導航:首頁 > 凈水問答 > 吸附和離子交換ppt

吸附和離子交換ppt

發布時間:2020-12-15 10:38:02

① 分配色譜,吸附色譜和離子交換色譜各是什麼它們的區別

吸附色譜

吸附色譜利用固定相吸附中對物質分子吸附能力的差異實現對混合物的分離,吸附色譜的色譜過程是流動相分子與物質分子競爭固定相吸附中心的過程

吸附色譜的分配系數表達式如下:

② 吸附樹脂和離子交換樹脂有區別嗎,是一樣的嗎

吸附樹脂和離子交換樹脂有區別嗎,是一樣的嗎?

  1. 離子交換樹脂出三部分組成:一是網狀結構的高分子骨架.二是連接在骨架上的功能基團,三是和功能基帶相反電荷的可交換離子。三者互為依存、統一於每粒離子交換的珠體之中。離於交換樹脂作為商品,它在運輸、貯藏和使用時往往部含一定量的水份,因此水分子充滿於每粒離子交換樹脂的骨架、功能基和反離子之間。

  2. 採用常規的懸浮聚合方法,可製得凝膠型的離子交換樹脂,產品一般是透明的、無孔的,樹脂吸水後樹脂相內產生微孔。採用制孔技術可製得大孔型離子交換樹脂,它不同於凝膠樹脂,不論大孔樹脂是處於干態或濕態、收縮或溶脹,都存在著比凝膠型樹脂更多、更大的孔道,比表面也就更大,有利於離子的遷移擴散,提高交換速率和工作效率

  3. 與離子交換樹脂相比較,吸附樹脂的組成中不存在功能基及功能基的反離子,它類似於不含功能基及功能基反離子的大孔樹脂,在製造時往往投入更多的交聯劑和更嚴格地選用致孔劑,以合成具有更大比表而積的不同孔徑、不同孔容和不同比表面積的吸附樹脂。

  4. 根據所帶的功能基的特性,離子交換樹脂可分為陽離子交換樹脂、陰離子交換樹脂和其它樹脂。帶有酸性功能基、並能與陽離子進行交換的稱為陽離子交換樹脂,帶有鹼性功能基並能與陰離子進行交換的稱為陰離子交換樹脂。基於功能基上酸、鹼有強弱之分,離子交換樹脂又可細分為強酸性(一SO,H)、中強酸(一PO(OH))及弱酸性(—COOH)、強鹼(一N+R,Cl)、弱鹼性(一NH,,—NRH,-NR)離子交換樹脂。在強鹼性離子交換樹脂中將含有[(N+(CH2)C1)]的樹脂叫強鹼I型樹脂,含有[(N+(CH3)2(CH,CH,0HD]的樹脂叫強鹼Ⅱ型樹脂。帶有鰲合基、氧化還原基、陽陰兩性基的樹脂;分別稱為鰲合樹脂、氧化還原樹脂和兩性樹脂。上述樹脂通常都用酸、鹼、鹽再生,而弱酸弱鹼的兩性樹脂可用熱水再生,故弱酸弱鹼的兩性樹脂又稱熱再生樹脂.

  5. 吸附樹脂可以大體上分為非極性吸附劑、中極性和強極性吸附劑三大類。非極性吸附樹脂是偶極矩很小的單體聚合製得並不帶任何功能基的吸附樹脂。苯乙烯——二乙烯苯體系的吸附劑是非極性吸附樹脂的代表。這類非極性吸附樹脂的孔表面的疏水性很強,最適於從極性溶劑(如水)中吸附非極性的有機物。中極性吸附材脂是含酯基的吸附樹脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯與雙甲基丙烯酸乙二醇酯等交聯劑共聚的吸附劑,其孔表面疏水和親水部分共有,既可用於極性溶劑中吸附非極性物質,也可用於非極性溶劑中吸附極性物質。強極性(或稱極性)吸附樹脂是指含醯氨基、氰基、酚羥基等極性功能基的吸附樹脂,它適用於非極性溶劑中吸附極性物質。有時,將含氮、氧、硫等配體的離子交換樹脂也稱為強極性吸附樹脂,因此,離子交換樹脂和強極性吸附樹脂之間沒有嚴格的界限。

③ 吸附法和離子交換法異同

吸附法有物理吸附和化學吸附之分,物理吸附如活性炭,把待吸附物吸附在本身的表面,但是可逆過程,化學吸附是通過化學反應將待吸附物吸附,是不可逆的。而離子交換是在溶液或某種介質下兩種物質中得離子發生交換,達到去除某種離子的目的

④ 離子交換樹脂和吸附樹脂的結構有什麼區別

  1. 離子交換樹脂出三部分組成:一是網狀結構的高分子骨架.二是連接在骨架上的功能基團,三是和功能基帶相反電荷的可交換離子。三者互為依存、統一於每粒離子交換的珠體之中。離於交換樹脂作為商品,它在運輸、貯藏和使用時往往部含一定量的水份,因此水分子充滿於每粒離子交換樹脂的骨架、功能基和反離子之間。

