除率達到95%,體積濃縮比高,超濾平均通量為30 L/(cm2·h),處理乳化油廢液效果很好[10]。
含原油廢水中含油量通常為100~1000 mg/L,超過國家排放標准(10 mg/L),故排放前必須進行除油處理。可採用中空纖維超濾膜組件和超濾設備,在操作壓力為0.10 MPa,廢水溫度40℃,膜的透水速度可達60~120 L/(cm2·h),可以把含原油100~1000 mg/L的廢水處理達到環境排放標准10 mg/L以下,也使處理後的水質達到了低滲透油田的注水標准[11]。
金屬加工過程中產生大量的含有切削油、懸浮物和洗滌劑的廢水,必須進行處理才能排放。超濾處理可把廢水分離成兩部分:濃縮液中含有油和懸浮顆粒,透過液中幾乎不含油。用超濾與微濾聯合進行處理,先用微濾把油濃縮至10%,其中微濾膜的透水能力為250 L/(cm2·h),在進行超濾處理,可回收85%的清洗劑。用超濾處理鋼廠冷壓車間的壓延油廢水時,先用80目篩網過濾後,含油廢水進入循環槽,再經60目篩網過濾後進入超濾膜,超濾濃縮液進入油-水分離器,分離出的油含油量大於90%,可進行燃燒處理,分離出的水返回循環槽進行超濾處理。超濾透過液可循環使用,超濾過程中的透水量和透過液的油分濃度都很穩定,不受供給水中油分濃度的影響。
處理石油開采產生的含油廢水,可在油田用膜分離器中進行超濾與反滲透(或納濾)的組合操作。先使分離出的水進入中空纖維超濾膜,透過液再進入反滲透膜(或納濾膜),不但去除了懸浮物,還去除了溶解鹽和溶解油,以滿足特殊水質的要求。
用超濾處理各種乳化油廢水的開發還在進行,分離效率已基本解決,而要攻克的難關是膜的污染與清洗問題[12]。
1.7 製革工業廢水
製革工業脫毛用的原料主要是Na2S和石灰,其廢水產生量約占皮革污水總量的10%,且毒性大,硫化物含量達2 000~4 000 mg/L,懸浮物和濁度值都很大,是皮革工業中污染最為嚴重的廢水。在對廢水進行處理時,用超濾法分離其中蛋白質,採用磺化聚碸類膜進行超濾,把浸灰廢液的濃度提高5~10倍,膜不會出現堵塞現象,其處理效果優於一般凈化技術。
超濾可回收40%的Na2S、20%的石灰和68%~70%的液體,回收大量的蛋白質,據估算,每噸鹽腌皮可獲得30~40 kg的角蛋白,因而具有較好的經濟效益[13]。
1.8食品工業廢水
生產大豆分離蛋白質會產生大量的高濃度有機廢水,用超濾法處理起廢水,既可回收經濟價值很高的可溶性蛋白和低聚糖,又解決了環保問題,並且與傳統的處理方法相比,運行費用低,產出效益高,回收產品質量穩定,操作簡便。
馬鈴薯生產澱粉的廢液有機物含量高,COD通常在10 000 mg/L左右,國外應用超濾技術去除馬鈴薯澱粉排放廢水中的COD並濃縮回收可溶性蛋白質,國內也用膜裝置為聚碸(PS)和聚丙烯腈(PAN)中空纖維超濾膜組件進行實驗,工藝條件為:操作壓力0.10 MPa,進料流量70 L/h,室溫,超濾前調整料液pH 3.5左右(接近蛋白質等電點,截留率高)。實驗結果表明超濾效果較好,廢水的COD值由8 175 mg/L降為3 610mg/L,COD去除率為55.8%。膜污染後用40 ℃、0.1 mol/L的NaOH溶液來清洗,恢復率在90%左右[14]。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

❷ 超濾膜的簡介

超濾膜是一種孔徑規格一致,額定孔徑范圍為0.001-0.02微米的一種微孔過濾膜專。超濾膜採用壓力差為推動力的膜過屬濾方法為超濾膜過濾。以膜的額定孔徑范圍作為區分標准時壓力差為推動力的膜過濾可區分為:微孔膜(MF)的額定孔徑范圍為0.02~10μm;超濾膜(UF)為0.001~0.02μm;逆滲透膜(RO)為0.0001~0.001μm。超濾膜的孔徑只有幾納米到幾十納米,也就是說在膜的一側施以適當壓力,就能篩出大於孔徑的溶質分子,以分離分子量大於500道爾頓、粒徑大於2~20納米的顆粒。

❸ 超濾膜的凈水原理是什麼

超濾膜的過復濾原理是什制么?

  1. 超濾膜的篩分過程,以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的壓力下,當原液流過膜表面時,超濾膜表面密布的許多細小的微孔只允許水及小分子物質通過而成為透過液,而原液中體積大於膜表面微孔徑的物質則被截留在膜的進液側,成為濃縮液,因而實現對原液的凈化、分離和濃縮的目的。

  2. 每米長的超濾膜絲管壁上約有60億個0.01微米的微孔,其孔徑只允許水分子、水中的有益礦物質和微量元素通過,而較小細菌的體積都在0.02微米以上,因此細菌以及比細菌體積大得多的膠體、鐵銹、懸浮物、泥沙、大分子有機物等都能被超濾膜截留下來,從而實現了凈化過程。在單位膜絲面積產水量不變的情況下,濾芯裝填的膜面積越大,則濾芯的總產水量越多。

你所問的從內到外,還是從外到內,這兩種都有,因為超濾膜有兩種分別是:內壓式和外壓式

內壓式的超濾膜就是從內到外。

外壓式的超濾膜就是從外到內。

❹ 超濾膜

國內自20世紀七十年代開始UF膜和膜過程的研究與開發,目前製造廠商多達一百多家,是我國膜產業中企業數、產品種類最多,產量最大,能與國外產品抗衡的領域。
超濾屬於壓力驅動膜過程,超濾膜平均孔徑在1-50nm之間,可以分離溶液中的大分子、膠體、蛋白質、微粒等。材質主要為聚碸(PSu)、聚丙烯腈(PAN)、聚醚碸(PES)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)等。
據不完全統計,UF/MF的應用實施例多達1,500餘種。在國外主要應用於飲用水處理,國內則主要用於工業領域的廢水處理、回用,作為反滲透的前處理已被認同。近年來,通過自主創新和引進消化吸收,國內企業推出了不少優秀的超濾膜新技術、新產品。國內具有代表性的企業主要有天津膜天膜、海南立升、大連歐科、和廣州超禹。
打字不易,如滿意,望採納。

❺ 超濾膜過濾的原理是

超濾超濾是復一種與膜孔徑大小制相關的篩分過程,以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的壓力下,當原液流過膜表面時,超濾膜表面密布的許多細小的微孔只允許水及小分子物質通過而成為透過液,而原液中體積大於膜表面微孔徑的物質則被截留在膜的進液側,成為濃縮液,因而實現對原液的的凈化、分離和濃縮的目的。參見下圖。

❻ 超濾膜的原理是什麼孔徑與分子量之間有關系嗎

超濾膜原理

超濾膜篩分過程,以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的專壓力下,當屬原液流過膜表面時,超濾膜表面密布的許多細小的微孔只允許水及小分子物質通過而成為透過液,而原液中體積大於膜表面微孔徑的物質則被截留在膜的進液側,成為濃縮液,因而實現對原液的凈化、分離和濃縮的目的。

超濾膜孔徑與分子量之間的關系

超濾膜是一種具有超級「篩分」分離功能的多孔膜。它的孔徑只有幾納米到幾十納米,也就是說只有一根頭發絲的1‰!在膜的一側施以適當壓力,就能篩出大於孔徑的溶質分子,以分離分子量大於500道爾頓、粒徑大於2~20納米的顆粒。超濾膜的結構有對稱和非對稱之分。前者是各向同性的,沒有皮層,所有方向上的孔隙都是一樣的,屬於深層過濾;後者具有較緻密的表層和以指狀結構為主的底層,表層厚度為0.1微米或更小,並具有排列有序的微孔,底層厚度為200~250微米,屬於表層過濾。工業使用的超濾膜一般為非對稱膜。超濾膜的膜材料主要有纖維素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚碸、聚丙烯腈、聚醯胺、聚碸醯胺、磺化聚碸、交鏈的聚乙烯醇、改性丙烯酸聚合物等等。

❼ 印染廢水,是染漿廢水來的,脫色效果不好,怎麼辦

不知到你用的什麼工藝,一般生物處理不易脫色的話,可以考慮加點絮凝劑,另外氧化法也比較常用,下面一個參考文摘不錯的:
由於染料生產品種多,並朝著抗光解、抗氧化、抗生物氧化方向發展,從而使染料廢水處理難度加大。染料廢水處理難點:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分復雜。三是水質水量不穩定,排放具有間歇性。印染廢水的處理目標一般是COD的去除與脫色,但脫色問題難度更大。
3. 脫色處理方法

3.1 物理方法

3.1.1吸附法

吸附法是利用多孔性的固體物質,使廢水中的一種或多種物質被吸附在固體表面而去除的方法。吸附脫色技術是依靠吸附劑的吸附作用來脫除染料分子的。吸附按其作用力可分為物理吸附、化學吸附和離子交換吸附三種。目前用於吸附脫色的吸附劑主要是靠物理吸附, 但離子交換纖維、改性膨潤土等也有化學吸附作用。

常用的吸附劑包括可再生吸附劑如活性炭、離子交換纖維等和不可再生吸附劑如各種天然礦物(膨潤土、硅藻土)、工業廢料(煤渣、粉煤灰) 及天然廢料(木炭、鋸屑) 等。傳統的吸附劑是活性碳,活性炭具有較高的比表面積(500- 600 m2/g),它只對陽離子染料、直接染料、酸性染料、活性染料等水溶性染料具有較好的吸附性能。活性炭去除水中溶解性有機物(分子量不超過400)非常有效,但它不能去除水中的膠體疏水性染料。若廢水BOD5> 500mg/L,則採用吸附法是不經濟的。膨潤土作為水處理中的吸附劑和絮凝劑,已被廣泛用於印染廢水脫色領域,近年來製成多種復合膨潤土、VS型纖維和聚苯乙烯基陽離子交換纖維等,具有物理吸附和離子交換功能,且比表面大、離子交換速度快,易再生,對難處理的陽離子染料廢水有很好的脫色效果,有些改性的膨潤土的脫色效果甚至高於活性炭[4];某些集吸附與絮凝性能為一體的吸附劑如硅藻土復合凈水劑也已開發;用電廠粉煤灰製成具有絮凝性能的改性粉煤灰,對疏水性和親水性染料廢水均具有很高的脫色率;另外工業廢料(如煤渣、粉煤灰等)、天然廢料(如木炭、木屑等)、植物秸稈(如玉米棒等)均對印染廢水具有一定的吸附作用。

吸附法尤其適合難生化降解的紡織印染廢水脫色處理,印染廢水的吸附脫色技術是一項非常有效而又比較經濟的方法。活性炭吸附脫色技術不適合印染廢水一級處理,只能用於深度脫色處理,活性炭處理成本高,再生困難,所以活性炭的再生技術是正在研究的課題,其中生物再生是研究的重點方向。煤、爐渣吸附劑,原料來源廣,成本低,但在處理印染廢水之後存在二次污染,所以只適合與生化法或砂過濾等方法聯合使用。離子交換樹脂對水溶性染料離子吸附特別有效,離子交換吸附劑的開發研製是今後的主要發展方向之一。廉價、高效、因地制宜新型吸附材料的開發是一項很有前途的技術。吸附法與其它處理方法的優化組合處理印染廢水,脫色效果更佳。[5]