  2. 採用常規的懸浮聚合方法,可製得凝膠型的離子交換樹脂,產品一般是透明的、無孔的,樹脂吸水後樹脂相內產生微孔。採用制孔技術可製得大孔型離子交換樹脂,它不同於凝膠樹脂,不論大孔樹脂是處於干態或濕態、收縮或溶脹,都存在著比凝膠型樹脂更多、更大的孔道,比表面也就更大,有利於離子的遷移擴散,提高交換速率和工作效率

  3. 與離子交換樹脂相比較,吸附樹脂的組成中不存在功能基及功能基的反離子,它類似於不含功能基及功能基反離子的大孔樹脂,在製造時往往投入更多的交聯劑和更嚴格地選用致孔劑,以合成具有更大比表而積的不同孔徑、不同孔容和不同比表面積的吸附樹脂。

  4. 根據所帶的功能基的特性,離子交換樹脂可分為陽離子交換樹脂、陰離子交換樹脂和其它樹脂。帶有酸性功能基、並能與陽離子進行交換的稱為陽離子交換樹脂,帶有鹼性功能基並能與陰離子進行交換的稱為陰離子交換樹脂。基於功能基上酸、鹼有強弱之分,離子交換樹脂又可細分為強酸性(一SO,H)、中強酸(一PO(OH))及弱酸性(—COOH)、強鹼(一N+R,Cl)、弱鹼性(一NH,,—NRH,-NR)離子交換樹脂。在強鹼性離子交換樹脂中將含有[(N+(CH2)C1)]的樹脂叫強鹼I型樹脂,含有[(N+(CH3)2(CH,CH,0HD]的樹脂叫強鹼Ⅱ型樹脂。帶有鰲合基、氧化還原基、陽陰兩性基的樹脂;分別稱為鰲合樹脂、氧化還原樹脂和兩性樹脂。上述樹脂通常都用酸、鹼、鹽再生,而弱酸弱鹼的兩性樹脂可用熱水再生,故弱酸弱鹼的兩性樹脂又稱熱再生樹脂.

  5. 吸附樹脂可以大體上分為非極性吸附劑、中極性和強極性吸附劑三大類。非極性吸附樹脂是偶極矩很小的單體聚合製得並不帶任何功能基的吸附樹脂。苯乙烯——二乙烯苯體系的吸附劑是非極性吸附樹脂的代表。這類非極性吸附樹脂的孔表面的疏水性很強,最適於從極性溶劑(如水)中吸附非極性的有機物。中極性吸附材脂是含酯基的吸附樹脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯與雙甲基丙烯酸乙二醇酯等交聯劑共聚的吸附劑,其孔表面疏水和親水部分共有,既可用於極性溶劑中吸附非極性物質,也可用於非極性溶劑中吸附極性物質。強極性(或稱極性)吸附樹脂是指含醯氨基、氰基、酚羥基等極性功能基的吸附樹脂,它適用於非極性溶劑中吸附極性物質。有時,將含氮、氧、硫等配體的離子交換樹脂也稱為強極性吸附樹脂,因此,離子交換樹脂和強極性吸附樹脂之間沒有嚴格的界限。

⑤ 離子交換法和吸附法在處理污水時的運行機理有何異同

離子交換法是屬於化學反滲透,吸附法屬於物理分離。
拓展閱讀:污水處理回 (sewage treatment,wastewater treatment):為使污水達到答排水某一水體或再次使用的水質要求對其進行凈化的過程。污水處理被廣泛應用於建築、農業,交通、能源、石化、環保、城市景觀、醫療、餐飲等各個領域,也越來越多地走進尋常百姓的日常生活。

⑥ 吸附法和離子交換法

以各類陰、陽離子交換樹脂為固定相的離子交換法,以萃淋樹脂為固定專相的萃淋法,以螯合樹屬脂、螯合纖維、活性炭、聚氨酯泡沫塑料、巰基棉及黃原脂棉等固定相的螯合-吸附法以廣泛用於貴金屬的分離與富集。

在HCl介質中,貴金屬氯配陰離子與陰離子交換樹脂相互作用的強度決定於配陰離子的電荷數,其中雙電荷的[PtCl42-、[PdCl42-、[PtCl62-、[IrCl62-、[RuCl62-、[OsCl62-牢固地吸附於樹脂上,而三電荷的[IrCl63-、[RhCl63-、[RuCl63-僅有很弱的親和力。銠、釕的配合物。由於其配合物在溶液中電荷的可變性,因此它們的吸附強度也隨其電荷數而變化。在實際應用中應考慮這一特性。