綜上所述,吸附脫色的發展方向體現在兩個方面: ①根據吸附機制開發、尋找新的吸附劑; ②對現有吸附劑的改性與活化, 以提高脫色效果和再生能力。

3.1.2超濾法脫色

超濾是利用一定的流體壓力推動力和孔徑在20~200üA 的半透膜實現高分子和低分子的分離。超濾過程的本質是一種篩濾過程,膜表面的孔隙大小是主要的控制因素。該法的優點是不會產生副作用,可以使水循環使用。早在70 年代初期, 膜分離技術就嘗試用來處理印染廢水。目前, 該方法可用於去除各種染料和添加劑。但由於分離染料混合物的困難, 並未達到完美的程度。

在這種技術中,半透膜的性質起著決定性的作用。就材料而言,膜有動態膜,纖維素類膜,聚碸超濾膜,荷電超濾膜或疏鬆反滲透膜。[6]

(1)動態膜從處理效果和經濟上講,ZrO-PAA 動態膜是可行的。但能耗較大,其滲透水及化學物質的再利用率可達88% 到96%。

(2) 纖維素類膜。CA 膜的選擇性隨膜表面與各種染料互變異構體相互作用而發生變化,但膜材料本身在耐pH、耐溫等方面仍然有所不足。纖維素類膜在耐pH值、耐壓、耐溫度等方面優於CA ,用纖維素超濾膜反滲透處理染色廢液, 染料去除率97% 以上可實現水的循環使用,但反滲透所需的高壓操作仍是它的不足。

(3) 聚碸超濾膜由於其良好的物理化學穩定性,有較大的應用前景。使用聚碸超濾膜代替纖維素膜可實現高溫操作, 回收染料減輕污染, 但仍未達到國家排放的標准。

(4) 荷電超濾膜或疏鬆反滲透膜是用來描述其分離性能介於反滲透和超濾之間的一種膜。荷電超濾膜是以其化學結構含有荷電基團而定義的, 疏鬆反滲透膜是以其物理結構而命名, 它們往往指的一種膜。對鹽NaCl 截留只有2%~ 3% , 而對於500~2 000 分子量的物質,具有較高的分離率, 同時保持高的水通量。一般染料的分子量正好在這種膜的截留范圍, 特別是離子型染料。該膜在低壓下操作(10 kg/cm 2) 耐pH值、耐壓密、耐污染、耐溫等方面都比較突出,前景廣闊[7]。

3.1.3輻射降解法

電離輻射可有效地降解染料水溶液,輻射技術和其它技術有很好的協同作用。與常規污染物處理技術相比,輻射技術在常溫常壓下進行,具有工藝簡單、無二次污染等特點,對難降解有機污染物的處理更有其獨特長處。[8]

用60Co γ射線輻照甲基橙和活性艷藍KNR水溶液,輻照後染料水溶液的可見光區和紫外區的特徵吸收峰隨吸收劑量的增加而漸漸下降至接近零,說明輻射降解反應既破壞了染料分子的發色基團,同時也破壞了染料的有機分子結構。脫色率和COD去除率均隨吸收劑量的增加而增加。過氧化氫與輻射有協同作用,在相同的吸收劑量下,脫色率和COD去除率均隨過氧化氫的濃度增加而增加。另外,該法pH值適用范圍很廣;溶液的初始濃度越大,COD去除和脫色效果越差;氧的存在可以促進染料分子的降解。在同樣輻照條件下,染料的輻射降解效果因染料分子的結構不同而略有不同[9]。

輻射法處理印染等難降解污水時雖然有機物的去除率高、設備佔地小、操作簡便,但用來產生高能粒子的裝置價格昂貴,技術要求高,而且該方法能耗較大,能量利用率不高,若要真正投入實際運行,還需進行大量的研究工作。

3.2 物理化學法

3.2.1絮凝法

印染廢水的絮凝脫色技術, 投資費用低, 設備佔地少, 處理量大, 是一種被普遍採用的脫色技術。某印染廠採用混凝脫色- 懸浮曝氣生物濾池工藝處理主要含活性染料的廢水,原水CODCr, SS的平均質量濃度分別為296,285 mg/L 和平均色度為550倍, 處理後出水水質相應各項指標分別為40, 20 mg/L 和10 倍, 其去除率分別為87%, 92%和98%。[10]

在印染廢水中使用的絮凝劑很多,大致可分為無機絮凝劑、有機絮凝劑和微生物絮凝劑三類,其中,有機絮凝劑還分為天然有機高分子絮凝劑、合成有機高分子絮凝劑。由於印染廢水水質比較復雜,無機單鹽絮凝劑在水解絮凝過程中,未能完成具有優勢絮凝效果的形態,投葯量大,絮凝效果差;無機高分子絮凝劑可以較好地除去廢水中大部分懸浮態染料,但對於水溶性染料中分子量小、不容易形成膠體的廢水則難以處理;有機高分子絮凝劑對於水溶性染料等廢水具有很好的脫色性能,但單獨使用效果差,而且易於產生有毒物質;因此,開發研製價廉、無毒、高效的新型有機絮凝劑,已成為目前絮凝法的主要研究方向之一。

復合絮凝劑則能同時發揮幾種絮凝劑的優點,使絮凝法用於印染廢水處理既經濟,又適用。如將有機絮凝劑與無機絮凝劑復配使用,充分發揮有機高分子絮凝劑的吸咐架橋性能和無機絮凝劑的電性中和能力,可以使處理出水達到較好的效果。此外,澱粉衍生物、木質素衍生物、羧甲基殼聚糖[11]等天然高分子具有無毒、原料廣、價廉和可生物降解等優點,也得到科研工作者的高度重視。另外,微生物絮凝劑是利用生物技術,從微生物體或其分泌物提取、純化而獲得的一種安全、高效,且能自然降解的新型水處理劑。與普通的絮凝劑相比,有固液易於分離,沉澱少,適用性廣等優點,因此微生物絮凝劑的研究正成為當今世界絮凝劑方面研究的重要課題[12]。總之,高效、無毒、無害的環境友好性絮凝即將在印染廢水處理中有廣闊的應用前景。

絮凝法雖然是含染料廢水處理的常用方法,但對於許多可溶性好的染料, 處理效果往往不佳。因此, 復合絮凝法將成為工業廢水處理工藝研究的主要內容和發展方向。根據實際出水要求,採用適當的預處理和後處理手段,發揮絮凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義。

然而,用絮凝法進行廢水脫色依然存在以下幾個方面的問題:產生大量的淤泥;由於廢水水質變化大,每批廢水脫色前均需要進行預試驗,以確定最佳條件,提高了成本,又費時。過量的陽離子絮凝劑會在廢水中產生大量氮的化合物,它們對魚類有毒且難以生物降解和硝酸化抑制,絮凝劑過量也可能導致沉澱重新溶解。脫色效率低,不符合排放標准。因此,實際生產中,應根據實際出水要求,採用適當的預處理和後處理手段,發揮混凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義。

3.3 化學方法

3.3.1電化學法

電化學法是處理印染廢水的另一種有效的處理方法。電化學法通過可溶性電極在陽極和陰極上發生電絮凝、電氣浮和H的間接還原作用從而達到處理廢水的目的。電化學法處理印染廢水具有設備小、佔地少、運行管理簡單、COD去除率高和脫色好等優點,但同時電化學法存在著能耗大、成本高和析氧析氫副反應等缺點。近年來,隨著電化學和電力工業的發展以及許多新型高析氧析氫過電位電極的發明,電化學法又重新引起人們的重視。根據電極反應方式劃分, 傳統電化學方法可細分為內電解法、電絮凝和電氣浮法、電氧化學。

內電解法是利用廢水中有些組分易被氧化,有些組分易被還原,在有導電介質存在時,電化學反應便會自發進行,同時兼有絮凝、吸附、共沉澱等綜合作用的一種廢水處理方法[13]。最著名的內電解法是鐵屑法, 即將鑄鐵作為濾料, 使印染廢水浸沒或通過, 利用Fe 和FeC 與溶液的電位差, 發生電極反應, 產生較高化學活性新生態H, 能與印染廢水多種組分發生氧化還原反應, 破壞染料發色結構, 而陽極產生的新生態Fe2+, 其水解產物有較強的吸附和絮凝作用。該法不需要外加電源,操作簡單,成本低廉,是種很有前途的處理方法。

電氣浮法是以Fe、AL作陽極產生的H2將絮體浮起;而電絮法則是利用電極反應產生的Fe2+ 、Al3+實現絮凝脫色。採用石墨、鈦板等作極板, 對染料廢水通電電解, 陽極產生O2或Cl2, 陰極產生H2。通過O的氧化作用及H的還原作用破壞染料分子而使印染廢水脫色, 脫色率可達98% 以上,COD去除率達80%以上。

國內重點研究的是電化學與其它方法相結合,其中較為有成就的是用絮凝復合床新技術處理高色度印染廢水,對色度>10000倍的印染廢水處理後,脫色率可達99%以上,CODCr去除率達75%。國外在新型電極方面研究較多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等電極。

電催化高級氧化技術(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近發展起來的新型AOPs ,因其處理效率高、操作簡便、與環境兼容等優點引起了研究者的注意。它能在常溫常壓下,通過有催化活性的電極反應直接或間接產生輕基自由基, 從而有效降解難生化污染物。陳武等進行了三維電極電化學方法處理印染廢水實驗, COD去除率達74.7% ,色度去除率達93.3%[14]。

3.3.2氧化法

氧化法是使染料分子中發色基團的不飽和雙鍵被氧化斷開,形成分子量較小的有機物或無機物,從而使染料失去發色能力的一種印染廢水處理方法。氧化法主要有:高溫深度氧化法、化學氧化法和光催化氧化降解法等。

高溫深度氧化法主要是焚燒法。

化學氧化法是印染廢水脫色處理的主要方法,其機理是利用氧化劑將染料不飽和的發色基團打破而脫色。Fenton試劑(Fe2+-H2O2)、臭氧、氯氣、次氯酸鈉等是一般採用的氧化劑。常見的有組合法和催化氧化法等。如採用混凝- 二氧化氯組合法的優點在於ClO2氧化能力強,是HClO的9倍多,且無氯氣氧化法處理廢水時可能與水中有機物結合生成氯代有機物(AOX)[15]。

化學氧化法能有效地去除印染廢水中的色度,但不能很好地去除廢水中的COD,對此有人提出了不完全氧化的方法,即只部分氧化,使有機物通過自由基耦合降低水溶性而絮凝去除。陳玉峰[16]等通過實驗發現,電生成Fenton試劑處理實際工業印染廢水,CODCr去除率在80 %以上, 脫色率達到95% ,處理費用1117元/m3,具有很好的實際應用價值和市場前景.盛翼春[17]通過研究發現,採用新型電催化氧化對染料濃度高達0.3g/l的水溶性染料廢水在2分鍾內脫色率高達95%以上。

同時,隨著太陽能技術的發展進步,光催化氧化也越來越受到人們的重視。夏金虹[18]用納米TiO2粉體光催化降解印染廢水,脫色率為96% , CODCr去除率為86%,TiO2催化性能比較穩定,可重復使用。光催化氧化技術具有工藝設備簡單、操作條件易控制、處理成本較低、氧化能力強、無二次污染等突出優點,在有機廢水處理中有著廣闊的應用前景。但懸浮體系的納米TiO2顆粒由於粒徑極為細小,存在著難以回收、容易中毒、不易分散等缺點,需通過先進的負載技術或光化學反應器,甚才會獲得更高催化效率。因此,納米TiO2光催化劑的負載技術對其實現大規模實用化、商品化和工業化具有重大的實際意義,是今後TiO2研究的主要方向[19]。