⑦ 如何解釋離子交換過程中的穿透曲線和吸附過程

圓錐曲線的解題技巧一、常規七大題型:(1)中點弦問題具有斜率的弦中點問題,常用設而不求法(點差法):設曲線上兩點為(x1,y1),(x2,y2),代入方程,然後兩方程相減,再應用中點關系及斜率公式(當然在這里也要注意斜率不存在的請款討論),消去四個參數。xy0x2y2如:(1)2?2?1(a?b?0)與直線相交於A、B,設弦AB中點為M(x0,y0),則有0?k?0。22ababxy0x2y2(2)2?2?1(a?0,b?0)與直線l相交於A、B,設弦AB中點為M(x0,y0)則有0?k?0aba2b2(3)y2=2px(p>0)與直線l相交於A、B設弦AB中點為M(x0,y0),則有2y0k=2p,即y0k=p.y2典型例題給定雙曲線x?過A(2,1)的直線與雙曲線交於兩點P1及P2,求線段P1P2?1。22的中點P的軌跡方程。(2)焦點三角形問題橢圓或雙曲線上一點P,與兩個焦點F1、F2構成的三角形問題,常用正、餘弦定理搭橋。x2y2典型例題設P(x,y)為橢圓2?2?1上任一點,F1(?c,0),F2(c,0)為焦點,?PF1F2??,ab?PF2F1??。(1)求證離心率e?sin(???);sin??sin?3(2)求|PF1|?PF2|的最值。3(3)直線與圓錐曲線位置關系問題直線與圓錐曲線的位置關系的基本方法是解方程組,進而轉化為一元二次方程後利用判別式、根與系1/27頁數的關系、求根公式等來處理,應特別注意數形結合的思想,通過圖形的直觀性幫助分析解決問題,如果直線過橢圓的焦點,結合三大麴線的定義去解。典型例題拋物線方程y2?p(x?1)(p?0),直線x?y?t與x軸的交點在拋物線准線的右邊。(1)求證:直線與拋物線總有兩個不同交點(2)設直線與拋物線的交點為A、B,且OA⊥OB,求p關於t的函數f(t)的表達式。(4)圓錐曲線的相關最值(范圍)問題圓錐曲線中的有關最值(范圍)問題,常用代數法和幾何法解決。若命題的條件和結論具有明顯的幾何意義,一般可用圖形性質來解決。若命題的條件和結論體現明確的函數關系式,則可建立目標函數(通常利用二次函數,三角函數,均值不等式)求最值。(1),可以設法得到關於a的不等式,通過解不等式求出a的范圍,即:「求范圍,找不等式」。或者將a表示為另一個變數的函數,利用求函數的值域求出a的范圍;對於(2)首先要把△NAB的面積表示為一個變數的函數,然後再求它的最大值,即:「最值問題,函數思想」。最值問題的處理思路:1、建立目標函數。用坐標表示距離,用方程消參轉化為一元二次函數的最值問題,關鍵是由方程求x、y的范圍;2、數形結合,用化曲為直的轉化思想;3、利用判別式,對於二次函數求最值,往往由條件建立二次方程,用判別式求最值;4、藉助均值不等式求最值。典型例題已知拋物線y2=2px(p>0),過M(a,0)且斜率為1的直線L與拋物線交於不同的兩點A、B,|AB|≤2p(1)求a的取值范圍;(2)若線段AB的垂直平分線交x軸於點N,求△NAB面積的最大值。(5)求曲線的方程問題1.曲線的形狀已知--------這類問題一般可用待定系數法解決。典型例題已知直線L過原點,拋物線C的頂點在原點,焦點在x軸正半軸上。若點A(-1,0)和點B(0,8)關於L的對稱點都在C上,求直線L和拋物線C的方程。2/27頁2.曲線的形狀未知-----求軌跡方程典型例題已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等於常數?(?>0),求動點M的軌跡方程,並說明它是什麼曲線。(6)存在兩點關於直線對稱問題在曲線上兩點關於某直線對稱問題,可以按如下方式分三步解決:求兩點所在的直線,求這兩直線的交點,使這交點在圓錐曲線形內。(當然也可以利用韋達定理並結合判別式來解決)x2y2典型例題已知橢圓C的方程??1,試確定m的取值范圍,使得對於直線y?4x?m,橢圓C43上有不同兩點關於直線對稱(7)兩線段垂直問題圓錐曲線兩焦半徑互相垂直問題,常用k1·k2?y1·y2??1來處理或用向量的坐標運算來處理。x1·x22典型例題已知直線l的斜率為k,且過點P(?2,0),拋物線C:y?4(x?1),直線l與拋物線C有兩個不同的交點(如圖)。(1)求k的取值范圍;(2)直線l的傾斜角?為何值時,A、B與拋物線C的焦點連線互相垂直。四、解題的技巧方面:3/27頁在教學中,學生普遍覺得解析幾何問題的計算量較大。事實上,如果我們能夠充分利用幾何圖形、韋達定理、曲線系方程,以及運用「設而不求」的策略,往往能夠減少計算

⑧ 誰有電廠化學離子交換系統的原理的課件嗎我急需!