總之, 氧化法是一種優良的印染廢水脫色方法,但也有其自身的缺憾。如果氧化程度不足, 染料分子的發色基團可能被破壞而脫色, 但其中的COD仍未除盡; 若將染料分子充分氧化, 能量、葯劑量消耗可能會過大, 成本太高, 所以氧化法一般用於氧化- 絮凝或絮凝- 氧化工藝。採用氧化- 絮凝工藝, 目的是通過氧化法將水溶性染料分子變為疏水性或使陽離子染料分子轉變為中性, 陰性分子, 以利絮凝除去。反之, 採用絮凝- 氧化工藝則是將氧化作為後處理步驟, 對印染廢水做深度處理經進一步去除殘余色度及COD[20]。

3.3.3還原法

還原法式使用還原型脫色劑對直接染料廢水進行脫色處理的方法,使用的原料主要是鐵屑。鐵屑是機械加工過程中的廢料, 用於處理印染廢水,不僅成本低廉、操作簡單, 而且能夠獲得以廢治廢的效果。該方法主要基於電化學反應。鐵屑是鐵-碳合金, 浸入廢液後形成無數微小原電池。電極反應產物為Fe2+, H2,OH-, 均具有較高的化學活性, 可有效地脫除廢水中的染料分子。其它還原劑有保險粉(+ 活性炭)、亞硫酸及其鹽。洪俊明等[21]通過鐵屑內電解的強化A/ O MBR 工藝處理印染廢水, 出水的水質中色度的去除率超過90.0 %和COD的去除率達到94.9 %。董永春[22]等採用以含硫還原劑和氫化物引發劑為基礎的穩定雙組分還原反應系統,處理直接染料染色廢水,使之與其中的直接染料發生還原脫色反應,其優點是脫色劑用量少,反應快速,脫色率高。還原法的主要缺點是還原降解產物具有毒性, 必須經過二次處理。如活性炭吸附等, 處理費用增大。

3.3.4高級氧化法

高級氧化法(Advanced Oxidation Processes ,AOPs)脫色被認為是一種很有前途的方法。所謂高級氧化法如UV + H2O2、UV + O3, 因為在氧化過程中產生羥基自由基(·OH), 其強氧化性使染料廢水脫色。經研究發現它對偶氮染料的脫色很有效, 高級氧化反應隨O3和H2O2加入量的增加,其反應速率也隨之增加[23]。 在實際生產中與某些化學輔助劑會提高脫色效果, 而且UV + H2O2方法處理偶氮型活性染料產生的降解產物對環境完全無害。最近的研究發現二氯三嗪基型偶氮類活性染料使用UV + H2O2方法脫色也有很好的效果[24]。

氧化劑O3對絕大多數染料的脫色效果較好, 無二次污染, 引入紫外光(UV) 等可加快氧化和提高脫色率。有學者指出O3/UV 對偶氮染料脫色效果好,UV 的引入促使O3在溶液中產生氧化性強的羥自由基。胡文容[25]等指出, 雖超聲波幾乎不能降解偶氮腫I , 但對O3氧化有明顯的強化作用, 當O3濃度為7107mg/ L , 加80w 超聲波是超聲波協同O3處理偶氮腫的最佳組合, 既可滿足90 %脫色率, 又可節省48%的O3。但是目前用O3處理染料廢水費用較高, 開發新型臭氧發生器並和UV 或超聲波連用以提高效率、降低費用是O3在染料廢水處理中推廣的前提, O3對COD的去除不理想。

高級氧化法的對環境污染極小,效果較好,但有一個嚴重不足之處是處理費用較高, 從而限制了它的廣泛使用。

3.3.5超聲波氧化

超聲波處理印染廢水是基於超聲波能在液體中產生局部高溫、高壓、高剪切力,誘使水分子及染料分子裂解產生活性非常強的氫氧自由基, 對大部分有機污染物有氧化作用並可並促進絮凝;同時,在超聲波作用下傳質加強,超聲空化產生局部高溫高壓,可大大強化氫氧自由基對有機物的氧化速度,提高降解效率。

用超聲波可以強化臭氧氧化處理偶氮類染料廢水,這是因為超聲波空化效應產生高能條件促使臭氧快速分解,產生大量的自由基,從而使氮類染料脫色。張家港市九州精細化工廠用根據超聲波氣振技術設計的FBZ 廢水處理設備處理染料廢水[26],色度平均去除率為97.0 % ,CODCr去除率為90.6% ,總污染負荷削減率為85.9 %。符德學[27]等使用該法處理含鹼性湖藍-5B的印染廢水,COD去除率達90.2%,脫色率達到98.3%。劉靜[28]等的實驗結果表明,超聲波與微電場的協同作用大大提高了脫色率,在最佳條件下處理60min,色度去除率可達96.6%。

3.3.6萃取法

萃取是採用與水互不相溶,但能很好溶解污染物的萃取劑,使其與廢水充分混合接觸後,利用污染物在水中和溶劑中不同的分配比分離和提取污染物,從而凈化廢水。廢水中的酸性染料可用混合胺進行萃取回收,陰離子染料可用離子對萃取法用長碳鏈去除,萃取劑可用氫氧化鈉再生。由鄰苯二甲酸與間苯二酚為原料制備熒光黃的生產廢水可用N235/煤油系統萃取,其COD去除率可達91-98%,色度去除率為99.8%[29]。

離子對萃取法是一種新的廢水脫色方法。該法是將染色殘液與一非水溶性有機溶劑一同振盪,當兩相分離時,水相中便呈現無色,染料聚積於上層有機相中。只要燃料含有至少一個磺酸基團或者是染料必須是酸性的,那麼任何深濃的染色廢液均可用此法脫色。該有機相可反復使用數次[30]。離子對萃取法的優點有:液/液相分離工藝簡單,能耗低。對於活性染料來說,僅鈉鹽和鈣鹽形成的水解產物需處理。萃取劑無需再生就可重復使用[31]。