你好,為你找了些問答題可能有用
151、 什麼叫離子交換樹脂?
答:離子交換樹脂是人工合成的,具有高分子聚合物骨架和活性基團的物質,因外形呈樹脂狀,故常稱為離子交換樹脂。
163、在水處理實際應用中,離子交換樹脂選擇順序如何?有什麼規律?
答:陽離子交換樹脂在稀溶液中的的選擇性順序如下:Fe3+>A13+>Ca2+>Mg2+>K+≈NH4+>Na+>H+
這可歸納為①離子所帶電荷越大,越易被吸著;②當離子所帶電荷量相同時,離子水合半徑較小的易被吸著。
弱酸性陽樹脂對H+的選擇性向前移動,羧酸型樹脂對H+的選擇性居於Fe3+之前。
在濃溶液中選擇順序有所不同,某些低價離子會居於高價離子前面。
陰離子交換樹脂的選擇順序:在淡水的離子交換除鹽處理系統中,即進水是稀酸溶液時,陰離子的選擇順序為SO42-(+HSO4-)>CL->HCO3->HSiO-;
當OH型離子交換樹脂失效後,用鹼進行再生時,即對於進水是濃鹼溶液,陰離子的選擇性順序為:CL—>SO42—>CO32->HSiO3—;
據此,可以推知,OH型離子交換樹脂對於水中常見陰離子的選擇順序,遵循以下三條規則:
(1)在強弱酸混合的溶液中,OH型離子交換樹脂易吸著強酸陰離子。
(2)濃溶液與稀溶液,前者利於低價離子被吸著,後者利於高價離子被吸取。
(3)在濃度和價數等條件相同的情況下,選擇性系數大的易被吸著。
164、試述弱酸陽離子交換樹脂的特性。
答:弱酸陽離子交換樹脂在水中的特性類似弱酸。它與中性鹽類作用的能力較弱(例如SO42—、CL—等強酸陰離子)。它僅能與弱酸性鹽類(具有鹼度的鹽類)反應,反應後產生的是弱酸。用強酸H型離子交換樹脂可處理鹼度大的水,將水中的鹼度所對應的陰離子除去後,再用強酸H型交換樹脂來除去強酸根所對應的那部分陰離子。
由於弱酸性陽樹脂對H+的親和力較大,很容易再生,因此它可用強酸H型陰離子交換樹脂的再生廢液來進行再生。
弱酸性陽樹脂的交換容量很大,約為強酸性陽樹脂的2倍。由於弱酸性陽樹脂的交聯度低,所以其機械強度比強酸性陽樹脂的要低。
鹽型弱酸性陽樹脂具有水解能力。
165、簡述弱鹼性陰離子交換樹脂的特性。
答:OH型的弱鹼性陽離子交換樹脂在水中類似弱鹼,其分解中性鹽的能力很弱,,其在中性鹽溶液中不能和鹽類反應,因此只能在酸性溶液中與SO42—、CL—、、NO3—等強酸根進行交換,對弱酸根HCO3—的吸著力很弱,對更弱的HSiO3—則不能吸著。
弱鹼性陽樹脂對OH—的親和力較大,很容易再生,可用強鹼性陰樹脂的再生廢液進行再生。
弱鹼性陰樹脂的交換容量大,相當於強鹼性陰樹脂的3倍。由於弱鹼性陰樹脂的交聯度低、孔隙大,其機械強度比強鹼性陰樹脂的要低。但弱鹼性陰樹脂在運行時吸著的有機物,在再生時易被解吸出來。
鹽型的弱鹼性陰樹脂在水中具有水解能力。
166、 為什麼新樹脂在使用前應進行預處理? 離子交換樹脂如何進行預處理?
答: 因為新樹脂中含有少量的低聚合物和未參與聚合,縮合反應的單體。當樹脂與水、酸、鹼、鹽等溶液接觸時,上述物質就會轉入溶液中,影響出水水質。除了這些有機物外,新樹脂往往含有鐵、鋁、銅等無機雜質。在水質要求較高時,應對新樹脂進行預處理。
進行予處理時,如樹脂脫水需要食鹽水處理:將樹脂轉入交換器中,用大余樹脂體積的10%的食鹽溶液浸泡1—2小時。浸泡完後放掉食鹽水,用水沖洗樹脂,直到排出的水不呈黃色為止。再進行反洗,以除去混在樹脂中的機械雜質和細碎樹脂粉末。
陽樹脂: 用2—4%NaOH溶液浸泡4—8小時,然後進行小流量反洗,至排水澄清、耗氧量穩定為止。再用5%鹽酸浸泡4—8小時,進行正洗,至排水氯含量與進水相接近為止。
陰樹脂:用5%鹽酸浸泡4—8小時,用氫離子交換器出水進行小流量反洗,至排水氯離子含量與進水相接近為止。然後再用4%NaOH溶液浸泡4—8小時,正洗排水接近中性為止。。
167、離子交換樹脂如何轉型?
答:(1)陽離子交換樹脂轉型方法:
將陽離子交換樹脂浸泡於2—4%的氫氧化鈉溶液中,經4一8小時後進行小流量反洗(指器內預處理),至出水澄清,耗氧量穩定為止。然後再浸泡於5%的鹽酸溶液中,經4—8小時後,進行正洗,至出水與進水氯根含量相近為止。
(2)陰離子交換樹脂轉型方法:
將陰離子交換樹脂浸泡於5%的鹽酸溶液內,經4—8小時後用氫離子交換水進行小流量反洗,直至出水與進水氯根含量相近為止。然後再浸泡於4%的氫氧化鈉溶液中,經4—8小時後進行正洗,至出水接近中性為止。
168、如何對不同的樹脂進行分離?
答:對混合在一起的不同樹脂,主要是利用它們的比重不同進行分離,一種是借自下而上的水流進行樹脂分層。另外一種辦法是將混合樹脂浸泡於一定比重的食鹽溶液中,比重小的樹脂會浮起來,與比重大的分離。例如,用飽和食鹽水即可將強鹼、強酸兩種樹脂分離開。
如果兩種樹脂的比重差小,分離起來有困難,可以先將樹脂轉型,再進行分離。這是由於樹脂型型式不同,其比重也不同,例如OH型陰樹脂的比重小於CL型。
169、試述影響陽離子交換速度的因素。
答:(1)樹脂的交換基團:離子間的化學反應速度是很快的,所以一般來說樹脂交換基團的不同並不影響到交換速度,但對於會形成弱電解質的離子交換樹脂,情況就不同,象H型和鹽型的交換速度就會有很大的差別。
(2)樹脂的交聯度:樹脂的交聯度大,網孔小,則其顆粒內擴散越慢,交換速度就慢。當水中的粒徑較大的離子存在時,對交換速度的影響就更為顯著。
(3)樹脂的顆粒:樹脂顆粒越小,交換速度越快。
(4)溶液的濃度:溶液濃度是影響擴散速度的重要因素,濃度越大擴散速度越快。
(5)水溫:提高水溫能同時加快內擴散和膜擴散。
(6)攪拌或提高流:在交換過程中的攪拌或提高水的流速,只能加快膜擴散,但不影響內擴散。
(7)離子的本性:離子水合半徑越大,內擴散越慢;離子電荷數越多,內擴散越慢。
170、簡述離子交換樹脂的污染和氧化降解。
答:離子交換樹脂在連續進行吸附交換,以及多次循環操作中,其本身也為水中各種雜質所污染;
(1)無機物污染:
陽離子交換樹脂用鹽酸再生時,銀、鉛等化合物會積累於樹脂顆粒內部;當用硫酸再生時,鈣、鋇等化合物會積聚於樹脂顆粒內部而造成樹脂微孔阻塞。
鐵離子對陰陽樹脂都有污染。
(2) 有機物污染
陰陽樹脂都會受到有機物污染。引起陽樹脂污染的有油脂、含氮化合物、調節PH時用的有機胺類、微生物細菌等。引起陰樹脂污染的物質有油脂、木質碳酸和腐植酸等高分子有機陰離子以及有機鐵、微生物、細菌和陽樹脂降解後溶出的高分子酸類等。
有機物是高分子有機陰離子,分子量很大,一般凝膠型樹脂孔徑較小,很容易被大分子的有機物堵住孔隙而使其交換容量下降。尤其是強鹼陰樹脂,非常容易受有機物污染。
有機物對離子交換樹脂的污染與其含量及有機物的組成有關。有機物含量大的、高分子的易污染。樹脂的結構對污染程度也有很大影響。
(3)硅酸根污染:
強鹼陰離子交換樹脂失效後,不及時還原而長期停放或陰離子交換樹脂不能徹底還原均可造成硅酸根污染。膠體硅一般不被凝膠型樹脂交換,但還有一部分被吸附。因此也會使陰樹脂污染。
(4)樹脂的氧化:
對於自來水為水源的電廠除鹽系統樹脂易受活性氯氧化。樹脂氧化後,其外觀色淡,透明度增加,體積增大,阻力增大,體積交換容量降低。
171、 什麼叫樹脂的復甦?
答: 樹脂在長期的使用過程中,被有機物、鐵、膠體等污染,使其交換容量降低甚至全部喪失,故採用酸、鹼法或鹼、食鹽法等進行處理,以恢復其交換性能。這就是樹脂的復甦。
172、如何保存需長期儲存的離子交換樹脂?
答:當要長期儲存樹脂時,最好把樹脂轉變成鹽型,浸泡在水中,如儲存過程中,樹脂脫了水,也應先用濃(10%)食鹽水浸泡,再逐漸稀釋,以免樹指急劇膨脹而破碎。儲存溫度一般在0—40℃為宜,以免凍裂。
173、當離子交換劑遇到電解質水溶液時,電解質對其雙電層有哪兩種作用?為什麼?
答:離子交換樹脂可看作是具有膠體型結構的物質,既在離子交換樹脂的高分子表面上有許多和膠體表面相似的雙電層,我們把它和內層離子符號相同的離子稱作同離子,符號相反的稱反離子。所以離子交換是樹脂中原有反離子和溶液中其它反離子相互交換位置。當離子交換劑遇到含有電解質的水溶液時,電解質對其雙電層有兩方面的作用。一是交換作用:擴散層中反離子在溶液中的活動較自由,離子交換作用主要在此種反離子和溶液中其它反離子之間進行,因動平衡的關系,溶液中的反離子會先交換至擴散層,然後再與固定層中的反離子互換位置。二是壓縮作用:當溶液中鹽類濃度增大時,可使擴散層壓縮,從而使擴散層中部分反離子變成固定層中的反離子,使得擴散層的活動范圍變小。這就說明了為什麼當再生溶液的濃度太大時,不僅不能提高再生效果,有時反使效果降低。
174、樹脂使用時,應注意哪些問題?
答:保持水分,防止風干,密閉存放,運輸和儲存應在0℃以上,防止凍裂。使用中陽樹脂應防止鐵銹污染和活性氯等破壞樹脂,陰樹脂應防止油類和有機物等污染。
175、如何選擇合適的離子交換樹脂?
答:首先要根據水源水質所含各種離子的量及在水中的分布規律來選擇。在水中強酸根陰離子的含量較大時,應考慮先採用弱鹼陰樹脂來除去水中大部分強酸根陰離子,而使強鹼性陰樹脂充分發揮其除硅性能。此外,還應根據水處理交換器的床型的不同而選用不同品種的樹脂。同時還要根據樹脂的物理及化學性能等綜合考慮來選出最適宜的離子交換樹脂。
176、如何降低樹脂粉碎率?
答:降低壓差,降低流速,在保證出水水質的前提下,適當降低樹脂層高度,縮短運行周期,延長大反洗周期等。
177、陰樹脂為何易變質?如何防止其變質?
答:因為陰樹脂的化學穩定性比陽樹脂差一些,所以它對氧化劑和高溫的抵抗力比陽樹脂要差,所以為防止其變質,需將進水中的氧化劑提前除去。
178、離子交換樹脂交換容量為什麼會下降?
答:樹脂交換能力的下降取決於物理性能崩解,化學交換基團的分解,高分子有機物和金屬氧化物的污染,如水中的微生物,鐵雜質的污染,以及細菌的生長等。這與樹脂品種、處理液種類、交換基團、循環基數、有無前置處理、溫度高低、及酸性物質的存在等多種因素有關。
179、在使用弱鹼性陰樹脂處理水時,為什麼對水的PH值有一定限制?使用弱鹼樹脂有什麼好處?
答:當採用弱鹼樹脂處理水時,一般只能在水的PH<9的情況下進行交換。當水的PH值過大時,由於水中OH-離子濃度大,它抑制了樹脂的電離,使樹脂不再具有可交換的性能。也就是說,水中其它離子無法取代OH-離子。
使用弱鹼樹脂的好處是:它極易再生,再生劑量不需過大。對於降低鹼耗具有很大意義。另外弱鹼樹脂吸著有機物能力較強,而且可在再生時被洗出來。同時弱鹼樹脂還具有交換容量大,交換速度快,膨脹性小,機械強度高的優點。
180、如何清洗樹脂層所截留下來的污物?
答:有空氣擦洗和超聲波清洗兩種方法。
(1)空氣擦洗:即在裝有污染樹脂的設備中,重復性地通入空氣,然後進行正洗。每次通入空氣時間為0.5—1分鍾,正洗時間為1—2分鍾,重復次數為6—30次,空氣由底部進入,目的在於疏鬆樹脂層,並使樹脂上的污物脫落。正洗時,脫落下的污物隨水流由底部排出。空氣擦洗應與樹脂再生交錯進行。
(2)超聲波清洗法:可以清除樹脂顆粒表面的污物,清洗時污染樹脂由設備頂部進入,經中間超聲波場後,由底部離開設備。沖洗水由底部進入上部流出,分離出污物及樹脂碎屑,隨水流由頂部流出。
第九節:除鹽
181、簡述陰、陽離子交換器的除鹽原理。
答: 陰、陽離子交換器一般都聯合使用達到其除鹽的目的,在陽離子交換器中,陽離子交換反應可表示如下:
Na+ Na
RH + Ca2+ R Ca + H+
Mg2+ Mg
Fe3+ Fe