3.4 生物處理方法

生物法是利用微生物酶來氧化或還原染料分子,破壞其不飽和鍵及發色基團,從而達到處理目的的一種印染廢水處理方法。生物法目前仍是國內外主要的印染廢水處理方法。

生物法的缺點在於微生物對營養物質、PH、溫度等條件有一定的要求,難以適應印染廢水水質波動大、染料種類多、毒性高的特點;同時還存在佔地面積大、管理復雜、對色度和COD去除率低等缺點。生物法處理印染廢水的脫色率和COD去除率不高,一般不適宜單獨應用,可作為預處理或深度處理。

3.4.1傳統生物處理技術

生物法處理印染廢水中,以活性污泥法最為普遍,這是因為活性污泥法具有可分解大量有機物、能去除部分色素、可調節pH值、運轉效率高且費用低等優點,但對色度的去除往往不夠理想,因此組合式生物處理技術是目前印染廢水的常用方法。我國生物法中以表面活性污泥法和接觸氧化法佔多數,此外,鼓風曝氣活性污泥法、射流曝氣活性污泥法、生物轉盤法等也有應用,生物流化床尚處於試驗性應用階段。

在印染廢水處理中,厭氧- 好氧工藝具有的這種獨特降解機理引起國內的廣泛關注,並得到了深入的研究和應用,取得了明顯的效果[32]。婁金生等在印染廢水的處理過程中採用了厭氧- 好氧工藝,取得了良好效果,COD總去除率大於90 % ,脫色率大於95%。

3.4.2微生物強化處理技術

隨著紡織工業新產品和新技術的開發,印染廢水中水溶性染料、活性染料和化學漿料的數量和種類的不斷增加,從而導致印染廢水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此選育及應用優化脫色菌和PVA降解菌開始引起人們的關注。選育和培養出各種優良脫色菌株或菌群是生物法一個重要的發展方向。白腐真菌不但對活性艷紅X3B染料有較好的脫色作用,而且對難處理的成分復雜的實際染料廢水也有較好的降解作用,能有效去除印染廢水的COD和BOD5。雖然不能徹底生化降解染料廢水,但給後續的深度處理帶來極大方便[33]。

黃建岷[34]在實驗中採用富集法分離菌株,所得脫色菌處理印染廢水有明顯的脫色效果,脫色率可達70 %以上。與活性炭吸附脫色相比差異不大,證明利用微生物處理印染廢水的色度問題是可行的, 但在菌種篩選方面仍有大量工作可做。

3.4.3膜生物反應器處理技術

膜生物反應器處理技術作為一種新型的污水處理工藝,是傳統活性污泥法和膜分離技術的有機結合,可通過膜片提高某些專性菌的濃度和活性,還可以截留許多分解速度較慢的大分子難降解物質,通過延長其停留時間而提高對它的降解效率。但由於膜易堵塞且製造費用較高,對膜技術在水處理領域全面推廣產生一定阻力。不過,隨著材料科學的發展、膜製造技術的進步、膜質量的提高、膜製造成本的降低以及工藝的改進,膜生物反應器的應用范圍將越來越廣。

3.4.4生物酶脫色技術

一些使用合適的厭氧和嗜氧的聯合生物處理可提高染料的降解性, 但是在厭氧條件下, 偶氮還原酶通常將偶氮染料分解為相應的胺類, 其中許多會致低能或致癌,而且偶氮還原酶具有強專一性, 只分解被選擇染料的偶氮鍵。與此相反,苯氧化酶——過氧化木質素酶(木質素酶, LiP) , 過氧化錳酶(MnP) , 和漆酶——對芳香環沒有強的專一性, 因此, 有可能降解各種不同的芳香化合物。這些酶制劑可有效地使許多結構不同的染料脫色。初始反應速率與制劑中每一個酶(漆酶、LiP 和MnP) 都有關系。一些染料添加劑可顯著降低脫色速率。因此, 在評價新的酶及其處理工藝時, 必須考慮染色助劑對酶活性的影響。今後研究工作主要集中於已選擇出的酶的固定化以便為酶脫色的工業應用打下基礎[35]。

4. 發展前景

各種脫色方法比較分析,可以看出每種處理方法從經濟性,技術性,對環境影響和實用性都有一定的缺陷, 氣吹、混凝、吸附、過濾等一般具有設備簡單、操作簡便和工藝成熟等優點,但是這類處理方法通常是將有機物從液相轉移到固相或氣相,不僅沒有完全消除有機污染物和消耗化學葯劑,而且造成廢物堆積和二次污染。吸附脫色具有隻吸附染料, 但不破壞其結構的特點, 但目前使用的吸附劑往往存在吸附量不夠, 或再生不容易的缺點。高級氧化法脫色如光氧化、超臨界氧化、濕式氧化、低溫等離子體化學法被認為是一種很有前途的方法, 但其昂貴的價格成為制約其廣泛應用的重要原因。一些傳統的氧化方法如NaClO、H2O2、臭氧和紫外氧化等證明對廢水脫色並不有效, 採用強化物理化學與酶催化降解的方法可能將有非常廣闊的應用前景。因此在實際工程中應該按照具體條件和要求,合理選擇工藝組合,以便取得最佳的效果。