反應結果是水中陽離子被吸著而交換出的H+ 與水中原有的陰離子HCO3- 、Cl—、SO42- 等形成對應的酸溶液,。
這種陽床出水進入陰床時發生如下反應:
CL— CL
ROH + SO42- R SO4 + OH—
HSiO3- HSiO3
HCO3- HCO3

這樣,水中所含鹽份其陰、陽離子分別被陰陽樹脂交換吸收,從而達到減少水中含鹽量的目的。為減少陰床負擔,在陽床之後加脫碳器除去碳酸。
182、什麼叫「兩床三塔+混床」除鹽系統?
答:兩床系指單元式除鹽系統中的陽床和陰床。由於陽床又可稱陽塔,陰床稱陰塔;所以陽床、陰床,除碳塔,組成了三塔。「兩床三塔+混床」為常見的單元式除鹽系統。
183、常用的除鹽系統有幾種形式?各具有什麼優缺點?
答:常用的除鹽系統有單元式和母管式兩種系統。
單元式,即由陽床、除碳器、中間水箱、陰床、混床組成一個單元。
主要優點是:(1)水質容易控制,出水質量好,可靠性高。一般以陰床導電度作為失效標准,再生時適當增加陰床鹼量,可保證不「跑硅」。
(2)再生時與其它系統完全隔絕,減少了向除鹽水箱和其它系統漏酸、漏鹼的危險。
(3)由於是單元操作,易於實現程式控制和自動化。
缺點:(1)水處理轉動設備(泵和風機)的台數較多。
(2)由於陰、陽床失效點不一致,但必須同時再生,單耗(主要是鹼耗)較高。
母管式:所有陽床出水匯集到一條母管,陰床出水匯集到一條母管。
優點:(1)各台陽、陰床可以單獨進行操作,設備利用率高。
(2)轉動設備少。
(3)酸鹼單耗相對較低。
缺點:(1)不容易實現程式控制和自動化。
(2)再生時,向除鹽水箱和系統漏酸、漏鹼可能性比單元式大
(3)為嚴格控制水質,必須對陰床出水二氧化硅勤分析
184、混床設備內樹脂組合有哪幾種方式?其各自的工藝特點是什麼?
答:混合床中陰陽樹脂有以下幾種組合方式:
(1)強酸、強鹼式:這種組合方式出水質量最高,導電度小於0.2us/cm。硅酸根低於20ug/L.
(2)強酸、弱鹼式:這種組合方式出水質量低,不能除去硅酸根、碳酸根等弱酸離子,出水導電度在0.5—2.0us/cm。但其再生效率高,運行費用低。
(3)弱酸、強鹼式:這種組合方式出水質量居中,可除去硅酸根,出水導電度在1—2us/cm,再生效率也較高。此外,某些場合在陰陽樹脂間加裝一層惰性樹脂,構成三層混床,可避免再生時再生液污染異性樹脂。·
185、一般軟化和除鹼離子交換處理方式其系統設計有哪些?
(1)採用強酸性H離子交換劑的H—Na離子交換,此系統又可以分並列H—Na離子交換和串聯H—Na離子交換。
(2)採用弱酸性H離子交換劑的H—Na離子交換。
(3)H型交換劑採用貧再生方式的H—Na離子交換。
採用上述方式主要是能除去水中的硬度,又可降低水的鹼度,且不增加水中的含鹽量。
186、什麼叫一級除鹽? 二級除鹽?
答: 原水經過一次強酸陽離子交換器和強鹼陰離子交換系統,稱為一級除鹽;如果經過兩次,稱為二級除鹽;如果系統中有混床,混床本身算作一級。
187、 什麼是叫移動床? 什麼叫混合床? 什麼叫浮動床?
答: 交換器中的樹脂周期性地在交換塔,再生塔和清洗塔之間循環,並分別在各塔中同時完成離子的交換,再生和清洗過程,這種離子交換器稱為移動床;混合床就是在一個離子交換器內按一定比例裝有陰、陽離子兩種樹脂的離子交換設備;浮動床是指當水流自下而上經過離子交換器的樹脂層時,如水流速度足夠大,則整個樹脂層向上浮動托起的離子交換設備。
188、什麼叫離子交換器的自用水率?
答: 離子交換器每周期中反洗、再生、置換、清洗過程中耗用水量的總和,與其周期制水量的比稱為自用水率。
189、混合床一般都設有上、中、下三個窺視窗,它們的作用是什麼?
答:上部窺視窗一般用來觀察反洗時樹脂的膨脹情況;中部窺視窗用於觀察設備中樹脂的水平面,確定是否需要補充樹脂;下部窺視窗用來檢測樹脂床准備再生前陰陽離子交換樹脂的分層情況。
190、說明離子交換除鹽再生原理?
答:交換器失效後,需要對樹脂進行再生,實際上再生過程是除鹽制水過程的的逆反應。
(1)陽樹脂的再生。失效的陽樹脂用3—5%的鹽酸再生,用鹽酸再生的反應如下:

Na+ Na
R Ca2+ + HCl RH + Ca CL
Mg2+ Mg
Fe3+ Fe
樹脂大部轉型為H型,而酸液變為含有殘余酸的氯化物或硫酸鹽(當用硫酸再生時)混合溶液被排入地溝。
(2)陰樹脂的再生,失效的陰樹脂用2—4%的NaOH溶液再生,其反應式為
CL Cl
R SO4 + NaOH ROH+Na SO4
HSiO3 HSiO3
HCO3 HCO3
反應結果,樹脂大部轉型為OH型,而鹼液變為含有殘余鹼的鈉鹽混合液被排入地溝。
191、 什麼叫逆流再生? 什麼叫順流再生?
答: 逆流再生是指制水時,水流方向和再生時再生液流動方向相反的再生方式。順流再生是指制水時,水流的方向和再生液流動的方向一致。通常流向都是由上向下的再生方式。
192、逆流再生具有什麼優點?為什麼?
答:逆流再生的主要優點是出水質量好,再生酸鹼耗低。這是由於逆流再生時,再生液從底部進入,首先接觸的是尚未失效的樹脂,這時由於再生液濃度較高,從樹脂中交換下的被再生離子濃度很小,可以使樹脂得到「深度再生」。再生液到上部時,雖然再生液濃度降低,雜質離子含量增高了,但由於樹脂是深度失效的(飽和度高),所以仍然可以獲得較好的再生效果,這樣再生劑可以得到比較充分的利用。再生結果是,上部樹脂再生得差一些,下部樹脂再生得比較徹底。
在運行的情況下,水首先接觸上部再生度較低的樹脂,但此時由於水中雜質離子濃度含量大,所以可發生離子交換。當水進入底部時,雖然水中離子雜質也大為減少,但由於接觸的是高再生度的樹脂,仍可以進一步除去水中的雜質離子,使水得到深度凈化。
193、為什麼逆流再生對再生劑純度要求較高?
答:從離子交換平衡理論可知,再生劑的純度將會影響到樹脂的再生度,從而影響到樹脂的交換容量,逆流再生的特點是再生液首先接觸出水區樹脂,所以再生劑純度對逆流再生影響較大,若出水區樹脂再生度降低,將會直接影響出水水質。
194、逆流再生為什麼要進行定期大反洗?
答:在進行逆流再生的設備中,為保證底層樹脂始終維持較高的再生度,每次再生時不應將原樹脂層打亂,只進行小反洗,既對中排裝置上的壓脂層進行反洗,而對於中排裝置以下的絕大部分樹脂不進行反洗。但為避免下部樹脂被污染和清除其中的破碎樹脂,以及防止因長期運行,樹脂被壓實結塊、粘結等增加了阻力,影響出水流量,而使床內在運行時產「偏流」,或者影響再生效果。一般經15—20個周期需大反洗一次。由於大反洗後原有的樹脂層分布遭到破壞,所以大反洗後應以2倍常量的酸、鹼液進行再生。
195、順流再生和逆流再生對再生液濃度的要求有什麼不同?
答:一般說來,順流再生時,再生液濃度應稍高一些,這是由於再生液首先與飽和度高的樹脂接觸,如果再生液濃度低,下部飽和度低的樹脂無法得到充分再生,將會影響出水質量。
對逆流再生,再生液濃度可低一些。這是由於再生液首先與飽和度低的樹脂接觸,使底層樹脂得到充分再生。隨再生液向上移動,其濃度下降,但與其接觸的是飽和度高的樹脂,同樣可以得到較好的再生。顯然,再生液利用率也較高。
196、逆流再生固定床的中排裝置有哪些類型?底部出水裝置有哪些類型?
答:中排裝置有:(1)母管支管式:母管與支管在同一平面及母管與支管不在同一平面 (2)管插式 (3)魚刺式 (4)環管式。
底部出水裝置有:(1)穹形多孔板加石英砂墊層(2)多孔板上加水帽或夾布形式(3)魚刺形式(支管上開孔或裝水帽)。
197、對逆流再生除鹽設備中排管開孔面積有什麼要求?
答:為使頂壓空氣和再生液不會在交換器內「堆積」,必須保證再生液及頂壓空氣從中排管順利排出,方可保證再生時不發生樹脂亂層。
一般說,中排管的開孔面積是進水面積的2.2—2.5倍,這也是白球壓實逆流再生之所以不會亂層的重要保障。