❽ 染料廢水處理方法的研究進展

紡織染料工業近年來快速發展,目前我國各種染料產量已達90萬T,染料廢水已成為環境重點污染源之一。染料行業品種繁多,工藝復雜。其廢水中含有大量的有機物和鹽份,具有CODCR高,色澤深,酸鹼性強等特點,一直是廢水處理中的難題。本文主要介紹了染纖困料廢水處理技術中的物理法、化學法、電化學法、生化法,以及這些技術的特點原理及其近年來研究進展和應用。
1物理法
1.1吸附法
吸附法是利用多孔性固體(如活性炭、吸附樹脂等)與染料廢水接觸,利用吸附劑表面活性,將染料廢水中的有機物和金屬離子吸附並濃集於其表面,達到凈化水的目的。
活性炭具有較強的吸附能力,對陽離子染料,直接染料,酸性染料、活性染料等水溶性染料具有較好的吸附功能,但活性炭價格昂貴,不易再生。由殼聚糖與活性炭及纖維素混合製成的染料吸附劑對活性染料和酸慧豎李性染料有優異的吸附能力,其吸附容量分別為264和421MG/G(椰子活性炭吸附容量少於80MG/G)。該吸附劑在水中具有優良的分散性,可採用簡單而廉價的接觸過濾法處理。
大孔吸附樹脂是內部呈交聯網路結構的高分子珠狀體,具有優良的孔結構和很高的比表面積。吸附樹脂可用於去除難以生物處理的芳香族磺酸鹽,萘酚類物質。它易再生,且物理化學穩定性好,樹脂吸附法已成為處理染料廢水的有效方法之一。
1.2膜分離
膜分離技術應用於染料廢水處理方面主要是超濾和反滲透。據報道,用管式和中空纖維式聚碸超濾膜處理還原染料廢水脫色率在95%~98%之間,CODCR去除率60%~90%,染料回收率大於95%。近年來,用殼聚糖超濾膜和多孔炭膜的新型膜材料來處理印染廢水,取得較好的效果。夏之寧等研究了染料廢水在超聲作用下,通過醋酸纖維素膜的透水率與透鹽率,發現超聲波在膜分離中有明顯的加速傳質和去「濃差極化」作用,有超聲波作用時其滲透率是無超聲波時的1.5倍,對透鹽率影響更大,其截留率分別為94%和67%。
2化學法
2.1化學混凝法
化學混凝法主要有沉澱法和氣浮法,此法經濟有效,但產生化學的污泥需進一步處理。常用的有無機鐵復合鹽類。近年來國內外採用高分子混凝劑日益增多。天然高分子絮凝劑主要有澱粉及澱粉衍生物、甲殼質衍生物和木質素衍生物3大類。曾淑蘭等用NAOH作催化劑將玉米澱粉和醚化劑M反應製得的陽離子澱粉CST,用量為7~15MG/L時,對酸性染料、活性染料的脫色率達90%以上。吳冰艷等用接枝聚合製得的木質素季胺鹽絮凝劑處理J酸染料廢水,絮凝劑中的季胺離子與廢水中的磺酸基團生成不溶於水的物質,投量20MG/L,色度去除率達90%。
方忻蘭利用海蝦、蟹殼為原料製得的殼聚糖用來處理印染廢水,CODCR去除率達85%以上。天然高分子絮凝劑電荷密度小,分子量低,易發生生物降解而失去絮凝活性。人工合成的有機高分子絮凝劑分子量大,分子鏈中所帶的官能團多,絮凝性能好,用量少,PH范圍廣。代表性的人工有機高分子絮凝劑有PAN-DCD(二氰二胺改性聚丙烯腈聚電解質)、WX系列高分子脫色絮凝劑、PDADMA-A(二甲基二烯丙基氯化銨聚合物)M。 2.2化學氧化法
化學氧化是利用臭氧、氯、及其含氧化物將染料的發色基團破壞而脫色。臭氧氧化法對多數染料能獲得良好的脫色效果。但對硫化、還原等不溶於水的染料效果較差。FENTON試劑氧化法,其脫色的實質是H2O2與FE2+反應所產生的羥基自由基使染料有機物斷鏈。FENTON試劑除氧化作用外,還兼有混凝作用。研究表明,用此法處理2-萘磺酸鈉生產廢水,先用FECL3混凝沉澱後,然後在PH1.5~2.5條件下以H2O22G/GCODCR,FE2+4G/L水,氧化60MIN可去除CODCR99.6%、色度95.3%[19]。
2.3濕式空氣氧化法
濕式空氣氧化法(WAO)是在高溫(125~320℃)、高壓(0.5~20MPA)條件下通入空氣,使廢水中的有機物直接氧化[20]。超臨前遲界水氧化(SCWO)是指當溫度、壓力高於水的臨界溫度(374℃)和臨界壓力(22.05MPA)條件下的水中有機物的氧化。它實質上是濕式氧化法的強化和改進。超臨界態水的物理化學性質發生較大的變化,水汽相界面消失,形成均相氧化體系,有機物的氧化反應速度極快。MODEL等[21]對有機碳含量27.33G/L的有機廢水,在550℃,60S內,有機氯和有機碳的去除率分別為99.99%和99.97%。超臨界水氧化法與傳統的方法相比,效率高,反應速度快,適用范圍廣,可用於各種難降解有機物;在有機物的含量低於2%時;可通過自身熱交換,無須外界供熱,反應器結構簡單,處理量大。
2.4光催化氧化法
光催化氧化法常用H2O2或光敏化半導體(如TIO2、CDS、FE2O3、WO3作催化劑),在紫外線高能輻射下,電子從價帶躍遷進入導帶,在價帶產生空穴,從而引發氧化反應。此法對染料廢水的脫色效率高,缺點是投資和能耗高。張桂蘭等用新型的旋轉式光催化反應器,在優化條件下採用懸浮態TIO2時,偶氮染料脫色率達98%。程滄滄等[23,24]分別採用固定床型光反應器和斜板式光反應器對有機染料直接耐翠藍GL進行了光催化降解研究,經60MIN光照,其降解率分別為83%和81.4%。