⑨ 離子交換與吸附樹脂_何炳林 黃文強.pdf

我好像在豆丁網上見過,你可以去試試

⑩ 離子交換樹脂吸附分離

在抄0.25mol/LH2SO4並含有少量過氧化氫的襲介質中釩不被陽離子交換樹脂吸附,可與鈧、釔、鈾分離。

將含釩與鉻的0.08mol/LHCl-6(6+94)%H2O2通過氯型樹脂,鉻通過交換柱而釩吸附於柱上,從而得到分離。

用硫酸根型樹脂採用選擇性洗脫可將鉻(Ⅲ)、釩(Ⅴ)、鉬(Ⅵ)、鎢(Ⅵ)分離,先用0.05mol/LH2SO4-0.1%H2O2洗脫鉻(Ⅲ),再用0.5mol/LH2SO4-0.1%H2O2或1mol/L(NH4)2SO4-0.025mol/LH2SO4洗脫釩(Ⅴ),而鉬(Ⅵ)和鎢(Ⅵ)仍留在吸附柱上。

閱讀全文

與吸附和離子交換ppt相關的資料

熱點內容
蒸餾慢什麼情況 瀏覽:913
食品污水臭氣 瀏覽:152
15t反滲透設備供應 瀏覽:608
f6021w6b污水 瀏覽:583
工業廢水監控 瀏覽:299
反滲透開水器的漏水怎麼處理 瀏覽:233
洗浴中心怎麼安裝凈水 瀏覽:993
凈水器反滲透濾結晶是怎麼回事 瀏覽:241
純凈水機濾芯什麼時候能更換 瀏覽:787
米家空氣凈化器3怎麼拆風扇 瀏覽:934
凈水器反滲透膜安裝 瀏覽:489
生活污水處理廠佔地指標 瀏覽:805
凈水器的設備怎麼選擇 瀏覽:965
污水處理系統中的微生物有什麼基本特點 瀏覽:66
費森尤斯4008s超濾系統故障 瀏覽:973
油煙凈化器編號怎麼編的 瀏覽:226
大班設計清水污水標志 瀏覽:361
凈水器燒水壺怎麼放進去 瀏覽:296
對污水處理廠違規排水處理 瀏覽:321
樹脂結合劑砂輪 瀏覽:208