3生化法
生化法具有運行成本低,對環境污染少的特點。但染料廢水水質波動大,種類多,毒性高,對溫度和PH條件要求較苛刻的微生物很難適應。
好氧處理法運行簡單,對CODCR、BOD5的去除率較高,對色度的去除率卻不太理想。而厭氧處理法對染料廢水的色度去除率較高。厭氧處理法污泥生成量少,產生的氣體是甲烷,可利用作為能源。但單獨使用,效果不理想。黃天寅等在處理酞菁藍廢水過程中,採用氣提、吹脫和氣浮等物化手段去除原水中大部分NH3-N和CU2+,提高其生化性。
經厭氧處理後,各項指標均可達到污水綜合排放標準的一級標准,CODCR去除率90.0%,BOD5去除率88.9%,NH3-N去除率99.1%,CU2+去除率99.7%。由於近年來染料向抗分解,抗生物降解的方向發展,單獨一種工藝很難取得滿意的效果。現在處理工藝正朝向厭氧—好氧聯合處理工藝發展。閆慶松等[26]對染料廢水採用了厭氧—好氧工藝。厭氧段採用UASB工藝,中溫消化,停留時間48H,CODCR去除率可達55%,出水BOD5/CODCR值由0.1提高到0.42,系統內形成顆粒污泥,其沉降性能良好。好氧段採用接觸氧化法,經馴化後,污泥對廢水的降解能力逐步提高。 高效菌群(HIGHSOLUTIONBACTERIA)是利用復合的微生物群來處理染料廢水的方法,菌種現已發展到100多種,如反硝化產鹼菌、脫氮硫桿菌、氧化硫硫桿菌等。它可以針對不同的廢水配成不同的菌群去分解不同的污染物,具有較高的針對性。高效微生物群將有機物分解成SO2、H2O以及許多對水質沒有影響的有機小分子。運用H.S.B技術處理無錫某染料廠生產的分散染料、酸性染料(CODCR濃度達2000~2500MG/L)的廢水,出水CODCR小於100MG/L,平均去除率為92.68%。苯胺去除率94%,酚為93%,氨氮為92%,色度均在50倍以下[27]。為了增加優勢菌種在生物處理裝置中的濃度,提高對染料廢水的處理效率,通常將游離的細菌通過化學或物理的手段加以固定,使其保持生物活性和提高使用率。研究表明,高效脫色菌群固定在活性污泥上,脫色酶活力提高70%。
4電化學法
電化學法治理廢水,實質是間接或直接利用電解作用,把染料廢水中的有毒物質轉化為無毒物質。近年來由於電力工業的發展,電力供應充足並使處理成本大幅降低,電化學法已逐漸成為一種非常有競爭力的廢水處理方法。染料廢水的電化學凈化根據電極反應發生的方式不同,可分為內電解法、電凝聚電氣浮、電催化氧化等。
應用最廣泛的內電解法是鐵屑炭法。靳建永用鐵屑內電解法對5大類11種染料廢水進行脫色處理。研究表明,對中等色度和濃度的廢水,脫色率在96%以上;加入助劑可使廢水CODCR去除率在70%以上。內電解法的優點是利用廢物在不消耗能源的前提下去除多種污染成分和色度,缺點是反應速度慢、反應柱易堵塞、對高濃度廢水處理效果差。
在外電壓作用下,利用可溶性陽極(鐵或鋁)產生大量陽離子,對膠體廢水進行凝聚,同時在陰極上析出大量氫氣微氣泡,與絮粒粘附一起上浮。這種方法稱為電凝聚電氣浮。與化學凝聚法相比,其材料損耗少一半左右,污泥量較少,且無笨重的加葯措施。其缺點是電能消耗和材料消耗過大。
電催化氧化是通過陽極反應直接降解有機物,或通過陽極反應產生的羥基自由基、臭氧等氧化劑降解有機物。電催化氧化法的優點是有機物氧化完全,無二次污染。但該法真正應用於廢水工業化處理則取決於具有高析氧電位的廉價高效催化電極。同時電極與電解槽的結構對降低能耗也起重要的作用。賈金平等研究了活性炭纖維電極與鐵的復合電極降解多種模擬印染廢水,有較好的效果。
5結語
染料生產工藝復雜,廢水量大且難以處理,污染治理的費用很高。硫化鹼還原時排出的含硫廢水除使用昂貴的濕式氧化法處理外,其他方法難以達到排放標准。近年來採用加氫還原法,徹底消除了硫化物的污染。汞催化磺化法生產氨基蒽醌改為硝化還原法,徹底消除汞污染。各種新技術的研究和應用大大提高了染料廢水處理的效率,降低了處理成本。但治標更要治本,研究發展經濟合理的清潔生產工藝與發展高效經濟的廢水治理工藝同等重要。從根本上降低排污,才是長久之計。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與聚碸超濾膜研究進展相關的資料

熱點內容
酒精蒸餾應注意什麼 瀏覽:245
邯鄲南污水處理廠技術 瀏覽:777
雞蛋皮怎麼洗暖瓶水垢 瀏覽:350
喜客odea咖啡機除垢 瀏覽:393
新馬3空調濾芯怎麼安裝 瀏覽:794
超濾膜乙腈 瀏覽:833
凈水機沒有回水怎麼辦 瀏覽:135
如何降低反滲透膜清洗成本 瀏覽:692
污水井內支架用什麼處理方式 瀏覽:506
飲水機溫控器控制什麼 瀏覽:428
反滲透膜殺菌 瀏覽:23
補茶幾的是什麼樹脂 瀏覽:815
工業純水設備價格多少 瀏覽:755
沁園牌管道式超濾凈水器裝法 瀏覽:528
濾芯安裝在什麼位置 瀏覽:549
上海10寸過濾芯多少錢一個 瀏覽:714
酸洗磷化污水處理設備哪裡賣 瀏覽:851
盼盼樹脂門隔音好嗎 瀏覽:203
納濾反沖洗頻率 瀏覽:437
高透明環氧樹脂里放動物 瀏覽:709